Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78919
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉逸軒(I-Hsuan Liu)
dc.contributor.authorJia-Huie Caien
dc.contributor.author蔡佳惠zh_TW
dc.date.accessioned2021-07-11T15:29:11Z-
dc.date.available2023-08-23
dc.date.copyright2018-08-23
dc.date.issued2018
dc.date.submitted2018-08-17
dc.identifier.citationAinsworth, S. J., R. L. Stanley, and D. J. Evans. 2010. Developmental stages of the Japanese quail. Journal of Anatomy 216: 3-15.
Aloia, R. C., and J. K. Raison. 1989. Membrane function in mammalian hibernation. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 988: 123-146.
Askew, G. N., and R. L. Marsh. 2001. The mechanical power output of the pectoralis muscle of blue-breasted quail (Coturnix chinensis): the in vivo length cycle and its implications for muscle performance. Journal of Experimental Biology 204: 3587-3600.
Aygun, A., and D. Sert. 2013. Effects of prestorage application of propolis and storage time on eggshell microbial activity, hatchability, and chick performance in Japanese quail (Coturnix coturnix japonica) eggs. Poultry Science 92: 3330-3337.
Bagliacca, M., G. Paci, and M. Marzoni. 2005. Effect of egg weight categories, storage time and storage temperature on incubation length in duck eggs (Cairina moschata L. and Anas platyrhynchos domestica L.). The Journal of Poultry Science 42: 205-214.
Bakst, M., and V. Akuffo. 2002. Impact of egg storage on embryo development. Avian and Poultry Biology Reviews 13: 125-131.
Bartel, D. P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297.
Becker, W. A. 1964. The storage of White Leghorn hatching eggs in plastic bags. Poultry Science 43: 1109-1112.
Biggar, K. K., A. Dubuc, and K. Storey. (2009). MicroRNA regulation below zero: differential expression of miRNA-21 and miRNA-16 during freezing in wood frogs. Cryobiology 59: 317-321.
Bloom, S. E., D. E. Muscarella, M. Y. Lee, and M. Rachlinski. 1998. Cell death in the avian blastoderm: resistance to stress-induced apoptosis and expression of anti-apoptotic genes. Cell Death and Differentiation 5: 529.
Burdon, R. 1987. Temperature and animal cell protein synthesis. Symposia of the Society for Experimental Biology 41: 113-133.
Chan, J. A., A. M. Krichevsky, and K. S. Kosik. 2005. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research 65: 6029-6033.
Chang, J., E. Nicolas, D. Marks, C. Sander, A. Lerro, M. A. Buendia, C. Xu, W. S. Mason, T. Moloshok, R. Bort, K. S. Zaret, and J. M. Taylor. 2004. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and maydownregulate the high affinity cationic amino acid transporter CAT-1. RNA Biology 1: 106-113.
Chang, T.-C., E. A. Wentzel, O. A. Kent, K. Ramachandran, M. Mullendore, K. H. Lee, G. Feldmann, M. Yamakuchi, M. Ferlito, C. J. Lowenstein, D. E. Arking, M. A. Beer, A. Maitra, and J. T. Mendell. 2007. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell 26: 745-752.
Chang, Y. -P., P. -T. Liao, E. -Y. Shen, and I. -H. Liu. 2015. Protective effect against focal cerebral ischemia injury in acute phase of a novel invasive device for regional hypothermia. Journal of the Chinese Medical Association 78: 67-75.
Coffin, J. D., and T. J. Poole. 1988. Embryonic vascular development: immunohistochemical identification of the origin and subsequent morphogenesis of the major vessel primordia in quail embryos. Development 102: 735-748.
Danno, S., K. Itoh, T. Matsuda, and J. Fujita. 2000. Decreased expression of mouse Rbm3, a cold-shock protein, in Sertoli cells of cryptorchid testis. The American Journal of Pathology 156: 1685-1692.
Danno, S., H. Nishiyama, H. Higashitsuji, H. Yokoi, J.-H. Xue, K. Itoh, T. Matsuda, and J. Fujita. 1997. Increased transcript level of RBM3, a member of the glycine-rich RNA-binding protein family, in human cells in response to cold stress. Biochemical and Biophysical Research Communications 236: 804-807.
Darzynkiewicz, Z., S. Bruno, G. Del Bino, W. Gorczyca, M. A. Hotz, P. Lassota, and F. Traganos. 1992. Features of apoptotic cells measured by flow cytometry. Cytometry Part A 13: 795-808.
Degenhardt, K., R. Sundararajan, T. Lindsten, C. B. Thompson, E. White. 2002. Bax and Bak independently promote cytochrome-c release from mitochondria. Journal of Biological Chemistry 277: 14127-14134.
Duan, H., K. Orth, A. M. Chinnaiyan, G. G. Poirier, C. J. Froelich, W. W. He, and V. M. Dixit. 1996. ICELAP6, a novel member of the ICE/Ced-3 gene family, is activated by the cytotoxic T cell protease granzyme B. Journal of Biological Chemistry 271: 16720-16724.
Dymond, J., B. Vinyard, A. Nicholson, N. French, and M. Bakst. 2013. Short periods of incubation during egg storage increase hatchability and chick quality in long-stored broiler eggs. Poultry Science 92: 2977-2987.
Edwards, C. L. 1902. The physiological zero and the index of development for the egg of the domestic fowl, Gallus domesticus: a contribution to the subject of the influence of temperature on growth. American Journal of Physiology-Legacy Content 6: 351-397.
Elmen, J., M. Lindow, A. Silahtaroglu, M. Bak, M. Christensen, A. Lind-Thomsen, M. Hedtjarn, J. B. Hansen, H. F. Hansen, E. M. Straarup, K. McCullagh, P. Kearney, and S. Kauppinen. 2007. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Research 36: 1153-1162.
Esau, C., S. Davis, S. F. Murray, X. X. Yu, S. K. Pandey, M. Pear, L. Watts, S. L. Booten, M. Graham, R. McKay, A. Subramaniam, S. Propp, B. A. Lollo, S. Freier, C. F. Bennett, S. Bhanot, and B. P. Monia. 2006. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolism 3: 87-98.
Etches, R. J., M. E. Clark, A. Toner, G. Liu, and A. M. Verrinder Gibbins. 1996. Contributions to somatic and germline lineages of chicken blastodermal cells maintained in culture. Molecular Reproduction and Development: Incorporating Gamete Research 45: 291-298.
Eyal-Giladi, H., and S. Kochav. 1976. From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick: I. General morphology. Developmental Biology 49: 321-337.
Faleiro, L., and Y. Lazebnik. 2000. Caspases disrupt the nuclear-cytoplasmic barrier. Journal of Cell Biology 151: 951-960.
Fasenko, G., F. Robinson, R. Hardin, and J. Wilson. 1992. Research note: Variability in preincubation embryonic development in domestic fowl. 2. Effects of duration of egg storage period. Poultry Science 71: 2129-2132.
Fasenko, G., V. Christensen, M. Wineland, and J. Petitte. 2001a. Examining the effects of prestorage incubation of turkey breeder eggs on embryonic development and hatchability of eggs stored for four or fourteen days. Poultry Science 80: 132-138.
Fasenko, G., F. Robinson, A. Whelan, K. Kremeniuk, and J. Walker. 2001b. Prestorage incubation of long-term stored broiler breeder eggs: 1. Effects on hatchability. Poultry Science 80: 1406-1411.
Fasenko, G. M. 2007. Egg storage and the embryo. Poultry Science 86: 1020-1024.
Fawthrop, D. J., A. R. Boobis, and D. S. Davies. 1991. Mechanisms of cell death. Archives of Toxicology 65: 437-444.
Fan, W., Y. Zhong, M. Qin, B. Lin, F. Chen, H. Yan, W. Li, J. Lin. 2017. Differentially expressed microRNAs in diapausing versus HCl-treated Bombyx embryos. PloS One 12: e0180085.
Foulkes, A. G. 1990. The unincubated avian blastoderm: its characterization and an investigation of developmental quiescence. University of Southampton.
Frankel, L. B., N. R. Christoffersen, A. Jacobsen, M. Lindow, A. Krogh, and A. H. Lund. 2008. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. Journal of Biological Chemistry 283: 1026-1033.
Friedman, R. C., K. K. –H. Farh, C. B. Burge, and D. P. Bartel. 2009. Most mammalian mRNAs are conserved targets of microRNAs. Genome Research 19: 92-105.
Fujita, T., H. Higashitsuji, H. Higashitsuji, Y. Liu, K. Itoh, T. Sakurai, T. Kojima, S. Kandori, H. Nishiyama, M. Fukumoto, M. Fukumoto, K. Shibasaki and J. Fujita. 2017. TRPV4-dependent induction of a novel mammalian cold-inducible protein SRSF5 as well as CIRP and RBM3. Scientific Reports 7: 2295.
Funk, E., and H. V. Biellier. 1944. The minimum temperature for embryonic development in the domestic fowl (Gallus domesticus). Poultry Science 23: 538-540.
Funk, E. M. 1934. Factors influencing hatchability in the domestic fowl. Factors influencing hatchability in the domestic fowl. 1934 pp.22 pp.
Funk, E. M., J. Forward, and H. L. Kempster. 1950. Effect of holding temperatures on hatchability of eggs. Missouri Agricultural Experiment Station 539.
Geng, H. H., R. Li, Y. M. Su, J. Xiao, M. Pan, X. X. Cai, and X. P. Ji. 2016. The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PloS One 11: e0151753.
Ghaoui, R., J. Palmio, J. Brewer, M. Lek, M. Needham, A. Evila, P. Hackman, P. H. Jonson, S. Penttila, A. Vihola, and S. Huovinen. 2016. Mutations in HSPB8 causing a new phenotype of distal myopathy and motor neuropathy. Neurology 86: 391-398.
Gomez-de-Travecedo, P., F. Caravaca, and P. González-Redondo. 2014. Effects of storage temperature and length of the storage period on hatchability and performance of red-legged partridge (Alectoris rufa) eggs. Poultry Science 93: 747-754.
Guppy, M., and P. Withers. 1999. Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biological Reviews 74: 1-40.
Gupta, S., and M. Bakst. 1993. Turkey embryo staging from cleavage through hypoblast formation. Journal of Morphology 217: 313-325.
Hamburger, V., and H. L. Hamilton. 1951. A series of normal stages in the development of the chick embryo. Journal of Morphology 88: 49-92.
Hamidu, J. A., A. Rieger, G. Fasenko, and D. Barreda. 2010. Dissociation of chicken blastoderm for examination of apoptosis and necrosis by flow cytometry. Poultry Science 89: 901-909.
Hamidu, J. A., Z. Uddin, M. Li, G. Fasenko, L. Guan, and D. Barreda. 2011. Broiler egg storage induces cell death and influences embryo quality. Poultry Science 90: 1749-1757.
Havens, M. A. 2013. Co-regulation of microRNA biogenesis and host gene premessenger RNA splicing in disease. Rosalind Franklin University of Medicine and Science.
Hossain, M. M., N. Ghanem, M. Hoelker, F. Rings, C. Phatsara, E. Tholen, K. Schellander, and D. Tesfaye. 2009. Identification and characterization of miRNAs expressed in the bovine ovary. BMC Genomics 10: 443.
Humphreys, D. T., B. J. Westman, D. I. Martin, and T. Preiss. 2005. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly (A) tail function. Proceedings of the National Academy of Sciences of the United States of America 102: 16961-16966.
Hung, I.-C., Y.-C. Hsiao, H. S. Sun, T.-M. Chen, and S.-J. Lee. 2016. MicroRNAs regulate gene plasticity during cold shock in zebrafish larvae. BMC Genomics 17: 922.
Jackson, T. C., M. D. Manole, S. E. Kotermanski, E. K. Jackson, R. S. Clark, and P. M. Kochanek. 2015. Cold stress protein RBM3 responds to temperature change in an ultra-sensitive manner in young neurons. Neuroscience 305: 268-278.
Ju, Z., Q. Jiang, G. Liu, X. Wang, G. Luo, Y. Zhang, J. Zhang, J. Zhong, and J. Huang. 2018. Solexa sequencing and custom microRNA chip reveal repertoire of microRNAs in mammary gland of bovine suffering from natural infectious mastitis. Animal Genetics 49; 3-18.
Krützfeldt, J., N. Rajewsky, R. Braich, K. G. Rajeev, T. Tuschl, M. Manoharan, and M. Stoffel. 2005. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438: 685.
Kraszewska‐Domanska, B., and B. Pawluczuk. 1977. The effect of periodic warming of stored quail eggs on their hatchability. British Poultry Science 18: 531-533.
Krichevsky, A. M., and G. Gabriely. 2009. miR‐21: a small multi‐faceted RNA. Journal of Cellular and Molecular Medicine 13: 39-53.
Kroemer, G., B. Dallaporta, and M. Resche-Rigon. 1998. The mitochondrial death/life regulator in apoptosis and necrosis. Annual Review of Physiology 60: 619-642.
Lampe, J. W., and L. B. Becker. 2011. State of the art in therapeutic hypothermia. Annual Review of Medicine 62: 79-93.
Le Douarin, N. M. 2008. Developmental patterning deciphered in avian chimeras. Development, Growth & Differentiation 50.
Li, B., R. Li, C. Zhang, H. J. Bian, F. Wang, J. Xiao, S. W. Liu. W. Yi, M. X. Zhang, S. X. Wang, Y. Zhang, G. H. Su, and X. P. Ji. 2014. MicroRNA-7a/b protects against cardiac myocyte injury in ischemia/reperfusion by targeting poly(ADP-ribose) polymerase. PloS One 9: e90096.
Li, S., Z. Zhang, J. Xue, A. Liu, and H. Zhang. 2012. Cold-inducible RNA binding protein inhibits H2O2-induced apoptosis in rat cortical neurons. Brain Research 1441: 47-52.
Li, Y., F. Guessous, Y. Zhang, C. DiPierro, B. Kefas, E. Johnson, L. Marcinkiewicz, J. Jiang, Y. Yang, T. D. Schmittgen, B. Lopes, D. Schiff, B. Purow, and R. Abounader. 2009. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Research 69: 7569-7576.
Li, Y., Y. Li, Y. Liu, P. Xie, F. Li, G. Li. 2014. PAX6, a novel target of microRNA-7, promotes cellular proliferation and invasion in human colorectal cancer cells. Digestive Diseases and Sciences 59; 598-606.
Linsley, P. S., J. Schelter, J. Burchard, M. Kibukawa, M. M. Martin, S. R. Bartz, J. M. Johnson, J. M. Cummins, C. K. Raymond, H. Dai, N. Chau, M. Cleary, A. L. Jackson, M. Carleton, and L. Lim. 2007. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Molecular and Cellular Biology 27: 2240-2252.
Liu, S., D. Li, Q. Li, P. Zhao, Z. Xiang, and Q. Xia. 2010. MicroRNAs of Bombyx mori identified by Solexa sequencing. BMC Genomics 11: 148.
Lleonart, M. 2010. A new generation of proto-oncogenes: cold-inducible RNA binding proteins. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1805: 43-52.
Lu, Z., M. Liu, V. Stribinskis, C. Klinge, K. Ramos, N. Colburn, and Y. Li. 2008. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27: 4373.
Luo, G. –Z., M. Hafner, Z. Shi, M. Brown, G. –H. Feng, T. Tuschi, X. –J. Wang, and X. C. Li. 2012. Genome-wide annotation and analysis of zebra finch microRNA repertoire reveal sex-biased expression. BMC Genomics 13; 727.
Lwigale, P. Y., and R. A. Schneider. 2008. Other chimeras: quail–duck and mouse–chick. Methods in Cell Biology 87: 59-74.
Lynam‐Lennon, N., S. G. Maher, and J. V. Reynolds. 2009. The roles of microRNA in cancer and apoptosis. Biological Reviews 84: 55-71.
Mather, C. M., and K. Laughlin. 1976. Storage of hatching eggs: the effect on total incubation period. British Poultry Science 17: 471-479.
Marsh, N. M., A. Wareham, B. G. White, E. I. Miskiewicz, J. Landry, and D. J. MacPhee. 2015. HSPB8 and the cochaperone BAG3 are highly expressed during the synthetic phase of rat myometrium programming during pregnancy. Biology of Reproduction 92: 131 1-12
Mead, R. A. 1993. Embryonic diapause in vertebrates. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 266: 629-641.
Miller, E., and H. Wilson. 1975. The temperature required to initiate blastoderm development of bobwhite quail eggs. Poultry Science 54: 901-902.
Monroe, B. L., and C. G. Sibley. 1997. A world checklist of birds. Yale University Press.
Moran, T. 1925. The effect of low temperature on hens' eggs. Proceedings of the Royal Society of London B 98: 436-456.
Nakagaki, M., R. Takei, E. Nagashima, and T. Yaginuma. 1991. Cell cycles in embryos of the silkworm, Bombyx mori: G2-arrest at diapause stage. Roux’s Archives of Developmental Biology 200:223-229.
Nicholson, D., N. French, S. Tullett, E. van Lierde, and G. Jun. 2013. Short periods of incubation during egg storage–SPIDES. Lohmann Information 48: 51-61.
Nishibori, M., M. Tsudzuki, T. Hayashi, Y. Yamamoto, and H. Yasue. 2002. Complete nucleotide sequence of the Coturnix chinensis (blue-breasted quail) mitochondorial genome and a phylogenetic analysis with related species. Journal of Heredity 93: 439-444.
Nishiyama, H., S. Danno, Y. Kaneko, K. Itoh, H. Yokoi, M. Fukumoto, H. Okuno, J. L. Millan, T. Matsuda, O. Yoshida, and J. Fujita. 1998. Decreased expression of cold-inducible RNA-binding protein (CIRP) in male germ cells at elevated temperature. The American Journal of Pathology 152: 289.
Nishiyama, H., K. Itoh, Y. Kaneko, M. Kishishita, O. Yoshida, and J. Fujita. 1997. A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. The Journal of Cell Biology 137: 899-908.
Olsen, M., and S. Haynes. 1948. The effect of different holding temperatures on the hatchability of hens’ eggs. Poultry Science 27: 420-426.
Ono, T., Y. Nakane, T. Wadayama, M. Tsudzuki, K. Arisawa, S. Ninomiya, T. Suzuki, M. Mizutani, and H. Kagami. 2005. Culture system for embryos of blue-breasted quail from the blastoderm stage to hatching. Experimental Animals 54: 7-11.
Ottinger, M., S. Pitts, and M. Abdelnabi. 2001. Steroid hormones during embryonic development in Japanese quail: plasma, gonadal, and adrenal levels. Poultry Science 80: 795-799.
Papile, L.-A., J. E. Baley, W. Benitz, J. Cummings, W. A. Carlo, E. Eichenwald, P. Kumar, R. A. Polin, R. C. Tan, and K. S. Wang. 2014. Hypothermia and neonatal encephalopathy. Pediatrics 133: 1146-1150.
Perry, M. M. 1988. A complete culture system for the chick embryo. Nature 331: 70.
Petitte, J., M. Clark, G. Liu, A. V. Gibbins, and R. Etches. 1990. Production of somatic and germline chimeras in the chicken by transfer of early blastodermal cells. Development 108: 185-189.
Pilotte, J., E. E. Dupont-Versteegden, and P. W. Vanderklish. 2011. Widespread regulation of miRNA biogenesis at the Dicer step by the cold-inducible RNA-binding protein, RBM3. PloS One 6: e28446.
Prochnik, S. E., D. S. Rokhsar, A. A. Aboobaker. 2007. Evidence for a microRNA expansion in the bilaterian ancestor. Development Genes and Evolution 217: 73-77.
Reijrink, I., R. Meijerhof, B. Kemp, E. Graat, and H. Van den Brand. 2009. Influence of prestorage incubation on embryonic development, hatchability, and chick quality. Poultry Science 88: 2649-2660.
Reijrink, I., R. Meijerhof, B. Kemp, and H. Van den Brand. 2010. Influence of egg warming during storage and hypercapnic incubation on egg characteristics, embryonic development, hatchability, and chick quality. Poultry Science 89: 2470-2483.
Renfree, M. B., and G. Shaw. 2000. Diapause. Annual Review of Physiology 62: 353-375.
Repetto, G., A. Del Peso, and J. L. Zurita. 2008. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nature Protocols 3: 1125.
Rzechorzek, N. M., P. Connick, R. Patani, B. T. Selvaraj, and S. Chandran. 2015. Hypothermic preconditioning of human cortical neurons requires proteostatic priming. EBioMedicine 2: 528-535.
Safdar, A., A. Abadi, M. Akhtar, B. P. Hettinga, and M. A. Tarnopolsky. 2009. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PloS One 4: e5610.
Sahan, U., B. Yilmaz, A. Ipek, and B. Yilmaz. 2003. The effects of storage temperature and position on embryonic mortality of ostrich (Struthio camelus) eggs. South African Journal of Animal Science 33: 38-42.
Sano, Y., T. Shiina, K. Naitou, H. Nakamori, and Y. Shimizu. 2015. Hibernation-specific alternative splicing of the mRNA encoding cold-inducible RNA-binding protein in the hearts of hamsters. Biochemical and Biophysical Research Communications 462: 322-325.
Scott, H. 1933. The effect of age and holding temperatures on hatchability of turkey and chicken eggs. Poultry Science 12: 49-54.
Seker, I., M. Bayraktar, and S. Kul. 2006. Effect of pre-incubation long-term storage and warming on hatchability of Japanese quail eggs (Coturnix coturnix japonica). Archiv Fur Geflugelkunde 70: 35-40.
Sellier, N., J.-P. Brillard, V. Dupuy, and M. R. Bakst. 2006. Comparative staging of embryo development in chicken, turkey, duck, goose, guinea fowl, and Japanese quail assessed from five hours after fertilization through seventy-two hours of incubation. Journal of Applied Poultry Research 15: 219-228.
Sengar, G. S., R. Deb, U. Singh, T. V. Raja, R. Kant, B. Sajjanar, R. Alex, R. R. Alyethodi, A. Kumar, S. Kumar, R. Singh, S. J. Jakhesara, and C. G. Joshi. 2018. Differential expression of microRNAs associated with thermal stress in Frieswal (Bos taurus x Bos indicus) crossbred dairy cattle. Cell Stress and Chaperones 23: 155-170.
Sisken, J., L. Morasca, and S. Kibby. 1965. Effects of temperature on the kinetics of the mitotic cycle of mammalian cells in culture. Experimental Cell Research 39: 103-116.
Sibley, C. G., and B. L. Monroe. 1990. Distribution and taxonomy of birds of the world. Yale University.
Stepińska, U., and B. Olszańska. 1983. Cell multiplication and blastoderm development in relation to egg envelope formation during uterine development of quail (Coturnix coturnix japonica) embryo. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 228: 505-510.
Storey, K. B., and J. M. Storey. 2004. Metabolic rate depression in animals: transcriptional and translational controls. Biological Reviews 79: 207-233.
Storey, K. B., and J. M. Storey. 2007. Tribute to PL Lutz: putting life onpause'–molecular regulation of hypometabolism. Journal of Experimental Biology 210: 1700-1714.
Sun, F., H. Fu, Q. Liu, Y. Tie, J. Zhu, R. Xing, Z. Sun, and X. Zheng. 2008. Downregulation of CCND1 and CDK6 by miR‐34a induces cell cycle arrest. FEBS letters 582: 1564-1568.
Suzuki, H., S. Matsushita, K. Suzuki, and G. Yamada. 2017. 5α-dihydrotestosterone negatively regulates cell proliferation of the periurethral ventral mesenchyme during urethral tube formation in the murine male genital tubercle. Andrology 5:146-152
Tarasov, V., P. Jung, B. Verdoodt, D. Lodygin, A. Epanchintsev, A. Menssen, G. Meister, and H. Hermeking. 2007. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle. 6: 1586-1593.
Tona, K., F. Bamelis, B. De Ketelaere, V. Bruggeman, V. Moraes, J. Buyse, O. Onagbesan, and E. Decuypere. 2003. Effects of egg storage time on spread of hatch, chick quality, and chick juvenile growth. Poultry Science 82: 736-741.
Tona, K., O. Onagbesan, B. De Ketelaere, E. Decuypere, and V. Bruggeman. 2004. Effects of age of broiler breeders and egg storage on egg quality, hatchability, chick quality, chick weight, and chick posthatch growth to forty-two days. Journal of Applied Poultry Research 13: 10-18.
Tong, G., S. Endersfelder, L.-M. Rosenthal, S. Wollersheim, I. M. Sauer, C. Bührer, F. Berger, and K. R. L. Schmitt. 2013. Effects of moderate and deep hypothermia on RNA-binding proteins RBM3 and CIRP expressions in murine hippocampal brain slices. Brain Research 1504: 74-84.
Tsudzuki, M. 1994. Excalfactoria quail as a new laboratory research animal. Poultry Science 73: 763-768.
Vermes, I., C. Haanen, and C. Reutelingsperger. 2000. Flow cytometry of apoptotic cell death. Journal of Immunological Methods 243: 167-190.
Vermes, I., C. Haanen, H. Steffens-Nakken, and C. Reutellingsperger. 1995. A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. Journal of Immunological Methods 184: 39-51.
Villa, P., S. H. Kaufmann, W. C. Earnshaw. 1997. Caspases and caspase inhibitors. Trends in Biochemical Sciences 22: 388-393.
Waite, R. H. 1919. The effect of age of eggs on their hatching quality. Maryland State College of Agriculture, Agricultural Experiment Station.
Wang, X. G., J. M. Huang, M. Y. Feng, Z. H. Ju, C. F. Wang, G. W. Yang, J. D. Yuan, and J. F. Zhong. 2014. Regulatory mutations in the A2M gene are involved in the mastitis susceptibility in dairy cows. Animal Genetics 45; 28-37.
Wei, H. W., T. L. Hsieh, S. K. Chang, W. Z. Chiu, Y. C. Huang, and M. F. Lin. 2011. Estimating the requirement of dietary crude protein for growing blue-breasted quail (Excalfactoria chinensis). Animal 5: 1506-1514.
Wienholds, E., W. P. Kloosterman, E. Miska, E. Alvarez-Saavedra, E. Berezikov, E. de Bruijn, H. R. Horvitz, S. Kauppinen, and Plasterk, R. H. 2005. MicroRNA expression in zebrafish embryonic development. Science 309: 310-311.
Williams, D. R., L. E. Epperson, W. Li, M. A. Hughes, R. Taylor, J. Rogers, S. L. Martin, A. R. Cossins, and A. Y. Gracey. 2006. Seasonally hibernating phenotype assessed through transcript screening. Physiological Genomics 24: 13-22.
Wu, Q., Z. Yang, F. Wang, S. Hu, L. Yang, Y. Shi, and D. Fan. 2013. MiR-19b/20a/92a regulates the self-renewal and proliferation of gastric cancer stem cells. Journal of Cell Science 127944.
Yaginuma, T., and O. Yamashita. 1979. NAD-dependent sorbitol dehydrogenase activity in relation to the termination of diapause in eggs of Bombyx mori. Insect Biochemistry 9: 547-553.
Yenari, M. A., and H. S. Han 2012. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nature Reviews Neuroscience 13: 267.
Zhang, Q., Y.-Z. Wang, W. Zhang, X. Chen, J. Wang, J. Chen, and W. Luo. 2017. Involvement of cold inducible RNA-binding protein in severe hypoxia-induced growth arrest of neural stem cells in vitro. Molecular Neurobiology 54: 2143-2153.
Zhao, Y. J., J. H. Wang, B. Fu, M. X. Ma, B. X. Li, Q. Huang, and B. F. Yang. 2009. Effect of 3-aminobenzamide on expressions of poly (ADP ribose) polymerase and apoptosis inducing factor in cardiomyocytes of rats with acute myocardial infarction. Chinese Medical Journal 122:1322-1327.
謝宗霖。2010。生長期藍胸鶉蛋白質需要量之建立。國立臺灣大學生物資源暨農學院動物科學技術學系研究所碩士論文。台北市。臺灣。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78919-
dc.description.abstract在現今的家禽產業中,將剛產下的蛋儲存在生理零度下,以益於運輸等農場管理作業為常見的做法。生理零度在部分的鳥類及爬蟲類中均可以觀察到,當溫度低於生理零度時,胚細胞活性會逐漸降低而導致胚發育將被抑制,再當溫度回升至生理零度以上時,胚則會繼續發育。雖然,早先就已發現持續儲存雞蛋超過7天,會逐漸降低胚的孵化率及雛雞的品質,並且增加總胚孵化的時間,但一直到近年來才有研究指出,長時間低溫儲存會誘導胚細胞走向細胞凋亡及細胞壞死,導致胚在發育的過程中缺乏足夠的細胞數,而促使胚的孵化率下降。至今,致使胚細胞能抵抗低溫或最終死亡之分子機制,吾人仍然一無所知。
本研究擬以藍胸鶉為研究模式,為瞭解藍胸鶉胚之早期發育過程,我們以中性紅就其早期胚發育進行染色,發現藍胸鶉胚於胚早期之發育速度較雞胚與日本鵪鶉胚快。為瞭解使藍胸鶉胚發育的最低溫度,我們將新鮮的藍胸鶉胚於28、25及21 °C孵化4天,發現藍胸鶉胚在21 °C的環境下就會停止發育。為了更進一步了解藍胸鶉胚最適生理零度之條件,我們將藍胸鶉胚以不同儲存溫度 (16及21 °C)、不同儲存天數 (3、7及14天) 以及有無預孵化6小時作為三種不同影響生理零度之因子,並且記錄其處理前蛋重、孵化率、孵化時間及胚死亡率,統計分析的結果顯示:隨著儲存時間的加長,孵化率隨之下降,且較低的儲存溫度 (16 °C) 相較於較高的儲存溫度 (21 °C) 具有較佳的孵化率;另一方面,經過長時間的儲存後,其總胚孵化時間相較於新鮮的藍胸鶉胚長。在胚的死亡情形中,隨著儲存時間的加長,早期胚的死亡率隨之上升,而晚期胚的死亡率,則不受儲存條件的影響。為瞭解藍胸鶉胚於生理零度下儲存對microRNA表現之影響,我們將新鮮剛產下的藍胸鶉胚及經過16 °C儲存3天的藍胸鶉胚進行小分子核糖核酸次世代定序及qPCR的分析,結果顯示藍胸鶉胚經過生理零度下的儲存後,會改變特定microRNA的表現量,包括:bmo-miR-2761-3p、mmu-miR-6995-3p,、tgu-miR-19b-2-5p及mmu-miR-7054-3p。
綜觀上述之結果,本研究指出藍胸鶉胚之生理零度為21 °C,且超過一週的長時間儲存需要比21 °C更低的溫度,對孵化率較佳。最後,本次試驗亦成功發現藍胸鶉胚於生理零度下儲存,會改變特定microRNA的表現量,因此,microRNA有可能在這生理零度的現象中扮演重要的角色。
zh_TW
dc.description.abstractThe fertilized avian embryonic disc can remain dormant below the temperature of physiological zero. However, long-term storage of the eggs below physiological zero may negatively affects embryo performance. Previous studies indicate long-term storage may increase cell death and affect embryonic metabolism. However, the mechanisms that support the survival of the embryo after prolonged dormancy remain unclear. In this study, we used blue-breasted quail as our model animal due to its small size, high fecundity and short incubation period. To find out whether the phenomenon of physiological zero also exists in blue-breasted quail, we incubated freshly laid blue-breasted quail eggs at 28, 25 or 21 °C for 4 days. The embryonic development was slower as the temperature decreased and completely stopped at 21 °C. To test whether different storage conditions affect the performance of eggs, we incubated eggs with different temperatures (16 and 21 °C) and storage periods (3, 7 and 14 days) with or without a 6-hour pre-incubation at 37.5 °C, and the hatchability was calculated. The hatchability indicates that eggs stored at 16 °C was significantly better than at 21 °C and 3-day storage was significantly better than 14-day storage. As recent studies suggest that microRNA is a critical measure for cells to cope with cold-shock, the small RNA profiles were compared between freshly laid eggs and eggs stored at 16 °C for three days, and eleven significantly regulated miRNA candidates have been identified. In conclusion, we have found out that the early embryo of blue-breasted quail remains dormant below 21 °C and an even lower temperature should be used when the storage duration is longer than 7 days. In addition, microRNA profile is significantly changed during the storage under physiological zero and these microRNAs might play a role in this phenomenon.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:29:11Z (GMT). No. of bitstreams: 1
ntu-107-R05626011-1.pdf: 3290273 bytes, checksum: d4cf368914fcff2930447ec4e84bf0bb (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝……………………………………………………………………………………………………………………………..i
中文摘要………………………………………………………………………….……………………………….………. ii
ABSTRACT……………………………………………………………………………………………………………… iv
目錄……………………………………………………………………………………………………………………………vi
圖目錄............................................................................................................................. ix
表目錄………………………………………………………………………………………………..……………………….x
Chapter 1 前言 1
Chapter 2 文獻探討 2
2.1 藍胸鶉:新興的胚發育之優良研究模式 2
2.2 生理零度 5
2.2.1 影響生理零度儲存的變因 5
2.3 細胞死亡 6
2.3.1 細胞死亡之檢測 7
2.3.2 長時間儲存胚細胞死亡之探討 7
2.4 低溫下分子機制之探討 8
2.4.1 低溫下會活化冷誘導蛋白CIRBP、RBM3及SRSF5 8
2.4.2 低溫下microRNA的表現 9
Chapter 3 研究動機與目的 11
Chapter 4 材料與方法 12
4.1 藍胸鶉早期胚發育之觀察與觀察使藍胸鶉胚發育之最低溫度 12
4.1.1 動物模式 12
4.1.2 胚收集 (embryo collection) 12
4.1.3 中性紅染色 15
4.1.4 台盼藍染色 15
4.2 藍胸鶉胚生理零度之條件 15
4.2.1 測蛋重 19
4.2.2 儲存藍胸鶉蛋 19
4.2.3 藍胸鶉蛋之孵化 21
4.3 MicroRNA在藍胸鶉生理零度之探討 21
4.3.1 RNA 萃取 (RNA extraction) 21
4.3.2 MicroRNA建庫 (MicroRNA library) 21
4.3.3 定序 (sequencing) 24
4.3.4 反轉錄 (reverse transcription) 24
4.3.5 MicroRNA即時定量PCR (real-time quantitative polymerase chain reaction) 24
4.3.6 mRNA即時定量PCR 25
4.4 統計分析 25
Chapter 5 試驗結果 28
5.1. 藍胸鶉胚在37.5 °C經過6小時孵化後,其胚發育程度位於HH2,在此 階段之後藍胸鶉胚發育速度較雞胚快 28
5.2. 藍胸鶉胚之發育速度受溫度影響,21 °C以下則停止發育 33
5.3. 隨著儲存的時間加長,會降低孵化率且提升藍胸鶉胚早期之死亡率而 較低的儲存溫度能保有較佳的孵化率 37
5.4. 胚於生理零度以下的儲存時間越長,其胚細胞死亡數越多 45
5.5. 儲存的時間、孵化率與胚早期死亡率三者之間顯著相關 50
5.6. 藍胸鶉胚於生理零度下儲存後,會影響其microRNA之表現量 54
5.6.1 微小核糖核酸的變化分析 (small RNA profiles) 54
5.6.2 MicroRNA 即時定量PCR (real-time quantitative polymerase chain reaction) 54
5.7 藍胸鶉胚於生理零度下儲存後,不會影響其CIRBP之表現量 60
Chapter 6 討論 62
6.1 藍胸鶉做為胚發育之優良研究模式的潛能 62
6.2 藍胸鶉胚在37.5 °C經過6小時孵化後,其胚發育程度位於HH2,在此 階段之後藍胸鶉胚發育速度較雞胚與日本鵪鶉胚快 62
6.3 藍胸鶉胚之生理零度可能是21 °C 63
6.4 藍胸鶉胚以較低的溫度儲存其孵化率較佳,而隨著儲存的時間加長,會 降低孵化率且提升藍胸鶉胚早期之死亡率 64
6.5 藍胸鶉胚於生理零度下儲存後,會影響其microRNA之表現量 66
6.5.1 tgu-miR-19b-2-5p 66
6.5.2 bta-miR-2898 67
6.5.3 bmo-miR-2761-3p 68
6.5.4 miR-7a 68
6.6 生理零度於生物與演化上之意義 69
6.7 生理零度與一般冷壓力反應的可能關連 69
6.8 MicroRNA 在不同物種間之生物功能的保留性 70
6.9 CIRBP、RBM3、SRSF5在冷壓力下所調節之基因表現 70
Chapter 7 結論與未來展望 72
Chapter 8 口試問題與回答 73
REFERENCE 76
dc.language.isozh-TW
dc.title藍胸鶉胚生理零度現象之探討zh_TW
dc.titlePhysiological Zero during Embryonic Development in Blue-breasted Quail (Coturnix chinensis)en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee丁詩同,魏恒巍,林詩舜,唐品琦
dc.subject.keyword藍胸鶉,胚發育,生理零度,孵化率,早期胚死亡率,microRNA,zh_TW
dc.subject.keywordblue-breasted quail embryonic development,physiological zero,hatchability,early embryonic mortality,microRNA,en
dc.relation.page90
dc.identifier.doi10.6342/NTU201803904
dc.rights.note有償授權
dc.date.accepted2018-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
dc.date.embargo-lift2023-08-23-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-107-R05626011-1.pdf
  目前未授權公開取用
3.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved