請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78895完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳奕君(I-Chun Cheng) | |
| dc.contributor.author | Kuan-Ju Chen | en |
| dc.contributor.author | 陳冠儒 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:27:23Z | - |
| dc.date.available | 2025-08-18 | |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | [1] W. F. Brinkman, D. E. Haggan, and W. W. Troutman, 'A history of the invention of the transistor and where it will lead us,' IEEE Journal of Solid-State Circuits, vol. 32, no. 12, pp. 1858-1865, 1997, doi: 10.1109/4.643644. [2] L. J. Edgar, 'Method and apparatus for controlling electric currents,' ed: Google Patents, 1930. [3] J. E. Lilienfeld, 'Amplifier for electric currents,' U.S. Patent 1877140, 1932. [4] J. E. Lilienfeld, 'Device for controlling electric current,' Patent 1900018, 1933. [5] P. K. Weimer, 'The TFT a new thin-film transistor,' Proceedings of the IRE, vol. 50, no. 6, pp. 1462-1469, 1962, doi: 10.1109/JRPROC.1962.288190. [6] P. Le Comber, W. Spear, and A. Ghaith, 'Amorphous-silicon field-effect device and possible application,' Electronics Letters, vol. 15, no. 6, pp. 179-181, 1979, doi: 10.1049/el:19790126. [7] E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Gonçalves, A. J. S. Marques, R. F. P. Martins, and L. M. N. Pereira, 'Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature,' Applied Physics Letters, vol. 85, no. 13, pp. 2541-2543, 2004, doi: 10.1063/1.1790587. [8] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, 'Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,' Nature, vol. 432, no. 7016, pp. 488-492, 2004, doi: 10.1038/nature03090. [9] M. G. McDowell, R. J. Sanderson, and I. G. Hill, 'Combinatorial study of zinc tin oxide thin-film transistors,' Applied Physics Letters, vol. 92, no. 1, 2008, doi: 10.1063/1.2828862. [10] H. Y. Huang, 'Flexible Wireless Antenna Sensor: A Review,' Ieee Sensors Journal, vol. 13, no. 10, pp. 3865-3872, Oct 2013, doi: 10.1109/Jsen.2013.2242464. [11] P. Kassal, M. D. Steinberg, and I. M. Steinberg, 'Wireless chemical sensors and biosensors: A review,' Sensors and Actuators B: Chemical, vol. 266, pp. 228-245, 2018, doi: 10.1016/j.snb.2018.03.074. [12] M. Feng, S.-C. Shen, D. C. Caruth, and J.-J. Huang, 'Device technologies for RF front-end circuits in next-generation wireless communications,' Proceedings of the IEEE, vol. 92, no. 2, pp. 354-375, 2004, doi: 10.1109/JPROC.2003.821903. [13] H. Ozaki, T. Kawamura, H. Wakana, T. Yamazoe, and H. Uchiyama, 'Wireless operations for 13.56-MHz band RFID tag using amorphous oxide TFTs,' IEICE Electronics Express, vol. 8, no. 4, pp. 225-231, 2011, doi: 10.1587/elex.8.225. [14] H. Ozaki, T. Kawamura, H. Wakana, T. Yamazoe, and H. Uchiyama, '20-µW operation of an a-IGZO TFT-based RFID chip using purely NMOS “active” load logic gates with ultra-low-consumption power,' in 2011 Symposium on VLSI Circuits-Digest of Technical Papers, 2011: IEEE, pp. 54-55. [15] B. J. Baliga, Fundamentals Of Power Semiconduct devices. Springer, Boston, MA, 2008. [16] A. Chasin, S. Steudel, F. Vanaverbeke, K. Myny, M. Nag, T.-H. Ke, S. Schols, G. Gielen, J. Genoe, and P. Heremans, 'UHF IGZO Schottky diode,' presented at the 2012 International Electron Devices Meeting, 2012. [17] A. P. P. Correia, P. M. C. Barquinha, and J. C. d. P. Goes, 'Thin-Film Transistors,' in A Second-Order ΣΔ ADC Using Sputtered IGZO TFTs, 1 ed.: Springer International Publishing, 2016, ch. 2, pp. 5-15. [18] D. Hong, G. Yerubandi, H. Q. Chiang, M. C. Spiegelberg, and J. F. Wager, 'Electrical Modeling of Thin-Film Transistors,' Critical Reviews in Solid State and Materials Sciences, vol. 33, no. 2, pp. 101-132, 2008/05/16 2008, doi: 10.1080/10408430701384808. [19] L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe, G. Cantarella, F. Bottacchi, T. D. Anthopoulos, and G. Tröster, 'Metal oxide semiconductor thin-film transistors for flexible electronics,' Applied Physics Reviews, vol. 3, no. 2, 2016, doi: 10.1063/1.4953034. [20] A. Rolland, 'Electrical Properties of Amorphous Silicon Transistors and MIS-Devices: Comparative Study of Top Nitride and Bottom Nitride Configurations,' Journal of The Electrochemical Society, vol. 140, no. 12, p. 3679, 1993, doi: 10.1149/1.2221149. [21] T. Kamiya and H. Hosono, 'Material characteristics and applications of transparent amorphous oxide semiconductors,' NPG Asia Materials, vol. 2, no. 1, pp. 15-22, 2010/01/01 2010, doi: 10.1038/asiamat.2010.5. [22] H. Hosono, M. Yasukawa, and H. Kawazoe, 'Novel oxide amorphous semiconductors: transparent conducting amorphous oxides,' Journal of Non-Crystalline SoLid, vol. 203, p. 334~344, 1996, doi: Doi 10.1016/0022-3093(96)00367-5. [23] T. Kamiya, K. Nomura, and H. Hosono, 'Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping,' Journal of Display Technology, vol. 5, no. 7, pp. 273-288, 2009, doi: 10.1109/jdt.2009.2021582. [24] H. Hosono, 'Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,' Journal of Non-Crystalline Solids, vol. 352, no. 9-20, pp. 851-858, 2006, doi: 10.1016/j.jnoncrysol.2006.01.073. [25] K. Nomura, Ohta, H., Takagi, A. et al., 'Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors.,' Nature, vol. 432, pp. 488–492, 2004. [26] F. BRAUN, 'On current conduction through metallic sulfides,' in Semiconductor Devices: Pioneering Papers: World Scientific, 1991, pp. 377-380. [27] V. Rideout, 'A review of the theory, technology and applications of metal-semiconductor rectifiers,' Thin Solid Films, vol. 48, no. 3, pp. 261-291, 1978, doi: 10.1016/0040-6090(78)90007-X. [28] Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, 'Specific contact resistances between amorphous oxide semiconductor In-Ga-Zn-O and metallic electrodes,' Thin Solid Films, vol. 516, no. 17, pp. 5899-5902, 2008, doi: 10.1016/j.tsf.2007.10.051. [29] H. Kim, S. Kim, K.-K. Kim, S.-N. Lee, and K.-S. Ahn, 'Electrical Characteristics of Pt Schottky Contacts Fabricated on Amorphous Gallium Indium Zinc Oxides,' Japanese Journal of Applied Physics, vol. 50, no. 10, 2011, doi: 10.1143/jjap.50.105702. [30] D. H. Lee, K. Nomura, T. Kamiya, and H. Hosono, 'Diffusion-Limited a-IGZO/Pt Schottky Junction Fabricated at 200 ℃ on a Flexible Substrate,' IEEE Electron Device Letters, vol. 32, no. 12, pp. 1695-1697, 2011, doi: 10.1109/Led.2011.2167123. [31] A. Chasin, M. Nag, A. Bhoolokam, K. Myny, S. Steudel, S. Schols, J. Genoe, G. Gielen, and P. Heremans, 'Gigahertz Operation of a-IGZO Schottky Diodes,' IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3407-3412, 2013, doi: 10.1109/ted.2013.2275250. [32] J. Zhang, Y. Li, B. Zhang, H. Wang, Q. Xin, and A. Song, 'Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz,' Nat Commun, vol. 6, p. 7561, Jul 3 2015, doi: 10.1038/ncomms8561. [33] J. Zhang, H. Wang, J. Wilson, X. Ma, J. Jin, and A. Song, 'Room Temperature Processed Ultrahigh-Frequency Indium-Gallium–Zinc-Oxide Schottky Diode,' IEEE Electron Device Letters, vol. 37, no. 4, pp. 389-392, 2016, doi: 10.1109/led.2016.2535904. [34] Q. Wu, C. Lu, H. Wang, J. Cao, G. Yang, J. Wang, Y. Gong, X. Shi, X. Chuai, and N. Lu, 'A dual-functional IGZO-based device with Schottky diode rectifying and resistance switching behaviors,' IEEE Electron Device Letters, vol. 40, no. 1, pp. 24-27, 2018, doi: 10.1109/LED.2018.2880735. [35] Q. T. Wu, G. H. Yang, C. Y. Lu, G. W. Xu, J. W. Wang, B. J. Dang, Y. X. Gong, X. W. Shi, X. C. Chuai, N. D. Lu, D. Geng, H. Wang, L. Li, and M. Liu, 'Room Temperature-Processed a-IGZO Schottky Diode for Rectifying Circuit and Bipolar 1D1R Crossbar Applications,' Ieee Transactions on Electron Devices, vol. 66, no. 9, pp. 4087-4091, 2019, doi: 10.1109/Ted.2019.2928792. [36] L. Yan, Q. Xin, L. Du, J. Zhang, Y. Luo, Q. Wang, and A. Song, 'High performance InGaZnO-based Schottky diodes fabricated at room temperature,' physica status solidi (c), vol. 13, no. 7-9, pp. 618-622, 2016, doi: 10.1002/pssc.201510291. [37] J.-W. Kim, T.-J. Jung, and S.-M. Yoon, 'Device characteristics of Schottky barrier diodes using In-Ga-Zn-O semiconductor thin films with different atomic ratios,' Journal of Alloys and Compounds, vol. 771, pp. 658-663, 2019, doi: 10.1016/j.jallcom.2018.08.289. [38] L. Du, J. Zhang, Y. Li, M. Xu, Q. Wang, A. Song, and Q. Xin, 'High-Performance Flexible Schottky Diodes Based on Sputtered InGaZnO,' IEEE Transactions on Electron Devices, vol. 65, no. 10, pp. 4326-4333, 2018, doi: 10.1109/ted.2018.2864165. [39] B. O. Jun, G. J. Lee, J. G. Kang, S. Kim, J. W. Choi, S. N. Cha, J. I. Sohn, and J. E. Jang, 'Wireless thin film transistor based on micro magnetic induction coupling antenna,' Sci Rep, vol. 5, p. 18621, Dec 22 2015, doi: 10.1038/srep18621. [40] H. Xiao, Introduction to semiconductor manufacturing technology. Prentice Hall Upper Saddle River, NJ, 2001. [41] 陳俊翔, '射頻磁控濺鍍法製作之氧化亞錫薄膜特性之研究,' 2014. [42] 蔡宜軒, '下閘極氧化鋅鎂薄膜電晶體之電穩定性研究,' 臺灣大學應用力學研究所學位論文, pp. 1-75, 2011. [43] R. Bosco, J. Van Den Beucken, S. Leeuwenburgh, and J. Jansen, 'Surface Engineering for Bone Implants: A Trend from Passive to Active Surfaces,' Coatings, vol. 2, no. 4, pp. 95-119, 2012, doi: 10.3390/coatings2030095. [44] 張勁燕, 半導體製程設備. 五南圖書出版股份有限公司, 2005. [45] 張以忱, 真空鍍膜技術與設備. 冶金工業出版社, 2014. [46] M. E. A. Hussein, 'Fabrication and Characterization of GaN-based Nanowires for Photoelectrochemical Water Splitting Applications,' 2015. [47] B. A. Vaartstra, 'Systems and methods for forming zirconium and/or hafnium-containing layers,' ed: Google Patents, 2015. [48] R. D. Clark, 'Method for depositing dielectric films,' ed: Google Patents, 2015. [49] 蕭宏, 半導體製程技術導論. 台灣培生教育, 2007. [50] C. E. Morosanu, Thin films by chemical vapour deposition. Elsevier, 2016. [51] M. Li, Y. Cheng, Y. Zheng, X. Zhang, T. Xi, and S. Wei, 'Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film,' Applied Surface Science, vol. 258, no. 7, pp. 3074-3081, 2012, doi: 10.1016/j.apsusc.2011.11.040. [52] 張俊彥, 積體電路製程及設備技術手册. 中華民國產業科技發展協進會, 1997. [53] R. Poulsen, 'Plasma etching in integrated circuit manufacture—A review,' Journal of Vacuum Science and Technology, vol. 14, no. 1, pp. 266-274, 1977, doi: 10.1116/1.569137. [54] S. Franssila, Introduction to microfabrication. John Wiley Sons, 2010. [55] Y. Wu, D. L. Olynick, A. Goodyear, C. Peroz, S. Dhuey, X. Liang, and S. Cabrini, 'Cryogenic etching of nano-scale silicon trenches with resist masks,' Microelectronic Engineering, vol. 88, no. 8, pp. 2785-2789, 2011, doi: 10.1016/j.mee.2010.11.055. [56] T. Y. S. Konno, and K. Koshiji, 'Improvement of Coupling Coefficient by Designing a Spiral Pattern Formed on a Printed Circuit Board,' IEEE Wireless Power Transfer (WPT), 2013, doi: 10.1109/WPT.2013.6556909. [57] J. G. K. Byoung-Ok Jun, Ji-Woong Choi, and Jae Eun Jang1, 'The study of wireless thin film transistor with micro magnetic induction coupling antenna structure,' International Conference on Nanotechnology, 2014, doi: 10.1109/NANO.2014.6968026. [58] K. H. Lee, B. O. Jun, S. Kim, G. J. Lee, M. Ryu, J.-W. Choi, and J. E. Jang, 'A study on geometry effect of transmission coil for micro size magnetic induction coil,' Solid-State Electronics, vol. 119, pp. 45-49, 2016, doi: 10.1016/j.sse.2016.02.008. [59] G. H. Kim, J. H. Lee, Y. Ahn, W. Jeon, S. J. Song, J. Y. Seok, J. H. Yoon, K. J. Yoon, T. J. Park, and C. S. Hwang, '32× 32 crossbar array resistive memory composed of a stacked Schottky diode and unipolar resistive memory,' Advanced Functional Materials, vol. 23, no. 11, pp. 1440-1449, 2013. [60] A. Chasin, L. Q. Zhang, A. Bhoolokam, M. Nag, S. Steudel, B. Govoreanu, G. Gielen, and P. Heremans, 'High-Performance a-IGZO Thin Film Diode as Selector for Cross-Point Memory Application,' IEEE Electron Device Letters, vol. 35, no. 6, pp. 642-644, 2014, doi: 10.1109/Led.2014.2314704. [61] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, 'Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,' Science, vol. 300, no. 5623, pp. 1269-1272, 2003. [62] Q. Xin, L. Yan, Y. Luo, and A. Song, 'Study of breakdown voltage of indium-gallium-zinc-oxide-based Schottky diode,' Applied Physics Letters, vol. 106, no. 11, 2015, doi: 10.1063/1.4916030. [63] C.-S. Fuh, S. M. Sze, P.-T. Liu, L.-F. Teng, and Y.-T. Chou, 'Role of environmental and annealing conditions on the passivation-free in-Ga–Zn–O TFT,' Thin Solid Films, vol. 520, no. 5, pp. 1489-1494, 2011, doi: 10.1016/j.tsf.2011.08.088. [64] S. Yoon, Y. J. Tak, D. H. Yoon, U. H. Choi, J.-S. Park, B. D. Ahn, and H. J. Kim, 'Study of nitrogen high-pressure annealing on InGaZnO thin-film transistors,' ACS applied materials interfaces, vol. 6, no. 16, pp. 13496-13501, 2014, doi: 10.1021/am502571w. [65] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J.-S. Park, J. K. Jeong, Y.-G. Mo, and H. D. Kim, 'High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,' Applied Physics Letters, vol. 90, no. 21, 2007, doi: 10.1063/1.2742790. [66] S.-E. Liu, M.-J. Yu, C.-Y. Lin, G.-T. Ho, C.-C. Cheng, C.-M. Lai, C.-J. Lin, Y.-C. King, and Y.-H. Yeh, 'Influence of Passivation Layers on Characteristics of a-InGaZnO Thin-Film Transistors,' IEEE Electron Device Letters, vol. 32, no. 2, pp. 161-163, 2011, doi: 10.1109/led.2010.2091620. [67] X. Li, E. Xin, L. Chen, J. Shi, and J. Zhang, 'Effect of etching stop layer on characteristics of amorphous IGZO thin film transistor fabricated at low temperature,' AIP Advances, vol. 3, no. 3, 2013, doi: 10.1063/1.4798305. [68] T. Toda, W. Deapeng, J. Jingxin, H. Mai Phi, and M. Furuta, 'Quantitative Analysis of the Effect of Hydrogen Diffusion from Silicon Oxide Etch-Stopper Layer into Amorphous In–Ga–Zn–O on Thin-Film Transistor,' IEEE Transactions on Electron Devices, vol. 61, no. 11, pp. 3762-3767, 2014, doi: 10.1109/ted.2014.2359739. [69] S. G. M. Aman, D. Koretomo, Y. Magari, and M. Furuta, 'Influence of Deposition Temperature and Source Gas in PE-CVD for SiO2 Passivation on Performance and Reliability of In–Ga–Zn–O Thin-Film Transistors,' IEEE Transactions on Electron Devices, vol. 65, no. 8, pp. 3257-3263, 2018, doi: 10.1109/ted.2018.2841978. [70] Y.-C. Huang, P.-Y. Yang, H.-Y. Huang, S.-J. Wang, H.-C. J. J. o. n. Cheng, and nanotechnology, 'Effect of the annealing ambient on the electrical characteristics of the amorphous InGaZnO thin film transistors,' vol. 12, no. 7, pp. 5625-5630, 2012. [71] S. Yoon, Y. J. Tak, D. H. Yoon, U. H. Choi, J.-S. Park, B. D. Ahn, H. J. J. A. a. m. Kim, and interfaces, 'Study of nitrogen high-pressure annealing on InGaZnO thin-film transistors,' vol. 6, no. 16, pp. 13496-13501, 2014. [72] T. Mudgal, N. Walsh, R. G. Manley, and K. D. J. E. T. Hirschman, 'Impact of annealing on contact formation and stability of IGZO TFTs,' vol. 61, no. 4, pp. 405-417, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78895 | - |
| dc.description.abstract | 本研究以自製線圈、蕭基二極體搭配電容完成無線感應整流結構,製作出具無線供電之閘極結構的非晶氧化銦鎵鋅薄膜電晶體。研究過程中先將線圈、蕭基二極體與非晶氧化銦鎵鋅薄膜電晶體單獨製作於玻璃基板上,確認個別元件的製程參數後,再進行整合元件的製作,最後量測無線感應輸出電壓值與具無線供電之閘極結構的非晶氧化銦鎵鋅薄膜電晶體的輸出與轉換特性曲線。 在單獨於玻璃基板上製作的元件中,自製傳輸與接收線圈外邊長皆為2 cm以達到較佳的感應效果並降低達到最大感應峰對峰電壓值所須施加的訊號頻率。製作蕭基二極體時藉由固定接面有效面積為'20×30' 〖'μm' 〗^'2' 、紫外光臭氧處理鎳金屬表面的時間為5 min,非晶氧化銦鎵鋅薄膜厚度80 nm、退火溫度為200℃於空氣中,可獲得電流整流比為2.22 × 104、理想因子為1.22、蕭基能障高度為0.68 eV的電性表現。製作非晶氧化銦鎵鋅薄膜電晶體時,藉由於空氣與氮氣中進行兩次退火搭配鈍化層沉積,可將薄膜電晶體的臨界電壓降低至2.01 V、場效載子遷移率為7.2 cm2V-1s-1、次臨界擺幅為0.228 V/dec.、電流開關比為1.4 × 108。 最後將接收線圈、蕭基二極體、電容與非晶氧化銦鎵鋅薄膜電晶體於玻璃上進行一體整合,製作出具無線供電之閘極結構的非晶氧化銦鎵鋅薄膜電晶體,並量測其輸出與轉換特性曲線。在輸入給傳輸線圈的弦波振幅為20 VPP、頻率為4 MHz的情況下,經接收線圈感應與蕭基二極體及電容整流後,可供給約1.5 V的近似直流電壓至薄膜電晶體的閘極。整合元件中的薄膜電晶體其電性表現與單獨於玻璃基板上製作時相比下降許多,臨界電壓下降至-0.254 V 使電晶體操作模式自增強型轉為空乏型,場效載子遷移率下降至6.4 cm2V-1s-1,次臨界擺幅上升至0.529 V/dec.,惟電流開關比提升至1.2 × 108,推測原因為薄膜電晶體結構乃於線圈的二氧化矽、氮化矽絕緣層上製作,在後續的退火步驟中,或許有部分成分在加熱過程中向上移動,對薄膜電晶體電性表現造成影響。 | zh_TW |
| dc.description.abstract | In this work, an amorphous indium gallium zinc oxide (a-IGZO) thin film transistor (TFT) with wireless power supply to the gate electrode was fabricated utilizing a handmade coil, a Schottky diode, and a capacitor as the wireless rectifier structure. The coil, Schottky diode, and a-IGZO TFT were first individually fabricated on glass substrate to verify the proper fabrication parameters before monolithically integrating the components. After monolithic integration of the components, the output rectified voltage of the wireless rectifier structure, and both the output and transfer characteristics of the a-IGZO TFT were investigated. After process parameter optimization of the individual components, the physical and functional characteristics of the components were measured. Using a coil with outer side length of 2 cm gave a better coupling effect, and lowered the signal frequency needed to supply the transmit coil. The contact area, duration of UV-Ozone treatment on Ni surface, thickness of the a-IGZO layer, annealing temperature, and gas environment of Schottky diode were determined as 20×30 μm2, 5 min, 80 nm and 200℃ in air. The rectification ratio for the obtained Schottky diode, was 2.22 × 104, with an ideality factor of 1.22 and Schottky barrier height of 0.68 eV. When fabricating the a-IGZO TFT, the threshold voltage was adjusted to 2.01 V by annealing in the air and N2 and depositing an SiO2 film as a passivation layer. The field effect mobility, subthreshold swing, and on/off current ratio of the fabricated a-IGZO TFT were 7.2 cm2V-1s-1, 0.228 V/dec, and 1.4 × 108. Finally, after monolithic integration of the coil, Schottky diode, capacitor, and a-IGZO TFT on glass substrate, an a-IGZO TFT with wireless power supply to gate electrode was fabricated. The output rectified voltage, transfer characteristics, and output characteristics of measured on the completed device. When supplying the transmit coil with 20 VPP, 4 MHz sinewave, the gate of a-IGZO TFT received about 1.5 V approximate DC signal after coil induction and rectification by the Schottky diode and capacitor. After monolithic integration, we observed that the performance of the a-IGZO TFT declined compared to components fabricated on glass, individually. Nevertheless, the on/off current ratio rose to 1.2 × 108, the field effect mobility decreased to 6.4 cm2V-1s-1, the subthreshold swing rose to 0.529 V/dec, and the threshold voltage decreased to -0.254 V, causing the operation mode of the a-IGZO TFT to change from enhancement to depletion mode. The cause was speculated to be that the a-IGZO TFT fabricated on the insulating layer of coil consisted of SiO2 and SiNX, and some constituents may have moved upward in the subsequent annealing process, ultimately affecting the electrical properties of the a-IGZO TFT. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:27:23Z (GMT). No. of bitstreams: 1 U0001-1808202017382600.pdf: 6400265 bytes, checksum: 9a83b8514fe75afee8d9841aff6eef7c (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 I 中文摘要 II Abstract IV 目錄 VI 圖目錄 X 表目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 論文架構 4 第二章 理論基礎與文獻回顧 7 2.1 蕭基二極體簡介 7 2.1.1 蕭基二極體之結構與工作原理 7 2.1.2 蕭基二極體之特徵參數 11 2.2 薄膜電晶體簡介 13 2.2.1 薄膜電晶體之結構 13 2.2.2 薄膜電晶體之工作原理 14 2.2.3 薄膜電晶體之特徵參數 16 2.2.4 薄膜電晶體之介電層電性分析 20 2.3 氧化銦鎵鋅半導體簡介 21 2.4 a-IGZO蕭基二極體之文獻回顧 25 2.5 以無線感應方式對電晶體供電之文獻回顧 31 第三章 實驗方法與步驟 35 3.1 薄膜沉積方法 35 3.1.1 射頻磁控濺鍍 35 3.1.2 電子束蒸鍍系統 37 3.1.3 原子層沉積系統 38 3.1.4 電漿輔助化學氣相沉積 39 3.2 微影製程 41 3.3 蝕刻製程 44 3.3.1 濕式蝕刻製程 44 3.3.2 乾式蝕刻製程 44 3.4 MIM結構製備流程 47 3.5 線圈製備 48 3.5.1 線圈光罩設計 48 3.5.2 線圈製作流程 49 3.6 蕭基二極體製備 52 3.6.1 蕭基二極體光罩設計 52 3.6.2 蕭基二極體製作流程 53 3.7 非晶氧化銦鎵鋅薄膜電晶體製備 55 3.8 具無線供電之閘極結構的非晶氧化銦鎵鋅薄膜電晶體製備 60 3.8.1 具無線供電之閘極結構的非晶氧化銦鎵鋅薄膜電晶體光罩設計 60 3.8.2 具無線供電之閘極結構的非晶氧化銦鎵鋅薄膜電晶體製作流程 63 3.9 量測分析 70 3.9.1 線圈感應量測方法 70 3.9.2 電容-電壓量測方法 71 3.9.3 蕭基二極體量測方法 72 3.9.4 薄膜電晶體量測方法 73 3.9.5 具無線供電之閘極結構的非晶氧化銦鎵鋅薄膜電晶體量測方法 74 第四章 結果與討論 77 4.1 線圈元件特性分析 77 4.1.1 市售傳輸線圈搭配自製接收線圈感應結果分析 77 4.1.2 自製傳輸線圈搭配自製接收線圈感應結果分析 79 4.2 蕭基二極體元件特性分析 81 4.2.1 接面有效面積對蕭基二極體之電性影響 81 4.2.2 紫外光臭氧處理時間長度對蕭基二極體之電性之影響 83 4.2.3 退火溫度對蕭基二極體之電性之影響 84 4.2.4 退火環境氣體對蕭基二極體之電性之影響 85 4.2.5 非晶氧化銦鎵鋅薄膜厚度對蕭基二極體之電性影響 87 4.2.6 蕭基二極體之崩潰電壓與整流效果 88 4.2.7 蕭基二極體製程參數統整 90 4.3 非晶氧化銦鎵鋅薄膜電晶體元件特性分析 91 4.3.1 二氧化鉿介電層電容-電壓特性分析 91 4.3.2 非晶氧化銦鎵鋅薄膜電晶體電性分析 92 4.4 各項元件整合測試 96 4.5 具無線供電之閘極結構的非晶氧化銦鎵鋅薄膜電晶體元件特性分析 98 4.5.1 整合製程之非晶氧化銦鎵鋅薄膜電晶體電性分析 98 4.5.2 整合製程之蕭基二極體電性分析 101 4.5.3 MISM結構之電容-電壓特性分析 102 4.5.4 接收線圈感應效果 103 4.5.5 接收線圈搭配蕭基二極體與電容整流效果 104 4.5.6 具無線供電之閘極結構的非晶氧化銦鎵鋅薄膜電晶體電性分析 105 第五章 結論與未來展望 107 5.1 結論 107 5.2 未來展望 109 參考文獻 111 | |
| dc.language.iso | zh-TW | |
| dc.subject | 蕭基接觸 | zh_TW |
| dc.subject | 無線 | zh_TW |
| dc.subject | 薄膜電晶體 | zh_TW |
| dc.subject | 非晶氧化銦鎵鋅 | zh_TW |
| dc.subject | 電磁感應 | zh_TW |
| dc.subject | 蕭基二極體 | zh_TW |
| dc.subject | thin film transistor | en |
| dc.subject | wireless | en |
| dc.subject | electromagnetic induction | en |
| dc.subject | Schottky diode | en |
| dc.subject | Schottky contact | en |
| dc.subject | amorphous indium gallium zinc oxide | en |
| dc.title | 一體整合之具無線閘極結構的非晶氧化銦鎵鋅薄膜電晶體之研究 | zh_TW |
| dc.title | Monolithic Integration of a-InGaZnO Thin-Film Transistor with Wireless Gate Structure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳建彰(Jian-Zhang Chen),張子璿(Tzu-Hsuan Chang),李尉彰(Wei-Chang Li) | |
| dc.subject.keyword | 無線,電磁感應,蕭基二極體,蕭基接觸,非晶氧化銦鎵鋅,薄膜電晶體, | zh_TW |
| dc.subject.keyword | wireless,electromagnetic induction,Schottky diode,Schottky contact,amorphous indium gallium zinc oxide,thin film transistor, | en |
| dc.relation.page | 117 | |
| dc.identifier.doi | 10.6342/NTU202004007 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-18 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1808202017382600.pdf 未授權公開取用 | 6.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
