Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7890
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李公哲
dc.contributor.authorChe-Wei Loen
dc.contributor.author羅哲偉zh_TW
dc.date.accessioned2021-05-19T17:57:28Z-
dc.date.available2021-08-24
dc.date.available2021-05-19T17:57:28Z-
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-15
dc.identifier.citationAnderson, M. A., Cudero, A. L., & Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta, 55(12), 3845-3856.
Asquith, B. M., Jochen, M. H., & Ladewig, B. P. (2014). Cation exchange copolymer enhanced electrosorption. Desalination, 345, 94-100.
Biesheuvel, P. (2009). Thermodynamic cycle analysis for capacitive deionization. Journal of colloid and interface science, 332(1), 258-264.
Biesheuvel, P., Zhao, R., Porada, S., & Van der Wal, A. (2011). Theory of membrane capacitive deionization including the effect of the electrode pore space. Journal of colloid and interface science, 360(1), 239-248.
Chao, L., Liu, Z., Zhang, G., Song, X., Lei, X., Noyong, M., Simon, U., Chang, Z., & Sun, X. (2015). Enhancement of capacitive deionization capacity of hierarchical porous carbon. Journal of Materials Chemistry A, 3(24), 12730-12737.
Choi, J. H. (2010). Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process. Separation and Purification Technology, 70(3), 362-366.
Dai, K., Shi, L., Fang, J., Zhang, D., & Yu, B. (2005). NaCl adsorption in multi-walled carbon nanotubes. Materials Letters, 59(16), 1989-1992.
Długołęcki P. & van der Wal A. (2013). Energy recovery in membrane capacitive deionization. Environmental science & Technology, 47, 4904−4910.
Fan, C. S., Tseng, S. C., Li, K. C., & Hou, C. H. (2016). Electro-removal of arsenic (III) and arsenic (V) from aqueous solutions by capacitive deionization. Journal of hazardous materials, 312, 208-215.
Farmer, J. C., Fix, D. V., Mack, G. V., Pekala, R. W., & Poco, J. F. (1996). Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. Journal of the Electrochemical Society, 143(1), 159-169.
Gadkaree, K. P., Tao, T., & Cutler, W.A. (2004). High surface area carbon substrates for environmental applications. in W.M. Kriven, ed., Proc. 64th Conference on Glass Problems: Ceramic Engineering and Science, ACS, 25(3), 523–528.
Geise, G. M., Cassady, H. J., Paul, D. R., Logan, B. E., & Hickner, M. A. (2014). Specific ion effects on membrane potential and the permselectivity of ion exchange membranes. Physical Chemistry Chemical Physics, 16(39), 21673-21681.
Hack, H. P., Moran, P. J., & Scully, J. R. (1990). The measurement and correction of electrolyte resistance in electrochemical tests: ASTM International.
Hatzell, K. B., Iwama, E., Daffos, B., Taberna, P. L., Tzedakis, T., Gogotsi, A., Simon, P., & Gogotsi, Y. (2013). High Electrosorption Capacity Electrodes for Capacitive Deionization. Paper presented at the 224th ECS Meeting (October 27–November 1, 2013), Meeting Abstracts.
Hsieh, C. T., & Teng, H. (2002). Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon, 40(5), 667-674.
Huang, S. Y., Fan, C. S., & Hou, C. H. (2014). Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization. Journal of hazardous materials, 278, 8-15.
Jirage, K. B., Hulteen, J. C., & Martin, C. R. (1997). Nanotubule-based molecular-filtration membranes. Science, 278(5338), 655-658.
Kim, J. S., & Choi, J. H. (2010). Fabrication and characterization of a carbon electrode coated with cation-exchange polymer for the membrane capacitive deionization applications. Journal of membrane science, 355(1), 85-90.
Kim, J. S., Jeon, Y. S., & Rhim, J. W. (2016). Application of poly (vinyl alcohol) and polysulfone based ionic exchange polymers to membrane capacitive deionization for the removal of mono-and divalent salts. Separation and Purification Technology, 157, 45-52.
Kim, J. S., Kim, C. S., Shin, H. S., & Rhim, J. W. (2015). Application of synthesized anion and cation exchange polymers to membrane capacitive deionization (MCDI). Macromolecular Research, 23(4), 360-366.
Kim, Y. J., & Choi, J. H. (2010). Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer. Water research, 44(3), 990-996.
Kim, Y. J., & Choi, J. H. (2012). Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization. Water research, 46(18), 6033-6039.
Kishi, M., Serizawa, S., & Nakano, M. (1977). New electrodialyser system with automatic chemical cleaning. Desalination, 23(1), 203-212.
Kloosterboer, J. G., (1988). Network formation by chain crosslinking photopolymerization and its applications in electronics electronic applications (pp. 1-61): Springer.
Kozak, M., & Domka, L. (2004). Adsorption of the quaternary ammonium salts on montmorillonite. Journal of Physics and Chemistry of Solids, 65(2), 441-445.
Kwak, N. S., Koo, J. S., Hwang, T. S., & Choi, E. M. (2012). Synthesis and electrical properties of NaSS–MAA–MMA cation exchange membranes for membrane capacitive deionization (MCDI). Desalination, 285, 138-146.
Lee, J. B., Park, K. K., Eum, H. M., & Lee, C. W. (2006). Desalination of a thermal power plant wastewater by membrane capacitive deionization. Desalination, 196(1), 125-134.
Lee, J. H., Bae, W. S., & Choi, J. H. (2010). Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process. Desalination, 258(1), 159-163.
Lee, J. Y., Seo, S. J., Yun, S. H., & Moon, S. H. (2011). Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI). Water research, 45(17), 5375-5380.
Li, G., Xi, S., Liu, Z., & Huang, Y. (1999). FTIR and fluorescence emission spectra of sulfonated PS and its ionomers. Department of Polymer and Material Science, Zhongshan University, Guangzhou. 19(3), 289-292.
Li, H., & Zou, L. (2011). Ion-exchange membrane capacitive deionization: a new strategy for brackish water desalination. Desalination, 275(1), 62-66.
Li, H., Lu, T., Pan, L., Zhang, Y., & Sun, Z. (2009). Electrosorption behavior of graphene in NaCl solutions. Journal of Materials Chemistry, 19(37), 6773-6779.
Li, H., Zaviska, F., Liang, S., Li, J., He, L., & Yang, H. Y. (2014). A high charge efficiency electrode by self-assembling sulphonated reduced graphene oxide onto carbon fibre: towards enhanced capacitive deionization. Journal of Materials Chemistry A, 2(10), 3484-3491.
Li, H., Zou, L., Pan, L., & Sun, Z. (2010). Novel graphene-like electrodes for capacitive deionization. Environmental science & technology, 44(22), 8692-8697.
Lin, C., Ritter, J. A., & Popov, B. N. (1999). Correlation of Double‐Layer Capacitance with the Pore Structure of Sol‐Gel Derived Carbon Xerogels. Journal of the Electrochemical Society, 146(10), 3639-3643.
Liu, Y., Pan, L., Xu, X., Lu, T., Sun, Z., & Chua, H. C. (2014). Enhanced desalination efficiency in modified membrane capacitive deionization by introducing ion-exchange polymers in carbon nanotubes electrodes. Electrochimica Acta, 130, 619-624.
Miller, W. S., Castagna, C. J., & Pieper, A. W. (2009). Understanding ion-exchange resins for water treatment systems. GE Water Process Technol., 1-13.
Nie, C., Pan, L., Liu, Y., Li, H., Chen, T., Lu, T., & Sun, Z. (2012). Electrophoretic deposition of carbon nanotubes–polyacrylic acid composite film electrode for capacitive deionization. Electrochimica Acta, 66, 106-109.
Oren, Y. (2008). Capacitive deionization (CDI) for desalination and water treatment past, present and future (a review). Desalination, 228(1), 10-29.
Park, B. H., & Choi, J. H. (2010). Improvement in the capacitance of a carbon electrode prepared using water-soluble polymer binder for a capacitive deionization application. Electrochimica Acta, 55(8), 2888-2893.
Porada, S., Zhao, R., Van Der Wal, A., Presser, V., & Biesheuvel, P. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388-1442.
Rubinstein, I. (1995). Physical Electrochemistry: Science and Technology (Vol.7). Marcel Dekker: New York.
Ryoo, M. W., Kim, J. H., & Seo, G. (2003). Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution. Journal of colloid and interface science, 264(2), 414-419.
Scribner, L. L. (1990). The measurement and correction of electrolyte resistance in electrochemical tests (Vol. 1056). ASTM International: Philadelphia.
Silverstein, R. M., Webster, F. X., Kiemle, D. J., & Bryce, D. L. (2014). Spectrometric identification of organic compounds. John Wiley & Sons: Hoboken.
Tanaka, Y. (2015). Ion exchange membranes: fundamentals and applications: Elsevier.
Vyas, P. V., Shah, B., Trivedi, G., Ray, P., Adhikary, S., & Rangarajan, R. (2001). Characterization of heterogeneous anion-exchange membrane. Journal of membrane science, 187(1), 39-46.
Wheaton R. M. and Lefevre L. J. (2000). Fundamentals of Ion Exchange, Dow Chemical U.S.A.
Xu, P., Drewes, J. E., Heil, D., & Wang, G. (2008). Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water research, 42(10), 2605-2617.
Yang, K. L., Yiacoumi, S., & Tsouris, C. (2003). Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry. Journal of Electroanalytical Chemistry, 540, 159-167.
Ying, T. Y., Yang, K. L., Yiacoumi, S., & Tsouris, C. (2002). Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel. Journal of colloid and interface science, 250(1), 18-27.
Zhang, D., Yan, T., Shi, L., Peng, Z., Wen, X., & Zhang, J. (2012). Enhanced capacitive deionization performance of graphene/carbon nanotube composites. Journal of Materials Chemistry, 22(29), 14696-14704.
Zhang, Y., Zou, L., Wimalasiri, Y., Lee, J.-Y., & Chun, Y. (2015). Reduced graphene oxide/polyaniline conductive anion exchange membranes in capacitive deionisation process. Electrochimica Acta, 182, 383-390.
Zhou, R., Wei, R., Liu, X., & Lin, X. (2010). Poly (styrene-co-divinylbenzene) resins sulfonated by chlorosulfonic acid. CIESC Journal, 4, 037.
Zou, L., Li, L., Song, H., & Morris, G. (2008). Using mesoporous carbon electrodes for brackish water desalination. Water research, 42(8), 2340-2348.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7890-
dc.description.abstract電容去離子技術(capacitive deionization, CDI),其原理係藉由施加外部電場,以電雙層原理將離子電吸附儲存於多孔電極材料表面,達到移除水溶液中離子之目的。若進一步於電極表面放置陰陽離子交換樹脂薄膜(ion-exchange membrane, IEM),藉由IEM的電性選擇特性,阻擋同離子(co-ion)並允許反離子(counter-ion)穿越薄膜,於電吸附程序中減緩同離子效應的影響,進而提升CDI的充電效率(charge efficiency)與脫鹽能力,則為薄膜電容去離子技術(membrane capacitive deionization, MCDI)。然而,在MCDI技術中,電極與IEM間所存在之空隙和厚度將增加整體系統的阻抗,使得能量損耗增加,故有研究改善之必要性。本研究之目的在於降低電極與IEM間之阻抗,故嘗試將陰陽離子交換樹脂(ion-exchange resin, IER)緊密地直接塗佈於活性碳電極表面,形成離子交換樹脂塗層,以簡單快速的方法合成非均質離子交換膜/活性碳電極(RMCDI),並以電化學分析、親水性測試與物化表面分析,探討RMCDI之特性。研究結果顯示,離子交換樹脂塗層可降低電極與IEM間之阻抗,並改善增進電極表面的親水性質,且在物化表面分析結果中可知,在薄膜製成工序中不會破壞官能基。且於低掃描速率的循環伏安法實驗中証實,電極的電容特性不會受到塗佈離子交換樹脂層的影響。此外,將RMCDI應用於電吸附程序上,於濃度5 mM NaCl溶液中施加1.2 V之電場進行電容去離子實驗,証實活性碳電極在塗佈離子交換樹脂塗層後,可提升40%之電吸附量(6.21 mg/g-carbon),且有良好的充電效率(71.4%)及低能源消耗(0.043 kWh/mole)。再者,將RMCDI於連續5次的電吸脫附程序中,其電吸附容量介於6.23至5.91 mg/g-carbon間,顯示能有良好的可逆性與電極再生性。綜上所述,本研究將IER直接塗佈於活性碳電極表面形成離子交換樹脂塗層,可降低電極與IEM間之阻抗,同時保有IEM的性質,提升整體系統脫鹽效能。zh_TW
dc.description.abstractMembrane capacitive deionization (MCDI) is an alternative desalination technology, which combined with the ion-exchange membrane (IEM) in front of electrodes. Based on the principle of capacitive deionization (CDI), the ions are removed by applying electric field and ions, which stored in the surface of porous carbon electrodes from aqueous solution. During the process of electrosorption, the IEM plays an important role to exclude the co-ion effect due to the characteristic of permselective. A membrane that completely blocks transport of co-ions while allowing transport of counter-ions simultaneously. However, the IEM is expensive, requires strong physical pressure between membrane and electrodes. In order to solve the problems of contact resistance and thickness of electrodes, the heterogeneous membrane/activated carbon electrode (RMCDI) was developed by adhering the powder of ion-exchange resin (IER) on the surface of electrodes directly. The electrodes were characterized by electrochemical analysis, contact angle and surface structure analysis. The results show IER layer can not only reduce the resistance between electrode and IEM but also improve the hydrophilic properties. In addition, the results also show the functional groups of IER will not be destroyed during product process. For the cyclic voltammetry, the specific capacitance still keeps up after coating IER layer. From the electrosorption experiments of 5 mM NaCl at applied potential of 1.2 V over 30 min period in RMCDI system, the electrosorption capacity (6.21 mg/g-carbon) is 40 % higher than the un-coating electrode and also have good performance of charge efficiency (71.4%) and lower energy consumption (0.0434 kWh/mole). Furthermore, a cyclic test was performance for continuous operation of RMCDI including electrosorption and desorption process for 5 cycles. The electrosorption capacity was measured between 5.91 and 6.23 mg/g-carbon over the repeat operations. This implies that the RMCDI system would have stable performance and good generation of electrodes over the repeated operationen
dc.description.provenanceMade available in DSpace on 2021-05-19T17:57:28Z (GMT). No. of bitstreams: 1
ntu-105-R03541115-1.pdf: 4187798 bytes, checksum: 4ca07cfa749cf40d2612282e2957ee30 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 II
中文摘要 III
英文摘要 IV
第一章 緒論 1
1-1 研究起緣 1
1-2 研究目的 2
第二章 理論說明與文獻回顧 3
2-1 電容去離子技術 3
2-1-1電容去離子技術介紹 3
2-1-2 電雙層之基本原理 5
2-1-3 離子於孔洞內之傳輸效應 7
2-1-3-1 電雙層重疊效應 7
2-1-3-2 同離子效應 8
2-1-4 電容去離子技術之發展與應用 10
2-2 薄膜電容去離子技術 12
2-2-1 薄膜電容去離子技術介紹 12
2-2-2薄膜去離子技術之發展與應用 13
2-2-3 合成膜應用於薄膜電容去離子技術 15
2-2-3-1 均質離子交換膜 17
2-2-3-2 非均質離子交換膜 19
2-2-3-3 離子交換樹脂 22
第三章 實驗材料與方法 25
3-1 實驗藥品與設備 25
3-2 實驗流程設計 26
3-3活性碳電極製備 27
3-4離子交換樹脂模塗佈 28
3-5電極表面分析 30
3-5-1 比表面積表面分析儀 30
3-5-2 掃描式電子顯微鏡 30
3-5-3 表面性質與接觸角 31
3-5-4傅立葉轉換紅外光譜 31
3-6電化學特性分析 32
3-6-1 循環伏安法 33
3-6-2定電流充放電實驗 34
3-6-3 電阻抗分析 36
3-7 電容去離子系統與應用 37
3-7-1 電容脫鹽效率 39
3-7-2 電吸附量 39
3-7-3 脫附效率 40
3-7-4 能源消耗 40
3-7-5 充電效率 41
第四章 實驗結果與討論 42
4-1 離子交換樹脂/活性碳電極表面特性分析 42
4-1-1 離子交換樹脂層之SEM分析 43
4-1-2 離子交換樹脂層之親水性分析 45
4-1-3 離子交換樹脂層之官能基分析鑑定 46
4-2 離子交換樹脂/活性碳電極之電化學特性分析 48
4-2-1 塗佈離子交換樹脂膜之電極電容特性 48
4-2-2 電極充放電分析 51
4-2-3 電阻抗分析 54
4-3離子交換樹脂/碳電容去離子系統之電吸附程序條件建立 56
4-3-1 施加電壓之適用範圍 57
4-3-2 不同離子濃度的影響 59
4-3-3 批次式之多循環電吸附/脫附程序 68
第五章 結果與建議 70
5-1 結論 70
5-2 建議 71
參考文獻 72
dc.language.isozh-TW
dc.title以離子交換樹脂塗層/活性碳電極提升薄膜電容去離子技術脫鹽效能之研究zh_TW
dc.titleEnhanced Desalination Efficiency of Activated Carbon Electrode Coated with Ion-exchange Layer for Membrane Capacitive Deionizationen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor侯嘉洪(chiahunghou@ntu.edu.tw)
dc.contributor.oralexamcommittee席行正,林進榮
dc.subject.keyword薄膜電容去離子技術,非均質離子交換樹脂膜,電吸附量,充電效率,能源消耗,zh_TW
dc.subject.keywordmembrane capacitive deionization,heterogeneous ion-exchange membrane,electrosorption capacity,charge efficiency,energy consumption,en
dc.relation.page76
dc.identifier.doi10.6342/NTU201602358
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf4.09 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved