請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78935完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇國棟(Guo-Dung J. Su) | |
| dc.contributor.author | Sheng-Hui Li | en |
| dc.contributor.author | 李聖暉 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:30:27Z | - |
| dc.date.available | 2023-08-21 | |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-17 | |
| dc.identifier.citation | Reference
[1] E. Tournie, R. Notzel, and K. H. Ploog, “OVERLAYER STRAIN - A KEY TO DIRECTLY TUNE THE TOPOGRAPHY OF HIGH-INDEX SEMICONDUCTOR SURFACES,” Applied Physics Letters, vol. 63, no. 24, pp. 3300-3302, Dec, 1993. [2] E. F. Schubert, Light-Emitting Diodes: Cambridge University Press, 2003. [3] S. Nakamura, M. Senoh, and T. Mukai, “HIGH-POWER INGAN/GAN DOUBLE-HETEROSTRUCTURE VIOLET LIGHT-EMITTING-DIODES,” Applied Physics Letters, vol. 62, no. 19, pp. 2390-2392, May, 1993. [4] S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes Recent advances in materials, techniques and properties,” Materials Science & Engineering R-Reports, vol. 71, no. 1, pp. 1-34, Dec, 2010. [5] R. Zhang, H. Lin, Y. L. Yu, D. Q. Chen, J. Xu, and Y. S. Wang, “A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass,” Laser & Photonics Reviews, vol. 8, no. 1, pp. 158-164, Jan, 2014. [6] G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Gotz, and F. Steranka, “Performance of high-power III-nitride light emitting diodes,” Physica Status Solidi a-Applications and Materials Science, vol. 205, no. 5, pp. 1086-1092, May, 2008. [7] E. F. Schubert, and J. K. Kim, “Solid-state light sources getting smart,” Science, vol. 308, no. 5726, pp. 1274-1278, May, 2005. [8] J. Y. Tsao, “Solid-state lighting - Lamps, chips, and materials for tomorrow,” Ieee Circuits & Devices, vol. 20, no. 3, pp. 28-37, May-Jun, 2004. [9] C. C. Chen, C. Y. Wu, Y. M. Chen, and T. F. Wu, “Sequential color LED backlight driving system for LCD panels,” Ieee Transactions on Power Electronics, vol. 22, no. 3, pp. 919-925, May, 2007. [10] H. J. Chiu, Y. K. Lo, T. P. Lee, S. C. Mou, and H. M. Huang, “Design of an RGB LED Backlight Circuit for Liquid Crystal Display Panels,” Ieee Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2793-2795, Jul, 2009. [11] Y. K. Lo, K. H. Wu, K. J. Pai, and H. J. Chiu, “Design and Implementation of RGB LED Drivers for LCD Backlight Modules,” Ieee Transactions on Industrial Electronics, vol. 56, no. 12, pp. 4862-4871, Dec, 2009. [12] H. Cho, and O. K. Kwon, “A Local Dimming Algorithm for Low Power LCD TVs Using Edge-type LED Backlight,” Ieee Transactions on Consumer Electronics, vol. 56, no. 4, pp. 2054-2060, Nov, 2010. [13] C. Y. Wu, T. F. Wu, J. R. Tsai, Y. M. Chen, and C. C. Chen, “Multistring LED Backlight Driving System for LCD Panels With Color Sequential Display and Area Control,” Ieee Transactions on Industrial Electronics, vol. 55, no. 10, pp. 3791-3800, Oct, 2008. [14] D. Cho, W. S. Oh, and G. W. Moon, “A Novel Adaptive Dimming LED Backlight System With Current Compensated X-Y Channel Drivers for LCD TVs,” Journal of Display Technology, vol. 7, no. 1, pp. 29-35, Jan, 2011. [15] Z. Gong, S. R. Jin, Y. J. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” Journal of Applied Physics, vol. 107, no. 1, pp. 6, Jan, 2010. [16] H. W. Choi, C. W. Jeon, M. D. Dawson, P. R. Edwards, R. W. Martin, and S. Tripathy, “Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes,” Journal of Applied Physics, vol. 93, no. 10, pp. 5978-5982, May, 2003. [17] H. Choi, C. Jeon, and M. Dawson, “High-resolution 128 x 96 nitride microdisplay,” IEEE Electron Device Letters, vol. 25, no. 5, pp. 277-279, 2004. [18] Z. J. Liu, W. C. Chong, K. M. Wong, K. H. Tam, and K. M. Lau, “A Novel BLU-Free Full-Color LED Projector Using LED on Silicon Micro-Displays,” Ieee Photonics Technology Letters, vol. 25, no. 23, pp. 2267-2270, Dec, 2013. [19] A. H. Jeorrett, S. L. Neale, D. Massoubre, E. Gu, R. K. Henderson, O. Millington, K. Mathieson, and M. D. Dawson, “Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells,” Optics Express, vol. 22, no. 2, pp. 1372-1380, Jan, 2014. [20] B. Guilhabert, D. Massoubre, E. Richardson, J. J. D. McKendry, G. Valentine, R. K. Henderson, I. M. Watson, E. Gu, and M. D. Dawson, “Sub-Micron Lithography Using InGaN Micro-LEDs: Mask-Free Fabrication of LED Arrays,” Ieee Photonics Technology Letters, vol. 24, no. 24, pp. 2221-2224, Dec, 2012. [21] B. YOUNG, and O. ASSOCIATION, “Display Technologies Shape the Immersive Experience,” December 2017. [22] V. Poher, N. Grossman, G. Kennedy, K. Nikolic, H. Zhang, Z. Gong, E. Drakakis, E. Gu, M. Dawson, and P. French, “Micro-LED arrays: a tool for two-dimensional neuron stimulation,” Journal of Physics D: Applied Physics, vol. 41, no. 9, pp. 094014, 2008. [23] H. Y. Lin, C. W. Sher, D. H. Hsieh, X. Y. Chen, H. M. P. Chen, T. M. Chen, K. M. Lau, C. H. Chen, C. C. Lin, and H. C. Kuo, “Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold,” Photonics Research, vol. 5, no. 5, pp. 411-416, Oct, 2017. [24] Z. J. Liu, K. M. Wong, W. C. Chong, and K. M. Lau, “Active Matrix Programmable Monolithic Light Emitting Diodes on Silicon (LEDoS) Displays,” in SID Symposium Digest of Technical Papers, 2011, pp. 1215-1218. [25] L. Dupré, M. Marra, V. Verney, B. Aventurier, F. Henry, F. Olivier, S. Tirano, A. Daami, and F. Templier, “Processing and characterization of high resolution GaN/InGaN LED arrays at 10 micron pitch for micro display applications,” in Gallium Nitride Materials and Devices XII, 2017, pp. 1010422. [26] J. Day, J. Li, D. Y. C. Lie, C. Bradford, J. Y. Lin, and H. X. Jiang, “III-Nitride full-scale high-resolution microdisplays,” Applied Physics Letters, vol. 99, no. 3, pp. 3, Jul, 2011. [27] S. P. Atwood, “Information Display Magazine ” Society for Information Display, vol. 34, no. 2, March/April, 2018. [28] J. Jeon, K. S. Choo, W. K. Lee, J. H. Song, and H. G. Kim, ' Integrated a‐Si Gate Driver Circuit for TFT‐LCD Panel.' pp. 10-13. [29] H. Ohshima, 'Value of LTPS: Present and Future.' pp. 75-78. [30] T. Matsuo, S. Mori, A. Ban, and A. Imaya, 'Advantages of igzo oxide semiconductor.' pp. 83-86. [31] Y. H. Yeh, C. C. Lin, J. X. Lin, Y. H. Hung, C. H. Tang, C. C. Chen, C. C. Chen, C. Y. Chen, C. L. Chen, and Y. F. Wu, 'The Highest Resolution of 427 ppi for LTPS TFT‐LCD with Integrated Driver.' pp. 1404-1407. [32] Y. Ma, H. Ikeno, P. Shen, L. Wu, H. Wu, Q. Song, and C. Tseng, 'A Novel Pixel Structure for 847 ppi Display with LTPS Technology.' pp. 477-479. [33] K. Yokoyama, S. Hirasa, N. Miyairi, Y. Jimbo, K. Toyotaka, M. Kaneyasu, H. Miyake, Y. Hirakata, S. Yamazaki, and M. Nakada, 'A 2.78‐in 1058‐ppi Ultra‐High‐Resolution OLED Display using CAAC‐OS FETs.' pp. 1039-1042. [34] A. Ghosh, E. P. Donoghue, I. Khayrullin, T. Ali, I. Wacyk, K. Tice, F. Vazan, L. Sziklas, D. Fellowes, and R. Draper, 'Directly Patterened 2645 PPI Full Color OLED Microdisplay for Head Mounted Wearables.' pp. 837-840. [35] T. Fujii, C. Kon, Y. Motoyama, K. Shimizu, T. Shimayama, T. Yamazaki, T. Kato, S. Sakai, K. Hashikaki, and K. Tanaka, “4032 ppi High‐resolution OLED microdisplay,” Journal of the Society for Information Display, vol. 26, no. 3, pp. 178-186, 2018. [36] P. E. Malinowski, T. H. Ke, A. Nakamura, Y. H. Liu, D. Vander Velpen, E. Vandenplas, N. Papadopoulos, A. J. Kronemeijer, J. L. van der Steen, and S. Steudel, “High resolution photolithography for direct view active matrix organic light‐emitting diode augmented reality displays,” Journal of the Society for Information Display, vol. 26, no. 3, pp. 128-136, 2018. [37] J. Herrnsdorf, J. J. D. McKendry, S. L. Zhang, E. Y. Xie, R. Ferreira, D. Massoubre, A. M. Zuhdi, R. K. Henderson, I. Underwood, S. Watson, A. E. Kelly, E. Gu, and M. D. Dawson, “Active-Matrix GaN Micro Light-Emitting Diode Display With Unprecedented Brightness,” Ieee Transactions on Electron Devices, vol. 62, no. 6, pp. 1918-1925, Jun, 2015. [38] W. C. Chong, W. K. Cho, Z. J. Liu, C. H. Wang, and K. M. Lau, '1700 pixels per inch (PPI) passive-matrix micro-LED display powered by ASIC.' pp. 1-4. [39] F. Marion, S. Bisotto, F. Berger, A. Gueugnot, L. Mathieu, D. Henry, F. Templier, and T. Catelain, 'A room temperature flip-chip technology for high pixel count micro-displays and imaging arrays.' pp. 929-935. [40] K. Suslick, “Kirk-Othmer encyclopedia of chemical technology,” John Wiley&Sons: New York, NY, USA, vol. 26, pp. 517-541, 1998. [41] F. Yun, M. A. Reshchikov, L. He, T. King, H. Morkoç, S. W. Novak, and L. Wei, “Energy band bowing parameter in Al x Ga 1− x N alloys,” Journal of applied physics, vol. 92, no. 8, pp. 4837-4839, 2002. [42] K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE Journal of selected topics in quantum electronics, vol. 8, no. 2, pp. 321-332, 2002. [43] 徐嘉彬, and 劉俊賢, “機械工業雜誌,” vol. 258, pp. 218, 2004. [44] J. H. Lau, Flip chip technologies: McGraw-Hill New York, 1996. [45] N. Unami, K. Sakuma, J. Mizuno, and S. Shoji, “Effects of excimer irradiation treatment on thermocompression Au–Au Bonding,” Japanese Journal of Applied Physics, vol. 49, no. 6S, pp. 06GN12, 2010. [46] C.-C. Liu, Y.-K. Lin, M.-P. Houng, and Y.-H. Wang, “The microstructure investigation of flip-chip laser diode bonding on silicon substrate by using indium-gold solder,” IEEE Transactions on components and packaging technologies, vol. 26, no. 3, pp. 635-641, 2003. [47] K.-M. Chu, J.-S. Lee, H. S. Cho, B. S. Rho, H.-H. Park, and D. Y. Jeon, “Characteristics of indium bump for flip-chip bonding used in polymeric-waveguide-integrated optical interconnection systems,” Japanese journal of applied physics, vol. 43, no. 8S, pp. 5922, 2004. [48] G. S. Matijasevic, C. C. Lee, and C. Y. Wang, “Au Sn alloy phase diagram and properties related to its use as a bonding medium,” Thin solid films, vol. 223, no. 2, pp. 276-287, 1993. [49] W. L. Wang, Y. H. Lin, Y. Li, X. C. Li, L. G. Huang, Y. L. Zheng, Z. T. Lin, H. Y. Wang, and G. Q. Li, “High-efficiency vertical-structure GaN-based light-emitting diodes on Si substrates,” Journal of Materials Chemistry C, vol. 6, no. 7, pp. 1642-1650, Feb, 2018. [50] D.-S. Wuu, S.-C. Hsu, S.-H. Huang, C.-C. Wu, C.-E. Lee, and R.-H. Horng, “GaN/mirror/Si light-emitting diodes for vertical current injection by laser lift-off and wafer bonding techniques,” Japanese journal of applied physics, vol. 43, no. 8R, pp. 5239, 2004. [51] W. Lin, D. Wuu, K. Pan, S. Huang, C. Lee, W. Wang, S. Hsu, Y. Su, S. Huang, and R. Horng, “High-power GaN-mirror-Cu light-emitting diodes for vertical current injection using laser liftoff and electroplating techniques,” IEEE photonics technology letters, vol. 17, no. 9, pp. 1809-1811, 2005. [52] W. Hong, Y. Feng, L. Shuo, H. Ya-Ping, W. Yue, Z. Wei-Han, W. Zheng-Hong, D. Wen, L. Yu-Feng, and Z. Ye, “Effect of wafer bonding and laser liftoff process on residual stress of GaN-based vertical light emitting diode chips,” ACTA PHYSICA SINICA, vol. 64, no. 2, 2015. [53] Y. Chen, C. Chang, H. Lin, S.-C. Hsu, and C. Liu, “Fabrication of vertical thin-GaN light-emitting diode by low-temperature Cu/Sn/Ag wafer bonding,” Microelectronics Reliability, vol. 52, no. 2, pp. 381-384, 2012. [54] M. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh, and M. Stutzmann, “Optical process for liftoff of group III‐nitride films,” physica status solidi (a), vol. 159, no. 1, pp. R3-R4, 1997. [55] W. Wong, T. Sands, N. Cheung, M. Kneissl, D. Bour, P. Mei, L. Romano, and N. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Applied physics letters, vol. 75, no. 10, pp. 1360-1362, 1999. [56] H. Kim, K.-K. Kim, K.-K. Choi, H. Kim, J.-O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and T.-Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Applied physics letters, vol. 91, no. 2, pp. 023510, 2007. [57] E. Yablonovitch, T. Sands, D. Hwang, I. Schnitzer, T. Gmitter, S. Shastry, D. Hill, and J. Fan, “Van der Waals bonding of GaAs on Pd leads to a permanent, solid‐phase‐topotaxial, metallurgical bond,” Applied Physics Letters, vol. 59, no. 24, pp. 3159-3161, 1991. [58] O. Ambacher, M. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R. Fischer, A. Miehr, A. Bergmaier, and G. Dollinger, “Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 14, no. 6, pp. 3532-3542, 1996. [59] T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe, “Thermal stress in GaN epitaxial layers grown on sapphire substrates,” Journal of applied physics, vol. 77, no. 9, pp. 4389-4392, 1995. [60] K. S. S. Harsha, “Principles of Physical Vapor Deposition of Thin Films,” Elsevier Science, pp. 400, 2006. [61] T. Kim, A. Danner, and K. Choquette, “Enhancement in external quantum efficiency of blue light-emitting diode by photonic crystal surface grating,” Electronics Letters, vol. 41, no. 20, pp. 1138-1139, 2005. [62] H. Okamoto, and T. B. Massalski, Phase diagrams of binary gold alloys, p.^pp. 280: ASM International, 1987. [63] A. F. Baggerman, and M. Batenburg, “Reliable Au-Sn flip-chip bonding on flexible prints,” IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, vol. 18, no. 2, pp. 257-263, 1995. [64] E. Zakel, J. Simon, G. Azdasht, and H. Reichl, “Gold-tin solder bumps for TAB inner lead bonding with reduced bonding pressure,” Soldering & Surface Mount Technology, vol. 4, no. 3, pp. 27-32, 1992. [65] Y. S. Wu, J.-H. Cheng, W. C. Peng, and H. Ouyang, “Effects of laser sources on the reverse-bias leakages of laser lift-off GaN-based light-emitting diodes,” Applied physics letters, vol. 90, no. 25, pp. 251110, 2007. [66] C. W. Sun, C. H. Chao, H. Y. Chen, Y. H. Chiu, W. Y. Yeh, M. H. Wu, H. H. Yen, and C. C. Liang, 'Development of Micro‐Pixellated GaN LED Array Micro‐Display System.' pp. 1042-1045. [67] C. Goßler, C. Bierbrauer, R. Moser, M. Kunzer, K. Holc, W. Pletschen, K. Köhler, J. Wagner, M. Schwaerzle, and P. Ruther, “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” Journal of Physics D: Applied Physics, vol. 47, no. 20, pp. 205401, 2014. [68] H. Cho, O. Krüger, A. Külberg, J. Rass, U. Zeimer, T. Kolbe, A. Knauer, S. Einfeldt, M. Weyers, and M. Kneissl, “Chip design for thin-film deep ultraviolet LEDs fabricated by laser lift-off of the sapphire substrate,” Semiconductor Science and Technology, vol. 32, no. 12, pp. 12LT01, 2017. [69] H. Aoshima, K. Takeda, K. Takehara, S. Ito, M. Mori, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, “Laser lift‐off of AlN/sapphire for UV light‐emitting diodes,” physica status solidi c, vol. 9, no. 3‐4, pp. 753-756, 2012. [70] M. K. Schwiebert, and W. H. Leong, “Underfill flow as viscous flow between parallel plates driven by capillary action,” IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part C, vol. 19, no. 2, pp. 133-137, 1996. [71] P. Tian, J. J. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Chen, G. Zhang, and M. D. Dawson, “Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes,” Applied Physics Letters, vol. 101, no. 23, pp. 231110, 2012. [72] F. Olivier, S. Tirano, L. Dupre, B. Aventurier, C. Largeron, and F. Templier, “Influence of size-reduction on the performances of GaN-based micro-LEDs for display application,” Journal of Luminescence, vol. 191, pp. 112-116, Nov, 2017. [73] J.-T. Oh, S.-Y. Lee, Y.-T. Moon, J. H. Moon, S. Park, K. Y. Hong, K. Y. Song, C. Oh, J.-I. Shim, and H.-H. Jeong, “Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures,” Optics express, vol. 26, no. 9, pp. 11194-11200, 2018. [74] M. Chen, B. P. Zhang, L. E. Cai, J. Y. Zhang, L. Y. Ying, and X. Q. Lv, “Auto-Split Laser Lift-Off Technique for Vertical-Injection GaN-Based Green Light-Emitting Diodes,” Ieee Photonics Journal, vol. 5, no. 4, pp. 7, Aug, 2013. [75] C. C. Kao, H. C. Kuo, K. F. Yeh, J. T. Chu, W. L. Peng, H. W. Huang, T. C. Lu, and S. C. Wang, “Light-output enhancement of nano-roughened GaN laser lift-off light-emitting diodes formed by ICP dry etching,” Ieee Photonics Technology Letters, vol. 19, no. 9-12, pp. 849-851, May-Jun, 2007. [76] M. Lachab, F. Asif, B. Zhang, I. Ahmad, A. Heidari, Q. Fareed, V. Adivarahan, and A. Khan, “Enhancement of light extraction efficiency in sub-300 nm nitride thin-film flip-chip light-emitting diodes,” Solid-State Electronics, vol. 89, pp. 156-160, Nov, 2013. [77] X. L. Hu, J. Zhang, H. Wang, and X. C. Zhang, “High-luminous efficacy white light-emitting diodes with thin-film flip-chip technology and surface roughening scheme,” Journal of Physics D-Applied Physics, vol. 49, no. 44, pp. 6, Nov, 2016. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78935 | - |
| dc.description.abstract | 本論文主旨為改善氮化鎵微型發光二極體 (micro-LED) 之效能,並成功研製100x100陣列數藍光micro-LED,每顆像素大小為10微米,像素中心至中心距離為12.8微米。未來期望能結合主動式驅動背板,應用於微顯示器 (micro-display) 如AR/VR眼鏡。
在成熟微形發光二極體製程中常利用覆晶封裝 (flip-chip bonding) 結合控制電路,改善藍寶石基板的低導熱與導電特性,然而覆晶封裝之micro-LED結構是從藍寶石基板(Sapphire)面出光,而GaN (n=2.4) 相對Sapphire (n=1.77) 有較高之折射率,光在傳播途徑將折射並發散,造成pixel間嚴重光互擾,因此當微型發光二極體用於顯示用途時,Sapphire勢必得移除或磨薄至一定厚度。本論文提出以雷射剝離技術 (Laser lift-off,LLO)解決光互擾問題,利用覆晶封裝搭配LLO製程去除藍寶石基板,並填入底部填充劑減少LLO造成之缺陷。 | zh_TW |
| dc.description.abstract | In this thesis, the major goal is to improve the characteristics of mature GaN-based micro-light-emitting diodes (μLEDs). The blue light μLEDs were successfully fabricated with the dimensions of each pixel is 10 μm, the pitch of micro-LED array is 12.8 μm, and the number of an array is 100 x 100. By integrating with active-matrix backplane, advanced applications in micro-display, such as augmented reality (AR) and virtual reality (VR) glasses can be realized through micro-LED in the near future.
In mature μLEDs fabrication process, flip-chip bonding is applied to not only integrate μLEDs with backplane but also improve the thermal and electrical properties of sapphire. Since the light is emitted from the sapphire side, the large thickness of sapphire leads to light refraction and divergence because of different refractive index between sapphire (n=1.77) and GaN (n=2.4), causing optical crosstalk in adjacent pixels. Therefore, polishing or removal of sapphire is necessary with increasing density of micro-LED array for display applications of μLEDs. In this study, we propose a possible method to solve the crosstalk problem. After flip-chip bonding, Laser lift-off (LLO) process is used to remove the sapphire substrate and the underfill dispensing is applied to reduce defects caused by LLO. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:30:27Z (GMT). No. of bitstreams: 1 ntu-107-R05941079-1.pdf: 3460413 bytes, checksum: ee106027118c202105b85cfa7fdf7440 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract III Contents IV List of Figures VI List of Tables X Chapter 1 Introduction 1 1.1 Development of III-nitride-based light-emitting diodes 1 1.2 Introduction to Micro Light-Emitting Diodes 4 1.3 Literature review of micro-LEDs micro-display 5 1.4 Motivation and Purpose 9 Chapter 2 The Basic theory and Experimental Instruments 13 2.1 Brief Principles of LED 13 2.2 Flip-chip bonding technology 14 2.3 Laser lift-off (LLO) technique 17 2.4 Experimental instruments 19 2.4.1 Photolithography 19 2.4.2 E-beam Evaporator 21 2.4.3 Current-Voltage Measurement 22 2.4.4 Spectrophotometer 23 Chapter 3 Device Structures and Fabrication Process 25 3.1 Fabrication process of micro-LED arrays 25 3.2 Flip-chip bonding 30 3.3 LLO process 31 Chapter 4 Results and Discussion 37 4.1 Surface morphologies analysis of flip-chip micro-LEDs 37 4.2 I-V and L-I characteristics and analysis of flip-chip micro-LEDs 41 4.3 Surface morphologies analysis after LLO process 46 4.4 Comparison of optical characteristics before/after LLO 48 Chapter 5 Conclusions and Future works 53 5.1 Conclusions 53 5.2 Future works 54 Reference 56 | |
| dc.language.iso | en | |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | 微顯示 | zh_TW |
| dc.subject | 氮化鎵 | zh_TW |
| dc.subject | 雷射剝離 | zh_TW |
| dc.subject | 微型發光二極體陣列 | zh_TW |
| dc.subject | micro-display | en |
| dc.subject | laser lift-off | en |
| dc.subject | light-emitting diode | en |
| dc.subject | micro-LED array | en |
| dc.subject | GaN | en |
| dc.title | 利用雷射剝離製程提升氮化鎵微型發光二極體之效能與分析 | zh_TW |
| dc.title | Performance Analysis of GaN-based Micro Light-Emitting Diodes by Laser Lift-Off Process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林清富(Ching-Fuh Lin),蔡永傑(Wing-Kit Choi) | |
| dc.subject.keyword | 發光二極體,微型發光二極體陣列,雷射剝離,氮化鎵,微顯示, | zh_TW |
| dc.subject.keyword | light-emitting diode,micro-LED array,laser lift-off,GaN,micro-display, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU201803337 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-21 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05941079-1.pdf 未授權公開取用 | 3.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
