Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 分子暨比較病理生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78923
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王汎熒
dc.contributor.authorChih-Shuan Shengen
dc.contributor.author沈芷萱zh_TW
dc.date.accessioned2021-07-11T15:29:29Z-
dc.date.available2023-08-23
dc.date.copyright2018-08-23
dc.date.issued2018
dc.date.submitted2018-08-17
dc.identifier.citationAcharya, R., Fry, E., Stuart, D., Fox, G., Rowlands, D., Brown, F., 1989. The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature 337, 709-716.
Alexandersen, S., Knowles, N.J., Dekker A., Belsham G.J., Zhang Z.D., and Koenen F. 2012. Picornaviruses. In Disease of Swine, Eds Zimmerman et al., 10th edition, pp. 587-620, Wiley-Blackwell.
Andino, R., Silvera, D., Suggett, S.D., Achacoso, P.L., Miller, C.J., Baltimore, D., Feinberg, M.B., 1994. Engineering poliovirus as a vaccine vector for the expression of diverse antigens. Science 265, 1448-1451.
Beer, M., Reimann, I., Hoffmann, B., Depner, K., 2007. Novel marker vaccines against classical swine fever. Vaccine 25, 5665-5670.
Bittle, J.L., Houghten, R.A., Alexander, H., Shinnick, T.M., Sutcliffe, J.G., Lerner, R.A., Rowlands, D.J., Brown, F., 1982. Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature 298, 30-33.
Black, L., Francis, M.J., Rweyemamu, M.M., Umehara, O., Boge, A., 1984. The relationship between serum antibody-titers and protection from foot and mouth-disease in pigs after oil emulsion vaccination. J Biol Stand 12, 379-389.
Borrego, B., Camarero, J.A., Mateu, M.G., Domingo, E., 1995. A highly divergent antigenic site of foot-and-mouth disease virus retains its immunodominance. Viral Immunol 8, 11-18.
Boros, A., Nemes, C., Pankovics, P., Kapusinszky, B., Delwart, E., Reuter, G., 2012. Porcine teschovirus in wild boars in Hungary. Arch Virol 157, 1573-1578.
Boyer, J.C., Haenni, A.L., 1994. Infectious transcripts and cDNA clones of RNA viruses. Virology 198, 415-426.
Cano-Gomez, C., Fernandez-Pinero, J., Garcia-Casado, M.A., Zell, R., Jimenez-Clavero, M.A., 2017. Characterization of PTV-12, a newly described porcine teschovirus serotype: in vivo infection and cross-protection studies. J Gen Virol 98, 1636-1645.
Chiu, S.C., Hu, S.C., Chang, C.C., Chang, C.Y., Huang, C.C., Pang, V.F., Wang, F.I., 2012. The role of porcine teschovirus in causing diseases in endemically infected pigs. Vet Microbiol 161, 88-95.
Cowan, K.M., 1973. Antibody response to viral antigens. Adv Immunol 17, 195-253.
Crotty, S., Miller, C.J., Lohman, B.L., Neagu, M.R., Compton, L., Lu, D., Lu, F.X.S., Fritts, L., Lifson, J.D., Andino, R., 2001. Protection against simian immunodeficiency virus vaginal challenge by using Sabin poliovirus vectors. J Virol 75, 7435-7452.
Crowther, J.R., Farias, S., Carpenter, W.C., Samuel, A.R., 1993. Identification of a fifth neutralizable site on type O foot-and-mouth disease virus following characterization of single and quintuple monoclonal antibody escape mutants. J Gen Virol 74, 1547-1553.
DiMarchi, R., Brooke, G., Gale, C., Cracknell, V., Doel, T., Mowat, N., 1986. Protection of cattle against foot-and-mouth disease by a synthetic peptide. Science 232, 639-641.
Dong, X.N., Chen, Y.H., 2007. Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine 25, 205-230.
Edwards, S., Fukusho, A., Lefevre, P.C., Lipowski, A., Pejsak, Z., Roehe, P., Westergaard, J., 2000. Classical swine fever: the global situation. Vet Microbiol 73, 103-119.
Evans, D.J., McKeating, J., Meredith, J.M., Burke, K.L., Katrak, K., John, A., Ferguson, M., Minor, P.D., Weiss, R.A., Almond, J.W., 1989. An engineered poliovirus chimaera elicits broadly reactive HIV-1 neutralizing antibodies. Nature 339, 385-388, 340.
Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., Ball, L.A. 2005. Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Virus. Elsevier-Academic Press, Ameserdam, pp. 981–998.
Fox, G., Parry, N.R., Barnett, P.V., McGinn, B., Rowlands, D.J., Brown, F., 1989. The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). J Gen Virol 70, 625-637.
Girard, M., Altmeyer, R., Vanderwerf, S., Wychowski, C., Martin, A., 1995. The use of Picornaviruses as vectors for the engineering of live recombinant vaccines. Biologicals 23, 165-169.
Grubman, M.J., Baxt, B., 2004. Foot-and-mouth disease. Clin Microbiol Rev 17, 465-493.
Hogle, J.M., Chow, M., Filman, D.J., 1985. Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229, 1358-1365.
King, A.M.Q. 2012. Virus taxonomy : classification and nomenclature of viruses: ninth report of the International Committee on Taxonomy of Viruses. Academic Press, London ; Waltham, MA, pp. 13.
Kitson, J.D., McCahon, D., Belsham, G.J., 1990. Sequence analysis of monoclonal antibody resistant mutants of type O foot and mouth disease virus: evidence for the involvement of the three surface exposed capsid proteins in four antigenic sites. Virology 179, 26-34.
Knowles, N.J., Samuel, A.R., Davies, P.R., Midgley, R.J., Valarcher, J.F., 2005. Pandemic strain of foot-and-mouth disease virus serotype O. Emerg Infect Dis 11, 1887-1893.
Konig, M., Lengsfeld, T., Pauly, T., Stark, R., Thiel, H.J., 1995. Classical swine fever virus - independent induction of protective immunity by 2 structural glycoproteins. J Virol 69, 6479-6486.
Lawrence, P., Pacheco, J.M., Uddowla, S., Hollister, J., Kotecha, A., Fry, E., Rieder, E., 2013. Foot-and-mouth disease virus (FMDV) with a stable FLAG epitope in the VP1 G-H loop as a new tool for studying FMDV pathogenesis. Virology 436, 150-161.
Lea, S., Hernandez, J., Blakemore, W., Brocchi, E., Curry, S., Domingo, E., Fry, E., Abughazaleh, R., King, A., Newman, J., Stuart, D., Mateu, M.G., 1994. The structure and antigenicity of a type-C foot-and-mouth-disease virus. Structure 2, 123-139.
Lin, M., Lin, F., Mallory, M., Clavijo, A., 2000. Deletions of structural glycoprotein E2 of classical swine fever virus strain alfort/187 resolve a linear epitope of monoclonal antibody WH303 and the minimal N-terminal domain essential for binding immunoglobulin G antibodies of a pig hyperimmune serum. J Virol 74, 11619-11625.
Lyu, K., Wang, G.C., He, Y.L., Han, J.F., Ye, Q., Qin, C.F., Chen, R., 2015. Crystal structures of enterovirus 71 (EV71) recombinant virus particles provide insights into vaccine design. J Biol Chem 290, 3198-3208.
Martinez, M.A., Carrillo, C., Plana, J., Mascarella, R., Bergada, J., Palma, E.L., Domingo, E., Sobrino, F., 1988. Genetic and immunogenic variations among closely related isolates of foot-and-mouth-disease virus. Gene 62, 75-84.
Mason, P.W., Grubman, M.J., Baxt, B., 2003. Molecular basis of pathogenesis of FMDV. Virus Res 91, 9-32.
Mason, P.W., Rieder, E., Baxt, B., 1994. Rgd sequence of foot-and-mouth-disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc Natl Acad Sci USA 91, 1932-1936.
Mateu, M.G., Camarero, J.A., Giralt, E., Andreu, D., Domingo, E., 1995. Direct evaluation of the immunodominance of a major antigenic site of foot-and-mouth disease virus in a natural host. Virology 206, 298-306.
Mateu, M.G., Martinez, M.A., Rocha, E., Andreu, D., Parejo, J., Giralt, E., Sobrino, F., Domingo, E., 1989. Implications of a quasispecies genome structure: effect of frequent, naturally occurring amino acid substitutions on the antigenicity of foot-and-mouth disease virus. Proc Natl Acad Sci U S A 86, 5883-5887.
McKenna, T.S., Lubroth, J., Rieder, E., Baxt, B., Mason, P.W., 1995. Receptor binding site-deleted foot-and-mouth disease (FMD) virus protects cattle from FMD. J Virol 69, 5787-5790.
Meyers, G., Rumenapf, T., Thiel, H.J., 1989. Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology 171, 555-567.
Minor, P.D., 1990. Antigenic structure of picornaviruses. Curr Top Microbiol Immunol 161, 121-154.
Moennig, V., 2000. Introduction to classical swine fever: virus, disease and control policy. Vet Microbiol 73, 93-102.
Moormann, R.J., Bouma, A., Kramps, J.A., Terpstra, C., De Smit, H.J., 2000. Development of a classical swine fever subunit marker vaccine and companion diagnostic test. Vet Microbiol 73, 209-219.
Mueller, S., Wimmer, E., 1998. Expression of foreign proteins by poliovirus polyprotein fusion: Analysis of genetic stability reveals rapid deletions and formation of cardioviruslike open reading frames. J Virol 72, 20-31.
Ogra, P.L., Ogra, S.S., 1973. Local antibody response to poliovaccine in the human female genital tract. J Immunol 110, 1307-1311.
Pasick, J., 2004. Application of DIVA vaccines and their companion diagnostic tests to foreign animal disease eradication. Anim Health Res Rev 5, 257-262.
Paton, D.J., Greiser-Wilke, I., 2003. Classical swine fever--an update. Res Vet Sci 75, 169-178.
Pay, T.W.F., Hingley, P.J., 1987. Correlation of 140s antigen dose with the serum neutralizing antibody-response and the level of protection induced in cattle by foot-and-mouth-disease Vaccines. Vaccine 5, 60-64.
Pay, T.W.F., Hingley, P.J., 1992. Foot-and-mouth-disease vaccine potency tests in cattle - the interrelationship of antigen dose, serum neutralizing antibody-response and protection from challenge. Vaccine 10, 699-706.
Pfaff, E., Mussgay, M., Bohm, H.O., Schulz, G.E., Schaller, H., 1982. Antibodies against a preselected peptide recognize and neutralize foot and mouth disease virus. EMBO J 1, 869-874.
Piccone, M.E., Diaz-San Segundo, F., Kramer, E., Rodriguez, L.L., de los Santos, T., 2011. Introduction of tag epitopes in the inter-AUG region of foot and mouth disease virus: effect on the L protein. Virus Res 155, 91-97.
Porter, D.C., Ansardi, D.C., Choi, W.S., Morrow, C.D., 1993. Encapsidation of genetically-engineered poliovirus minireplicons which express Human-Immunodeficiency-Virus type-1 Gag and Pol proteins upon infection. J Virol 67, 3712-3719.
Rumenapf, T., Unger, G., Strauss, J.H., Thiel, H.J., 1993b. Processing of the envelope glycoproteins of pestiviruses. J Virol 67, 3288-3294.
Sarnow, P., Jacobson, S.J., Najita, L., 1990. Poliovirus genetics. Curr Top Microbiol Immunol 161, 155-188.
Seago, J., Juleff, N., Moffat, K., Berryman, S., Christie, J.M., Charleston, B., Jackson, T., 2013. An infectious recombinant foot-and-mouth disease virus expressing a fluorescent marker protein. J Gen Virol 94, 1517-1527.
Souza, A.P.D., Haut, L., Reyes-Sandoval, A., Pinto, A.R., 2005. Recombinant viruses as vaccines against viral diseases. Braz J Med Biol Res 38, 509-522.
Stirk, H.J., Thornton, J.M., 1994. The BC loop in poliovirus coat protein VP1: an ideal acceptor site for major insertions. Protein Eng 7, 47-56.
Stegeman, A., Elbers, A., de Smit, H., Moser, H., Smak, J., Pluimers, F., 2000. The 1997-1998 epidemic of classical swine fever in the Netherlands. Vet Microbiol 73, 183-196.
Tsai, T.H., Chang, C.Y., Shen, C.H., Wang, F.I., 2018. A highly conserved RNNQIPQDF epitope of porcine teschoviruses induces a group-specific antiserum having pan-PTV diagnostic potential. J Virol Methods, revised submission.
Uttenthal, A., Le Potier, M.F., Romero, L., De Mia, G.M., Floegel-Niesmann, G., 2001. Classical swine fever (CSF) marker vaccine. Trial I. challenge studies in weaner pigs. Vet Microbiol 83, 85-106.
Uttenthal, A., Parida, S., Rasmussen, T.B., Paton, D.J., Haas, B., Dundon, W.G., 2010. Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza. Expert Rev Vaccines 9, 73-87.
van Oirschot, J.T., 2003. Vaccinology of classical swine fever: from lab to field. Vet Microbiol 96, 367-384.
van Rijn, P.A., van Gennip, H.G.P., Moormann, R.J.M., 1999. An experimental marker vaccine and accompanying serological diagnostic test both based on envelope glycoprotein E2 of classical swine fever virus (CSFV). Vaccine 17, 433-440.
van Rijn, P.A., Bossers, A., Wensvoort, G., Moormann, R.J.M., 1996. Classical swine fever virus (CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge. J Gen Virol 77, 2737-2745.
van Rijn, P.A., Vangennip, H.G.P., Demeijer, E.J., Moormann, R.J.M., 1993. Epitope mapping of envelope glycoprotein-E1 of hog-cholera virus-strain Brescia. J Gen Virol 74, 2053-2060.
Verdaguer, N., Mateu, M.G., Andreu, D., Giralt, E., Domingo, E., Fita, I., 1995. Structure of the major antigenic loop of Foot-and-Mouth-Disease virus complexed with a neutralizing antibody - direct involvement of the Arg-Gly-Asp motif in the Interaction. EMBO J 14, 1690-1696.
Wang, H., Xue, M., Yang, D., Zhou, G., Wu, D., Yu, L., 2012. Insertion of type O-conserved neutralizing epitope into the foot-and-mouth disease virus type Asia1 VP1 G-H loop: effect on viral replication and neutralization phenotype. J Gen Virol 93, 1442-1448.
Wensvoort, G., 1989. Topographical and functional mapping of epitopes on hog cholera virus with monoclonal antibodies. J Gen Virol 70, 2865-2876.
Yang, D., Zhang, C., Zhao, L., Zhou, G., Wang, H., Yu, L., 2011. Identification of a conserved linear epitope on the VP1 protein of serotype O foot-and-mouth disease virus by neutralising monoclonal antibody 8E8. Virus Res 155, 291-299.
Zhang, Y., Hu, Y., Yang, F., Zheng, H., 2014. Progress in insertion sites for foreign sequence of foot and mouth disease virus. Chinese J Biotech 30:175-181.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78923-
dc.description.abstract小核糖核酸病毒科(Picornaviridae)是一個包含大量動物致病原的病毒科,也是用於研究正向單股RNA病毒生物學、發病機轉和流行病學的模型病毒,近年來反向遺傳學技術的發展,使得此病毒的結構和功能得以詳細分析,因而可作為疫苗載體的候選病毒之一。例如:脊髓灰質炎病毒 (Poliovirus) 具有作為疫苗載體的優點,包括易於口服遞送,腸道內保持穩定性,以及誘導體液和細胞免疫的能力。本研究中豬鐵士古病毒(Porcine Teschovirus, PTV)相似於脊髓灰質炎病毒,亦有其開發疫苗載體的優勢,且不是OIE表列之重大動物傳染病病毒。雖在全球的豬群中廣泛存在,但均為散發流行的弱毒株。因此將其作為疫苗載體可降低環境衝擊和疾病預防的風險。此外,PTV具有廣泛的組織親和性,使其可作為攜帶外源基因開發多價黏膜疫苗載體的平台。PTV的基因體較短,長度為7~9 kb,因此更容易構築以表現外源蛋白抗原決定位。本研究利用豬瘟病毒E2蛋白和口蹄疫病毒VP1蛋白抗原決定位(epitope) 取代PTV病毒VP1蛋白上的BC環狀區域構築重組載體,並使用poly-His tag替代G-H環狀區域以區分野外株病毒或進行蛋白質純化和檢測之用。結果顯示,使用單株和多株抗體進行免疫螢光檢測,重組PTV載體能夠表現兩種外源蛋白抗原決定位,證明其作為疫苗平台之潛力。zh_TW
dc.description.abstractThe family Picornaviridae comprises a large number of animal pathogens, and it is also a model system for the study of positive single-stranded RNA virus biology, pathogenesis, and epidemiology. The development of reverse genetics technology allows the analysis in details of the structure and function of these viruses. Poliovirus has several advantages to serve as vaccine vector, including easy to deliver orally, inherent stability in the intestinal tract, and the ability to induce both humoral and cell immunities. Like poliovirus, porcine teschovirus (PTV) belongs to the family Picornaviridae, which is a positive single-strand RNA virus. The aim of this study was to take the advantages of PTV to develop a vaccine vector. PTV encephalomyelitis is not an OIE listed disease that could be widely detected in swine herds worldwide, and yet shows mild virulence (except for a few recent virgin epidemics), thus lowers the risk of environmental impact and disease prevention by using it as a vaccine vector. Also, PTV has a wide tissue tropism making it feasible to be used as a platform to develop multivalent mucosal vaccine vector by carrying heterogenous genes. Its genome length of only 7 - 9 kb makes it easier to construct and to present heterogenous proteins. Thus, a recombinant PTV vector was constructed by replacing the B-C loop region on its VP1 protein with both classical swine fever virus (CSFV) E2 and foot-and-mouth disease (FMDV) VP1 epitopes, and its G-H loop region by poly-His tag for easier distinction from wildtype virus and easier protein purification and detection if necessary. Immunofluorescent assay showed that the constructed PTV vector was able to express both heterogenous epitopes, that could be detected by both polyclonal and monoclonal antibodies directed to each protein or antigenic sites.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:29:29Z (GMT). No. of bitstreams: 1
ntu-107-R05644002-1.pdf: 2037795 bytes, checksum: 60c1febf7a1b4fff308da4866e1868c5 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsCertificate i
Acknowledgement ii
中文摘要 iii
Abstract iv
1. Introduction 1
2. Literature Review 2
2.1 Porcine Teschovirus 2
2.2 Recombinant virus vaccine 4
2.3 Picornavirus as a viral vector 5
2.4 Insertion sites in the structural protein of picornavirus 7
2.4.1 VP1 protein 8
2.4.2 Region between VP1 and 2A 10
2.5 Epitope of Classical Swine Fever Virus 11
2.6 Epitope of Foot-and-Mouth Disease Virus 12
2.7 DIVA vaccine 14
3. Materials and Methods 15
3.1. Experimental design 15
3.2 Bioinformatics prediction 16
3.3 Viral vector construction 16
3.4 Extrinsic protein expression in SK6 cell line 16
3.4.1 Bacterial transformation 17
3.4.2 Plasmid extraction 18
3.4.3 Plasmid transfection to SK6 cell 18
3.5 Immunofluorescent assay 19
4. Results 20
4.1 Bioinformatics prediction revealed four highly conserved regions in PTV VP1 (Figs. 1, 2) 20
4.2 Viral vector construction was confirmed by the result of sequencing (Figs. 2, 3, 4, 5) 20
4.3 The construction of rPTV vector was confirmed by positive detection by mouse anti-RNNQIPQDF antibody (Fig. 4) 21
4.4 The SWISS-MODEL showed that the recombinant rPTV_E2VP1 had a similar 3D folding as the wild type PTV (Fig. 5) 21
4.5 Expression of extrinsic proteins carried by the rPTV_E2VP1 (Figs. 6-7) 22
5. Discussion 23
6. References 27
dc.language.isoen
dc.subject免疫螢光試驗zh_TW
dc.subject豬鐵士古病毒zh_TW
dc.subject病毒源性載體zh_TW
dc.subjectporcine teschovirusen
dc.subjectvirus-derived vectoren
dc.subjectimmunofluorescent assayen
dc.title豬鐵士古病毒攜帶口蹄疫病毒VP1殼蛋白及豬瘟E2醣蛋白抗原決定位作為疫苗載體的可行性zh_TW
dc.titleFeasibility of Porcine Teschovirus Derived Vector carrying both Foot and Mouth Disease VP1 capsid protein and Classical Swine Fever E2 glycoprotein epitopes as a Vaccineen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許天來,李龍湖,張家宜,李璠
dc.subject.keyword豬鐵士古病毒,病毒源性載體,免疫螢光試驗,zh_TW
dc.subject.keywordporcine teschovirus,virus-derived vector,immunofluorescent assay,en
dc.relation.page46
dc.identifier.doi10.6342/NTU201802334
dc.rights.note有償授權
dc.date.accepted2018-08-17
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept分子暨比較病理生物學研究所zh_TW
dc.date.embargo-lift2023-08-23-
顯示於系所單位:分子暨比較病理生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-R05644002-1.pdf
  未授權公開取用
1.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved