Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78902
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor任秀慧(Rita Sau-Wai Yam)
dc.contributor.authorTzu-Dan Wangen
dc.contributor.author王姿丹zh_TW
dc.date.accessioned2021-07-11T15:27:55Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2017
dc.date.submitted2018-08-20
dc.identifier.citationReferences
Abrantes, K.G., Johnston, R., Connolly, R.M. & Sheaves, M. (2015) Importance of mangrove carbon for aquatic food webs in wet-dry tropical estuaries. Estuaries and Coasts, 38, 383-399.
Anderson, D.M., Glibert, P.M. & Burkholder, J.M. (2002) Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries, 25, 704-726.
APHA (2012) Standard methods for the examination of water and wasterwater: including bottom sediments and sludges, 22 edn. American Public Health Association, New York.
Babu, D.E., Ratna, M.R., Lakshmikantamma, K. & Tarun, K. (2017) Predictive eel population model based on fish habitat dependency and fishing pressure on Pisodonophis boro (Hamilton) in the Godavari Delta, India. Journal of Fisheries & Livestock Production, 5, 224-233.
Bouillon, S., Koedam, N., Raman, A.V. & Dehairs, F. (2002a) Primary producers sustaining macroinvertebrate communities in intertidal mangrove forests. Oecologia, 130, 441-448.
Bouillon, S., Raman, A.V., Dauby, P. & Dehairs, F. (2002b) Carbon and nitrogen stable isotope ratios of subtidal benthic invertebrates in an estuarine mangrove ecosystem (Andhra Pradesh, India). Estuarine Coastal and Shelf Science, 54, 901-913.
Bouillon, S., Moens, T., Overmeer, I., Koedam, N. & Dehairs, F. (2004) Resource utilisation patterns of epifauna from mangrove forests with contrasting inputs of local versus imported organic matter. Marine Ecology Progress Series, 278, 77-88.
Bouillon, S., Borges, A.V., Castaneda-Moya, E., Diele, K., Dittmar, T., Duke, N.C., Kristensen, E., Lee, S.Y., Marchand, C., Middelburg, J.J., Rivera-Monroy, V.H., Smith, T.J. & Twilley, R.R. (2008) Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemical Cycles, 22,1-12.
Bui, T.H.H. & Lee, S.Y. (2014) Does 'You are what you eat' apply to mangrove grapsid crabs? Plos One, 9, e89074.
Campos, D.M.D.R., da Silva, A.F., Sales, N.D., Oliveira, R.E.M.C.C. & Pessanha, A.L.M. (2015) Trophic relationships among fish assemblages on a mudflat within a Brazilian marine protected area. Brazilian Journal of Oceanography, 63, 429-442.
Cannicci, S., Burrows, D., Fratini, S., Smith, T.J., Offenberg, J. & Dahdouh-Guebas, F. (2008) Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review. Aquatic Botany, 89, 186-200.
Caut, S., Angulo, E. & Courchamp, F. (2009) Variation in discrimination factors (δ15N and δ13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology, 46, 443-453.
Chaves-Ulloa, R., Umana-Villalobos, G. & Springer, M. (2014) Downstream effects of hydropower production on aquatic macroinvertebrate assemblages in two rivers in Costa Rica. Revista De Biologia Tropical, 62, 179-201.
Chen, Q. & Ma, K. (2017) Determining whether exotic cordgrass (Spartina alterniflora) attracts carnivorous macrobenthic fauna within a Zhanjiang (China) mangrove ecosystem. Journal of Coastal Research, 34, 534-543.
Chen, Q., Zhao Q., Jian, S. & Chen, P. (2018) Changes in the functional feeding groups of macrobenthic fauna during mangrove forest succession in Zhanjiang, China. Ecological Research,1-12. Chew, L. L., Chong, V. C., Tanaka, K., & Sasekumar, A. (2012). Phytoplankton fuel the energy flow from zooplankton to small nekton in turbid mangrove waters. Marine Ecology Progress Series, 469, 7-24.
Christensen, J.T., Sauriau, P.G., Richard, P. & Jensen, P.D. (2001) Diet in mangrove snails: Preliminary data on gut contents and stable isotope analysis. Journal of Shellfish Research, 20, 423-426.
Claudino, M.C., Pessanha, A.L.M., Araujo, F.G. & Garcia, A.M. (2015) Trophic connectivity and basal food sources sustaining tropical aquatic consumers along a mangrove to ocean gradient. Estuarine Coastal and Shelf Science, 167, 45-55.
Contreras, D. M., Kintz, J. C., González, A. S., & Mancera, E. (2017). Food web structure and trophic relations in a riverine mangrove system of the tropical eastern Pacific, central coast of Colombia. Estuaries and Coasts, 41, 1511-1521.
Cunjak, R.A., Roussel, J.M., Gray, M.A., Dietrich, J.P., Cartwright, D.F., Munkittrick, K.R. & Jardine, T.D. (2005) Using stable isotope analysis with telemetry or mark-recapture data to identify fish movement and foraging. Oecologia, 144, 636-646. CWB (1996) Climatological annual report, Central Weather Bureau, Taiwan, R.O.C. CWB (2017) Climate in Taiwan, Central Weather Bureau, Taiwan, R.O.C. http://www.cwb.gov.tw/V7/, Accessed 20 May 2017 (In Chinese).
Davis, A.M., Blanchette, M.L., Pusey, B.J., Jardine, T.D. & Pearson, R.G. (2012) Gut content and stable isotope analyses provide complementary understanding of ontogenetic dietary shifts and trophic relationships among fishes in a tropical river. Freshwater Biology, 57, 2156-2172.
Demopoulos, A. W., Fry, B., & Smith, C. R. (2007). Food web structure in exotic and native mangroves: a Hawaii–Puerto Rico comparison. Oecologia, 153, 675-686.
DeNiro, M.J. & Epstein, S. (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 42, 495-506.
Dubois, S., Jean-Louis, B., Bertrand, B. & Lefebvre, S. (2007) Isotope trophic-step fractionation of suspension-feeding species: Implications for food partitioning in coastal ecosystems. Journal of Experimental Marine Biology and Ecology, 351, 121-128.
EPA (Environmental Protection Administration) (1998) Effects of pollution mitigation of Danshui River on biotic communities, final report. Environmental Protection Administration, Taiwan, R.O.C. (In Chinese).
EPA (Environmental Protection Administration) (2017) River water quality. Environmental Protection Administration, Taiwan, R.O.C. Accessed 23 May 2017.
Ehleringer, J.R., Buchmann, N. & Flanagan, L.B. (2000) Carbon isotope ratios in belowground carbon cycle processes. Ecological Applications, 10, 412-422.
Faulkner, S. (2004) Urbanisation impacts on the structure and function of forested wetlands. Urban Ecosystems, 7, 89-196.
Faye, D., de Morais, L.T., Raffray, J., Sadio, O., Thiaw, O.T. & Le Loc'h, F. (2011) Structure and seasonal variability of fish food webs in an estuarine tropical marine protected area (Senegal): Evidence from stable isotope analysis. Estuarine Coastal and Shelf Science, 92, 607-617.
Franca, S., Vasconcelos, R.P., Tanner, S., Maguas, C., Costa, M.J. & Cabral, H.N. (2011) Assessing food web dynamics and relative importance of organic matter sources for fish species in two Portuguese estuaries: A stable isotope approach. Marine Environmental Research, 72, 204-215.
France, R.L. (1995) Carbon-13 enrichment in benthic compared to planktonic algae: food web implications. Marine Ecology Progress Series, 124, 307-312.
Galvan, D.E., Sweeting, C.J. & Polunin, N.V.C. (2012) Methodological uncertainty in resource mixing models for generalist fishes. Oecologia, 169, 1083-1093.
Gates, E.N. (2006) Determining carbon and nitrogen stable isotope discrimination for marine consumers. Edith Cowan University, Western Australia.
Giarrizzo, T., Krumme, U. & Wosniok, W. (2010) Size-structured migration and feeding patterns in the banded puffer fish Colomesus psittacus (Tetraodontidae) from north Brazilian mangrove creeks. Marine Ecology Progress Series, 419, 157-170.
Grall, J. & Chauvaud, L. (2002) Marine eutrophication and benthos: the need for new approaches and concepts. Global Change Biology, 8, 813-830.
Helmer, R., Hespanhol, I. & , W.H.O. (1997) Water pollution control - A Guide to the use of water quality management principles. In. St Edmundsbury Press, Great Britain.
Holguin, G., Vazquez, P. & Bashan, Y. (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biology and Fertility of Soils, 33, 265-278.
Howarth, R.W. & Marino, R. (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnology and Oceanography, 51, 364-376.
Hsieh, H.L. (1995) Spatial and temporal patterns of polychaete communities in a subtropical mangrove swamp: influences of sediment and microhabitat. Marine Ecology Progress Series, 127, 157-167.
Hsieh, H.L., Chen, C.P., Chen, Y.G. & Yang, H.H. (2002) Diversity of benthic organic matter flows through polychaetes and crabs in a mangrove estuary: δ13C and δ34S signals. Marine Ecology Progress Series, 227, 145-155.
Kennedy, T.L. & Turner, T.F. (2011) River channelization reduces nutrient flow and macroinvertebrate diversity at the aquatic terrestrial transition zone. Ecosphere, 2, 1-13.
Kieckbusch, D. K., Koch, M. S., Serafy, J. E., & Anderson, W. T. (2004). Trophic linkages among primary producers and consumers in fringing mangroves of subtropical lagoons. Bulletin of Marine Science, 74, 271-285.
Krumme, U., Calderon, M.A. & Echterhoff, A. (2014) Intertidal migration of the four-eyed fish Anableps anableps in North Brazilian mangrove creeks. Marine Ecology Progress Series, 509, 271-287.
Le, Q. D., Haron, N. A., Tanaka, K., Ishida, A., Sano, Y., Dung, L. V., & Shirai, K. (2017). Quantitative contribution of primary food sources for a mangrove food web in Setiu lagoon from east coast of Peninsular Malaysia, stable isotopic (δ13C and δ15N) approach. Regional Studies in Marine Science, 9, 174-179. Lee, S. Y. (2000). Carbon dynamics of Deep Bay, eastern Pearl River estuary, China. II: Trophic relationship based on carbon- and nitrogen-stable isotopes. Marine Ecology Progress Series, 205, 1-10.
Lee, C.T. (2003) Changes of mangrove (Kandelia candel (L.) Druce) distribution in Tanshui Estuary. Hwa Kang Geographical Journal 16, 59-69.
Lee, S.Y., Dunn, R.J.K., Young, R.A., Connolly, R.M., Dale, P.E.R., Dehayr, R., Lemckert, C.J., McKinnon, S., Powell, B., Teasdale, P.R. & Welsh, D.T. (2006) Impact of urbanisation on coastal wetland structure and function. Austral Ecology, 31, 149-163.
Lin, H.J., Kao, W.Y. & Wang, Y.T. (2007a) Analyses of stomach contents and stable isotopes reveal food sources of estuarine detritivorous fish in tropical/subtropical Taiwan. Estuarine Coastal and Shelf Science, 73, 527-537.
Lin, H.J., Shao, K.T., Jan, R.Q., Hsieh, H.L., Chen, C.P., Hsieh, L.Y. & Hsiao, Y.T. (2007b) A trophic model for the Danshuei River Estuary, a hypoxic estuary in northern Taiwan. Marine Pollution Bulletin, 54, 1789-1800.
Liu, J.W. (2014) The analysis of benthic macroinvertebrate and fish community structure on medial-lower stream of Tanshui river basin and application of biotic index as water quality indicators (Master’s thesis). Accessed from National Digital Library of Theses and Dissertations in Taiwan. (In Chinese)
Liu, K.K., Kao, S.J., Wen, L.S. & Chen, K.L. (2007) Carbon and nitrogen isotopic compositions of particulate organic matter and biogeochemical processes in the eutrophic Danshuei Estuary in northern Taiwan. Science of the Total Environment, 382, 103-120.
Loneragan, N.R., Bunn, S.E. & Kellaway, D.M. (1997) Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable-isotope study. Marine Biology, 130, 289-300. Lui, T. H., Lee, S. Y., & Sadovy, Y. (2002). Macrobenthos of a tidal impoundment at the Mai Po marshes nature reserve, Hong Kong. Hydrobiologia, 468, 193-211.
Macneil, C., Dick, J.T. & Elwood, R.W. (1997) The trophic ecology of freshwater Gammarus spp. (Crustacea: Amphipoda): Problems and perspectives concerning the functional feeding group concept. Biological Reviews of the Cambridge Philosophical Society, 72, 349-364.
Martinetto, P., Teichberg, M. & Valiela, I. (2006) Coupling of estuarine benthic and pelagic food webs to land-derived nitrogen sources in Walquoit Bay, Massachusetts, USA. Marine Ecology Progress Series, 307, 37-48.
Mateo, M.A., Serrano, O., Serrano, L. & Michener, R.H. (2008) Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: implications for food web studies using stable isotopes. Oecologia, 157, 105-115.
McClelland, J.W., Valiela, I. & Michener, R.H. (1997) Nitrogen-stable isotope signatures in estuarine food webs: A record of increasing urbanisation in coastal watersheds. Limnology and Oceanography, 42, 930-937.
McCutchan, J.H., Lewis, W.M., Kendall, C. & McGrath, C.C. (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 102, 378-390.
Mcleod, E., Chmura, G.L., Bouillon, S., Salm, R., Bjork, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.H. & Silliman, B.R. (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9, 552-560.
Metcalfe, K.N. & Glasby, C.J. (2008) Diversity of polychaeta (Annelida) and other worm taxa in mangrove habitats of Darwin Harbour, northern Australia. Journal of Sea Research, 59, 70-82.
Miller, T.W., Omori, K., Hamaoka, H., Shibata, J. & Hidejiro, O. (2010) Tracing anthropogenic inputs to production in the Seto Inland Sea, Japan - A stable isotope approach. Marine Pollution Bulletin, 60, 1803-1809.
Nadon, M.O. & Himmelman, J.H. (2006) Stable isotopes in subtidal food webs: Have enriched carbon ratios in benthic consumers been misinterpreted? Limnology and Oceanography, 51, 2828-2836.
Nelson, J.A., Deegan, L. & Garritt, R. (2015) Drivers of spatial and temporal variability in estuarine food webs. Marine Ecology Progress Series, 533, 67-77.
Newell, R.I.E., Marshall, N., Sasekumar, A. & Chong, V.C. (1995) Relative importance of benthic microalgae, phytoplankton, and mangroves as sources of nutrition for penaeid prawns and other coastal invertebrates from Malaysia. Marine Biology, 123, 595-606.
Nezlin, N.P., Kamer, K., Hyde, J. & Stein, E.D. (2009) Dissolved oxygen dynamics in a eutrophic estuary, Upper Newport Bay, California. Estuarine Coastal and Shelf Science, 82, 139-151.
Noske, R.A. (1995) The ecology of mangrove forest birds in Peninsular Malaysia. Ibis, 137, 250-263.
Odum, W.E. & Heald, E.J. (1972) Trophic analyses of an estuarine mangrove community. Bulletin of Marine Science, 22, 671-738.
Olin, J.A., Hussey, N.E., Rush, S.A., Poulakis, G.R., Simpfendorfer, C.A., Heupel, M.R. & Fisk, A.T. (2013) Seasonal variability in stable isotopes of estuarine consumers under different freshwater flow regimes. Marine Ecology Progress Series, 487, 55-69.
Olive, P.J.W., Pinnegar, J.K., Polunin, N.V.C., Richards, G. & Welch, R. (2003) Isotope trophic-step fractionation: a dynamic equilibrium model. Journal of Animal Ecology, 72, 608-617.
Othman, M.A. (1994) Value of mangroves in coastal protection. Hydrobiologia, 285, 277-282.
Pan, C.W., Chuang, Y.L., Chou, L.S., Chen, M.H. & Lin, H.J. (2016) Factors governing phytoplankton biomass and production in tropical estuaries of western Taiwan. Continental Shelf Research, 118, 88-99.
Parnell, A.C., Inger, R., Bearhop, S. & Jackson, A.L. (2010) Source partitioning using stable osotopes: coping with too much variation. Plos One, 5, e9672.
Pascal, P.Y., Dubois, S., Boschker, H.T.S. & Gros, O. (2014) Trophic role of large benthic sulfur bacteria in mangrove sediment. Marine Ecology Progress Series, 516, 127-138.
Perkins, M.J., McDonald, R.A., van Veen, F.J.F., Kelly, S.D., Rees, G. & Bearhop, S. (2014) Application of nitrogen and carbon stable isotopes (δ15N and δ13C) to quantify food chain length and trophic structure. Plos One, 9, e93281.
Phillips, D.L. (2012) Converting isotope values to diet composition: the use of mixing models. Journal of Mammalogy, 93, 342-352.
Phillips, D.L. & Gregg, J.W. (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia, 136, 261-269.
Post, D.M. (2002) Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 83, 703-718.
Post, D.M., Layman, C.A., Arrington, D.A., Takimoto, G., Quattrochi, J. & Montana, C.G. (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oceologia, 152, 179-189.
Raffaelli, D.G., Raven, J.A. & Poole, L.J. (1998) Ecological impact of green macroalgal blooms. Oceanography and Marine Biology, 36, 97-125.
Reis‑Filho, J.A., Giarrizzo, T. & Barros, F. (2016) Tidal migration and cross-habitat movements of fish assemblage within a mangrove ecotone. Marine Biology, 163, 111.
Riera, P., Stal, L.J. & Nieuwenhuize, J. (2000) Heavy δ15N in intertidal benthic algae and invertebrates in the Scheldt Estuary (The Netherlands): Effect of river nitrogen inputs. Estuarine Coastal and Shelf Science, 51, 365-372.
Rohit, P., Nikunj, G. & Nishith, D. (2016) Impacts of water quality on macrofauna abundance in mangrove ecosystem of gulf of Kachchh. Journal of Wetlands Biodiversity, 6, 61-71.
Saifullah, A.S.M., Kamal, A.M., Idris, M.H., Rajaee, A.H. & Bhuiyan, M.K.A. (2016) Phytoplankton in tropical mangrove estuaries: role and interdependency. Forest Science and Technology, 12, 104-113.
Schoener, T.W. (1970) Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology, 51, 408-418. Sepúlveda-Lozada, A., Mendoza-Carranza, M., Wolff, M., Saint-Paul, U., & Ponce-Mendoza, A. (2015). Differences in food web structure of mangroves and freshwater marshes: evidence from stable isotope studies in the Southern Gulf of Mexico. Wetlands Ecology and Management, 23, 293-314.
Sheaves, M. (2005) Nature and consequences of biological connectivity in mangrove systems. Marine Ecology Progress Series, 302, 293-305.
Shiu, C.J., Liu, S.C. & Chen, J.P. (2009) Diurnally asymmetric trends of temperature, humidity, and precipitation in Taiwan. Journal of Climate, 22, 5635-5649.
Thimdee, W., Deein, G., Sangrungruang, C., & Matsunaga, K. (2004). Analysis of primary food sources and trophic relationships of aquatic animals in a mangrove-fringed estuary, Khung Krabaen Bay (Thailand) using dual stable isotope techniques. Wetlands Ecology and Management, 12, 135-144.
Thongtham, N. & Kristensen, E. (2005) Carbon and nitrogen balance of leaf-eating sesarmid crabs (Neoepisesarma versicolor) offered different food sources. Estuarine Coastal and Shelf Science, 65, 213-222.
Thongtham, N., Kristensen, E. & Puangprasan, S.Y. (2008) Leaf removal by sesarmid crabs in Bangrong mangrove forest, Phuket, Thailand; with emphasis on the feeding ecology of Neoepisesarma versicolor. Estuarine Coastal and Shelf Science, 80, 573-580.
Tse, P., Nip, T.H.M. & Wong, C.K. (2008) Nursery function of mangrove: A comparison with mudflat in terms of fish species composition and fish diet. Estuarine Coastal and Shelf Science, 80, 235-242.
Tue, N.T., Hamaoka, H., Sogabe, A., Quy, T.D., Nhuan, M.T. & Omori, K. (2012) Food sources of macroinvertebrates in an important mangrove ecosystem of Vietnam determined by dual stable isotope signatures. Journal of Sea Research, 72, 14-21.
Tzeng, W.N. & Wang, Y.T. (1992) Structure, composition and seasonal dynamics of the larval and juvenile fish community in the mangrove estuary of Tanshui River, Taiwan. Marine Biology, 113, 481-490.
Vanderklift, M.A. & Ponsard, S. (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia, 136, 169-182.
Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R. & Cushing, C.E. (1980) River continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137.
Wallace, R.K. (1981) An assessment of diet-overlap indexes. Transactions of the American Fisheries Society, 110, 72-76.
Warnakulasooriya, K. N., Butler, E. C. V., Gibb, K. S., & Munksgaard, N. C. (2017). Stable isotopes in biota reflect the graduated influence of sewage effluent along a tropical macro-tidal creek. Marine and Freshwater Research, 68, 1855-1866.
Wen, L.S., Jiann, K.T. & Liu, K.K. (2008) Seasonal variation and flux of dissolved nutrients in the Danshuei Estuary, Taiwan: A hypoxic subtropical mountain river. Estuarine Coastal and Shelf Science, 78, 694-704.
WRA (Water Resource Agency) (2005) Investigation of current status in Tamsui River system, final report. The 10th River Management Office, Water Resource Agency, Taiwan, R.O.C. (In Chinese). WRA (Water Resource Agency) (2017) Investigation of current status in Tamsui River system, final report. The 10th River Management Office, Water Resource Agency, Taiwan, R.O.C. (In Chinese).
Wyatt, A.S.J., Waite, A.M. & Humphries, S. (2010) Variability in isotope discrimination factors in coral reef fishes: Implications for diet and food web reconstruction. Plos One, 5, e13682.
Ye, F., Guo, W., Shi, Z., Jia, G.D. & Wei, G.J. (2017) Seasonal dynamics of particulate organic matter and its response to flooding in the Pearl River Estuary, China, revealed by stable isotope (δ13C and δ15N) analyses. Journal of Geophysical Research:Oceans, 122, 6835-6856.
Yokoyama, H., Tamaki, A., Harada, K., Shimoda, K., Koyama, K. & Ishihi, Y. (2005) Variability of diet-tissue isotopic fractionation in estuarine macrobenthos. Marine Ecology Progress Series, 296, 115-128.
Zakaria, M. & Rajpar, M.N. (2015) Assessing the fauna diversity of Marudu Bay mangrove forest, Sabah, Malaysia, for future conservation. Diversity, 7, 137-148.
Zhukova, N.V. & Kharlamenko, V.I. (1999) Sources of essential fatty acids in the marine microbial loop. Aquatic Microbial Ecology, 17, 153-157.
Zwarts, L., van der Kamp, J., Klop, E., Sikkema, M. & Wymenga, E. (2014) West African mangroves harbour millions of wintering European warblers. Ardea, 102, 121-130.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78902-
dc.description.abstract河川型紅樹林是提供多樣生態功能、具高度生產力的重要生態系統,因為承受低海浪侵蝕的影響並接受大量源自河川的養分,然而紅樹林生態系統主要使用的基礎能量源仍有不一致的學術見解。另外,受優養化影響的河川型紅樹林系統的基礎能量源變化在空間性和季節性環境因子影響下的變化少有探討,且食物網結構對於不同優養化程度的變化也不清楚。因此,本研究會探討 (1) 動物性和植物性碎屑在紅樹林生態系統中的重要性;(2) 基礎能量源使用的空間性及季節性變化;(3) 過去20年來食物網結構如何隨著優養化程度降低而改變。本研究在2015-2016年的夏季和冬季,於北台灣的淡水河主流河川紅樹林生態系統中設立三個樣點。穩定同位素混合模型顯示,河川型紅樹林生態系統的主要基礎能量源是異源性能量源(動物屍體及紅樹林落葉),說明動物性碎屑在紅樹林食物網的重要性,本研究為首個以野外實驗來證實動物性碎屑的重要性。本研究中植物性碎屑的高貢獻度也與前人結果不一致,而造成此差異的原因可能為前人研究通常採集新鮮紅樹林葉片,且僅以單一生物消費者做研究,導致紅樹林落葉的貢獻度被低估。異源性能量源對生物的貢獻度幾乎無樣點間和季節變化,原因為主流河段受來自人為影響的優養化,及紅樹林為常綠樹的特性所提供的穩定的基礎能量源所影響,不過自源性能量源(絲狀藻)從主流上游到河口,對生物的貢獻度增加,可能為優養化的程度改變基礎消費者(底棲大型無脊椎生物)組成有關。本研究顯示,基礎營養能量源的穩定氮同位素與全球紅樹林生態系統相比之下相對較低,可能是受到含輕穩定氮同位素的人為汙染物的影響。與過去20年前的資料相比,淡水河本流的生物組成呈現隨時間改變的趨勢,且物種豐富度增加,這表示過去水質改善措施對食物網結構有正向效益。zh_TW
dc.description.abstractRiverine mangroves are important ecosystems with high productivity and many ecological functions. The major basal resources contributed to riverine mangrove ecosystems was still debatable. Also, seasonal and spatial variation of the resource utilisation pattern of consumers in riverine mangrove ecosystems were not clear. Investigation on the effects of urbanisation and eutrophication on the mangrove food web remained scarce. In this study, we investigated that (1) the importance of animal and plant detritus as basal resources to mangrove ecosystems (2) seasonal and spatial resource utilisation pattern of biological assemblages along longitudinal riverine mangrove ecosystems (3) the response of food web structure in riverine mangrove ecosystems with decreased eutrophication level based on the 20-year river water quality monitoring data. Sampling was conducted at three study sites along the tidal main reach of Danshuei River in Northern Taiwan during summer and winter in 2015 to 2016, with the stable carbon and nitrogen isotope analysis. The results of stable isotope mixing model showed the consumers in riverine mangrove ecosystem had high dependence on allochthonous resources (animal corpse and mangrove leaf litter). For animal corpse, our results showed high importance of animal corpse to consumers in mangrove ecosystems, and this was the first field observation to prove the importance of animal corpse. The results that high contribution of mangrove leaf litter to riverine mangrove ecosystems were inconsistent with previous study. The difference might because that the previous studies usually collected fresh mangrove leaf litter and single species, which would underestimate the contribution of mangrove leaf litter. Allochthonous resources consistently represented the dominant basal resources for biological assemblages between seasons and sites. The consistence of resource utilisation might because that mangrove leaf litter with high availability from constant mangrove defoliation and animal corpse caused from eutrophication-related hypoxia with high nutrition would steadily be utilised to biological assemblages all the time. The results showed that the δ15N values of basal resources were relative low in comparison with other tropical mangrove ecosystem, this might be related to low δ15N values of anthropogenic waste in Danshuei River. Compared to the species composition in Danshuei River during past 20 years, species richness increased with reduced eutrophication level. Our results proved that the most important basal resources in heterotrophic riverine mangrove ecosystems were allochthonous resources (e.g. mangrove leaf litter and animal corpse).en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:27:55Z (GMT). No. of bitstreams: 1
ntu-106-R04622004-1.pdf: 9322181 bytes, checksum: 5d74d8d1e0100ddb4f80f1bdc4b82be6 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsContents
口試委員審定書………………………..……………………….……………........
I
謝誌………………………………………………………………………………...
II
摘要………………………..…………………………………….……………........
III
Abstract…………………………………………………….………………………
IV
Contents……………………………………………………………………………
VI
List of figures……………………………………………………………………
VIII
List of tables……………………………………………………………………..
X
Appendix………………………………………………………………………...
XI
1. Introduction……………………………………………………………………...
1
2. Materials and methods…………………………………………………………..
13
2.1 Study sites……………………………………………………………………
13
2.2 Collecting environmental data……………………………………………….
15
2.3 Biological sampling………………………………………………………….
16
2.3.1 Potential food resources………………………………………….........
16
2.3.2 Consumers………………………………………………………….....
18
2.4 Experimental analysis…………………………………………………….....
20
2.5 Data analysis…………………………………………………………………
21
2.5.1 Inter-site and seasonal variation of environmental characteristics........
21
2.5.2 Classification of functional feeding groups (FFGs) …………………..
21
2.5.3 Inter-site and seasonal variation of stable isotopic values……………...
22
2.5.4 Stable isotope analysis in R (SIAR) …………………………………...
23 2.5.5 nMDS (non-metric multidimensional scaling) of species composition.
24
3. Results…………………………………………………………………………...
25
3.1 Environmental characteristics……………………………………………….
25
3.2 Species richness and composition……………………………………………
27
3.3 Isotopic values of biological components……………………………………
28
3.3.1 Basal resources………………………………………………………...
28
3.3.2 Potential consumers……………………………………………………
30
3.4 Contribution of basal resources to consumers………………………………..
32
4. Discussion……………………………………………………………….……....
35
4.1 Isotopic compositions of basal resources…………………………….………
35
4.2 Relative importance of basal resources to mangrove ecosystems…………....
37
4.2.1 Allochthonous resources………………………………………………
37
4.2.2 Autochthonous resources………………………………………...…….
40
4.3 The inter-site and seasonal variation of resource utilisation………………...
41
4.3.1 Inter-site utilisation of the basal resources……………………………
41
4.3.2 Seasonal utilisation of basal resources…………………………………
42
4.4 Factors influencing resource utilisation pattern……………………...………
44
4.4.1 Eutrophication…………………………………………………...…….
44
4.4.1.1 Effect of eutrophication on isotopic values……...……………….
44
4.4.1.2 Effects of eutrophication on utilisation pattern…………………..
45
4.4.2 Effects of seasonality on utilisation pattern……………………………
47
4.5 The change of species composition…………………………………………
48
5. Conclusions……………………………………………………………………...
49
Reference…………………………………………………………………………..
52
dc.language.isoen
dc.subject穩定碳氮同位素分析zh_TW
dc.subject河川型紅樹林zh_TW
dc.subject營養基礎zh_TW
dc.subject異源性能量源zh_TW
dc.subjectallochthonous resourcesen
dc.subjectriverine mangrove ecosystemen
dc.subjectstable carbon and nitrogen isotope analysisen
dc.subjecttrophic basisen
dc.title優養化衝擊對副熱帶河川型紅樹林食物網結構的影響:以淡水河紅樹林為例zh_TW
dc.titleThe impacts of eutrophication on the food web structures in subtropical riverine mangrove ecosystems: a case study in Danshuei River mangroveen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高文媛(Wen-Yuan Kao),陳國勤(Benny K.K. Chan)
dc.subject.keyword河川型紅樹林,穩定碳氮同位素分析,營養基礎,異源性能量源,zh_TW
dc.subject.keywordriverine mangrove ecosystem,stable carbon and nitrogen isotope analysis,trophic basis,allochthonous resources,en
dc.relation.page96
dc.identifier.doi10.6342/NTU201804044
dc.rights.note有償授權
dc.date.accepted2018-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
dc.date.embargo-lift2023-08-21-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-R04622004-1.pdf
  未授權公開取用
9.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved