請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78893
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張培仁 | |
dc.contributor.author | Jia-Ming Jang | en |
dc.contributor.author | 張家銘 | zh_TW |
dc.date.accessioned | 2021-07-11T15:27:15Z | - |
dc.date.available | 2023-09-14 | |
dc.date.copyright | 2018-09-18 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-09-13 | |
dc.identifier.citation | [1] Grzesik, W. (2008). Advanced machining processes of metallic materials: theory, modelling and applications. Elsevier. DOI: 10.1016/B978-008044534-2.50025-4
[2] Merchant, M. E. (1945). Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. Journal of applied physics, 16(5), 267-275. DOI: 10.1063/1.1707586 [3] Boothroyd, G. (1988). Fundamentals of metal machining and machine tools (Vol. 28). Crc Press. DOI: 10.1016/0261-3069(88)90021-0 [4] Markopoulos, A. P. (2013). Cutting mechanics and analytical modeling. In Finite element method in machining processes (pp. 11-27). Springer, London. DOI: 10.1007/978-1-4471-4330-7_2 [5] Altintas, Y. (2012). Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge university press. DOI: 10.1115/1.1399383 [6] Astakhov, V. P. (1998). Metal cutting mechanics. CRC press. DOI: 10.1201/9781466571778 [7] Germain, D., Fromentin, G., Poulachon, G., & Bissey-Breton, S. (2013). From large-scale to micromachining: A review of force prediction models. Journal of Manufacturing Processes, 15(3), 389-401. DOI: 10.1016/j.jmapro.2013.02.006 [8] Oxley, P. L. B. (1961). A strain-hardening solution for the “shear angle” in orthogonal metal cutting. International Journal of Mechanical Sciences, 3(1-2), 68-79. DOI: 10.1016/0020-7403(61)90039-X [9] Palmer, W. B., & Oxley, P. L. B. (1959). Mechanics of orthogonal machining. Proceedings of the Institution of Mechanical Engineers, 173(1), 623-654. DOI: 10.1243/PIME_PROC_1959_173_053_02 [10] Xu, D., Feng, P., Li, W., Ma, Y., & Liu, B. (2014). Research on chip formation parameters of aluminum alloy 6061-T6 based on high-speed orthogonal cutting model. The International Journal of Advanced Manufacturing Technology, 72(5-8), 955-962. DOI: 10.1007/s00170-014-5700-3 [11] Brown, R. H., & Armarego, E. J. A. (1964). Oblique machining with a single cutting edge. International Journal of Machine Tool Design and Research, 4(1), 9-25. DOI: 10.1016/0020-7357(64)90006-X [12] Budak, E., Altintas, Y., & Armarego, E. J. A. (1996). Prediction of milling force coefficients from orthogonal cutting data. Journal of Manufacturing Science and Engineering, 118(2), 216-224. DOI: 10.1115/1.2831014 [13] Shamoto, E., & Altıntas, Y. (1999). Prediction of shear angle in oblique cutting with maximum shear stress and minimum energy principles. Journal of manufacturing science and engineering, 121(3), 399-407. DOI: 10.1115/1.2832695 [14] Arsecularatne, J. A., Mathew, P., & Oxley, P. L. B. (1995). Prediction of chip flow direction and cutting forces in oblique machining with nose radius tools. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 209(4), 305-315. DOI: 10.1243/PIME_PROC_1995_209_087_02 [15] Lee, H. U., Cho, D. W., & Ehmann, K. F. (2008). A mechanistic model of cutting forces in micro-end-milling with cutting-condition-independent cutting force coefficients. Journal of Manufacturing Science and Engineering, 130(3), 031102. DOI: 10.1115/1.2917300 [16] Albrecht, A., Park, S. S., Altintas, Y., & Pritschow, G. (2005). High frequency bandwidth cutting force measurement in milling using capacitance displacement sensors. International Journal of Machine Tools and Manufacture, 45(9), 993-1008. DOI:10.1016/j.ijmachtools.2004.11.028 [17] Auchet, S., Chevrier, P., Lacour, M., & Lipinski, P. (2004). A new method of cutting force measurement based on command voltages of active electro-magnetic bearings. International Journal of Machine Tools and Manufacture, 44(14), 1441-1449. DOI: 10.1016/j.ijmachtools.2004.05.009 [18] Kim, G. D., & Chu, C. N. (1999). Indirect cutting force measurement considering frictional behaviour in a machining centre using feed motor current. The International Journal of Advanced Manufacturing Technology, 15(7), 478-484. DOI: 10.1007/s001700050092 [19] Kim, T. Y., Woo, J., Shin, D., & Kim, J. (1999). Indirect cutting force measurement in multi-axis simultaneous NC milling processes. International Journal of Machine Tools and Manufacture, 39(11), 1717-1731. DOI: 10.1016/S0890-6955(99)00027-9 [20] Chen, F., & Liu, G. (2017). Active damping of machine tool vibrations and cutting force measurement with a magnetic actuator. The International Journal of Advanced Manufacturing Technology, 89(1-4), 691-700. DOI 10.1007/s00170-016-9118-y [21] Yaldız, S., Ünsaçar, F., Sağlam, H., & Işık, H. (2007). Design, development and testing of a four-component milling dynamometer for the measurement of cutting force and torque. Mechanical Systems and Signal Processing, 21(3), 1499-1511. DOI:10.1016/j.ymssp.2006.06.005 [22] Li, Y., Zhao, Y., Fei, J., Qin, Y., Zhao, Y., Cai, A., & Gao, S. (2017). Design and Development of a Three-Component Force Sensor for Milling Process Monitoring. Sensors, 17(5), 949. DOI:10.3390/s17050949 [23] Xiao, C., Ding, H., Cheng, K., & Chen, S. (2015). Design of an innovative smart turning tool with application to real-time cutting force measurement. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(3), 563-568. DOI: 10.1177/0954405414530907 [24] Xie, Z., Lu, Y., & Li, J. (2017). Development and testing of an integrated smart tool holder for four-component cutting force measurement. Mechanical Systems and Signal Processing, 93, 225-240. DOI: 10.1016/j.ymssp.2017.01.038 [25] Rizal, M., Ghani, J. A., Nuawi, M. Z., & Haron, C. H. C. (2015). Development and testing of an integrated rotating dynamometer on tool holder for milling process. Mechanical systems and signal processing, 52, 559-576. DOI: 10.1016/j.ymssp.2014.07.017 [26] Cutting Force Measurement. Retrieved June 10, 2018 from www.kistler.com. [27] Liang, Q., Zhang, D., Coppola, G., Mao, J., Sun, W., Wang, Y., & Ge, Y. (2016). Design and analysis of a sensor system for cutting force measurement in machining processes. Sensors, 16(1), 70. DOI: 10.3390/s16010070 [28] Sun, Y., Liu, Y., Jin, M., & Liu, H. (2013, December). Design and optimization of a novel six-axis force/torque sensor with good isotropy and high sensitivity. In Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on (pp. 631-638). IEEE. DOI: 10.1109/ROBIO.2013.6739530 [29] Liu, S. A., & Tzo, H. L. (2002). A novel six-component force sensor of good measurement isotropy and sensitivities. Sensors and Actuators A: Physical, 100(2-3), 223-230. DOI: 10.1016/S0924-4247(02)00135-8 [30] Bekhti, R., Duchaine, V., & Cardou, P. (2014). Structural optimisation of a force-torque sensor through its input-output relationship. Transactions of the Canadian Society for Mechanical Engineering, 38(2), 199-212. DOI: 10.1139/tcsme-2014-0014 [31] Kim, G. S., Kang, D. I., & Rhee, S. H. (1999). Design and fabrication of a six-component force/moment sensor. Sensors and Actuators A: Physical, 77(3), 209-220. DOI: 10.1016/S0924-4247(99)00208-3 [32] Mastinu, G., Gobbi, M., & Previati, G. (2011). A new six-axis load cell. Part I: Design. Experimental Mechanics, 51(3), 373-388. DOI: 10.1007/s11340-010-9355-1 [33] Xu, K. J., & Li, C. (2000). Dynamic decoupling and compensating methods of multi-axis force sensors. IEEE Transactions on Instrumentation and Measurement, 49(5), 935-941. DOI: 10.1109/19.872911 [34] BT, CAT & HSK: What's the important differences for my #CNC?. Retrieved June 29, 2018 from https://www.nextgentooling.com/technical/bt-cat-hsk-whats-the-important-differences-for-my-cnc. [35] Duc, T. C., Creemer, J. F., & Sarro, P. M. (2007). Piezoresistive cantilever beam for force sensing in two dimensions. IEEE sensors journal, 7(1), 96-104. DOI 10.1109/JSEN.2006.886992 [36] Sun, S., Brandt, M., & Dargusch, M. S. (2009). Characteristics of cutting forces and chip formation in machining of titanium alloys. International Journal of Machine Tools and Manufacture, 49(7-8), 561-568. DOI:10.1016/j.ijmachtools.2009.02.008 [37] 24-Bit Analog-to-Digital Converter (ADC) for Weigh Scales. Retrieved June 29, 2018 from https://www.mouser.com/ds/2/813/hx711_english-1022875.pdf. [38] ADS1220 4-Channel, 2-kSPS, Low-Power, 24-Bit ADC with Integrated PGA and Reference. Retrieved June 29, 2018 from http://www.ti.com/lit/ds/symlink/ads1220.pdf. [39] Bluno Beetle SKU:DFR0339. (n.d.). Retrieved June 29, 2018, from https://www.dfrobot.com/wiki/index.php/Bluno_Beetle_SKU:DFR0339 [40] Keysight Technologies B2900A Series Precision Source/Measure Unit. Retrieved June 29, 2018, from https://www.keysight.com [41] Material failure theory. Retrieved June 29, 2018, from https://en.wikipedia.org/wiki/Material_failure_theory [42] Holman, J. P., & Gajda, W. J. (2001). Experimental methods for engineers (Vol. 2). New York: McGraw-Hill. DOI: 10.1664/0028-7199(2001)109[0183:AROTNR]2.0.CO;2 [43] 邱廣泉,銑床能力本位訓練教材:進給率使用。 Retrieved June 29, 2018, from https://portal.wda.gov.tw/mooc/ability_detail.php?category=FVWyvc6HVTIMhOJs3Nn1l_Rqv-ib6Bd1QfMjxxMF8J9lyMGUyzXSOw,, | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78893 | - |
dc.description.abstract | 因應工具機之高速切削技術發展,適當的切削力感測器能夠同步監測部分加工參數進而使加工效率與品質達到最佳化,讓加工邁向高速化、細微化、精密化等目標。本研究旨在研發一個直接量測式無線動態切削力感測器,該動態切削力感測器與刀桿結合為一智慧型刀桿,以材料力學和靜力學原理輔助,建立多軸切削力與感測器結構應變之力學模型,並以應變規作為應變量測元件,結合力學模型及全橋式電路原理以消除力之耦合效應、建立數值模型。其後內嵌自行研發之藍芽切削力感測模組(BCFMM),掛載切削力量測應用程式,包含校正及歸零等功能,並寫入卡曼濾波器之數學模型,再以靜態力量測試對感測器進行校正,根據實驗結果,求出實驗數值模型之力耦合因子及敏感度,並與理論數值模型相互驗證。續將解耦合矩陣之數值運算重新寫入微處理器,進行三個量測通道的力量解耦合之驗證。硬體方面,感測器性能經測試可達到:精度±1.1 N、±2.6 N、±0.37 Nm;量測範圍±1684.2 N、±6407.7 N,±200.72 Nm;取樣頻率2 kHz;解析度24位元;功耗397 mW;模組尺寸Ø50×10mm3。接著,對智慧型刀桿進行動平衡校正,並利用加速規進行剛性分析,驗證模擬結果及其對應主軸轉速之模態安全範圍,才將刀桿式切削力感測器安裝於CNC工具機。最後,根據切削力學原理,建立一個簡化之切削力預測模型,進行切削實驗並驗證,實現智慧刀桿之概念。 | zh_TW |
dc.description.abstract | In response to the development of high-speed cutting technology for machine tools, a proper cutting force sensor is necessary to monitor machining status in real-time. The purpose is to make the machining process faster and optimize the machining quality. This thesis presents a method for measuring dynamic cutting force based on direct measurement and an innovative design of tool holder which is combined with wireless force sensor. A mechanics model is established and connected to full bridge circuit composed of strain gauges, which is for forces decouple and eliminating heat effect. A Bluetooth cutting force measurement module with Kalman filter is developed and embedded into tool holder. After static calibration, coupling factors and sensitivities can be obtained and verified to mathematical model, the decouple operation will be written into MCU. The performance of force sensor is following: module size Ø50×10mm3; sample rate 2 kHz; resolution 24 bit; accuracy ±1.1 N, ±2.6 N, ±0.37 Nm; measuring range ±1684.2 N, ±6407.7 N, ±200.72 Nm; power consumption 397 mW. Next, the safety of new tool holder is ensured by dynamic balance and modal test. Finally, the force sensing tool holder can be installed to CNC machine tool and conducted functional validation. A simplified cutting force prediction model is established to compare to cutting force signals. After validation, the concept of smart tool holder is achieved. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:27:15Z (GMT). No. of bitstreams: 1 ntu-107-R05543055-1.pdf: 9175196 bytes, checksum: c6a46d3c9c99a8a6bd9cb80a7d5c05f6 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 viii 表目錄 xii 符號說明 xiii 下標符號 xv 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 切削力預測模型 2 1.2.2 切削力量測系統 5 1.2.3 力感測器之設計 6 1.3 研究架構 7 1.4 前期準備 8 1.4.1 工作環境 8 1.4.2 切削力之定義 9 1.4.3 量測策略 11 第二章 智慧刀桿之設計與運作原理 12 2.1 固體力學之模擬 12 2.1.1 力感測結構之設計 12 2.1.2 定力作用下之變形 13 2.1.3 耦合效應 16 2.2 力學模型 17 2.2.1 懸臂樑之應變與外力關係 17 2.2.2 簡化力學模型 20 2.2.3 力學模型之內部驗證 23 2.3 數值模型 26 2.3.1 基於應變規之全橋式電路 26 2.3.2 力學模型與電路之結合建模 27 第三章 藍芽切削力量測模組之研發與校準 30 3.1 模組設計及特性 30 3.1.1 訊號流程 30 3.1.2 硬體 30 3.1.3 電路設計 32 3.1.4 軟體 33 3.1.5 卡曼濾波器 34 3.1.6 圖形使用者介面 35 3.2 力感測器之靜態測試 36 3.2.1 靜態校準 36 3.2.2 敏感度之驗證 38 3.2.3 感測器之耦合效應 41 3.3 性能表現與總結 43 3.3.1 電容效應 44 3.3.2 力之解耦驗證及精度分析 45 3.3.3 模組功耗及真實讀取頻率 50 3.3.4 量測範圍之分析 52 3.3.5 誤差分析 54 3.3.6 結論與技術比較 55 第四章 動態實驗與功能驗證 56 4.1 智慧刀桿之動平衡校準 56 4.2 剛性分析 57 4.2.1 振動模態之模擬 57 4.2.2 模態測試及驗證 58 4.3 切削力預測模型 59 4.3.1 簡化切削力預測模型 59 4.3.2 刀具之幾何分析 62 4.4 動態切削實驗 63 4.4.1 實驗架設 63 4.4.2 結果與驗證 64 4.4.3 訊號解析 67 第五章 結論與未來展望 70 5.1 結論 70 5.2 未來展望 71 參考文獻 73 | |
dc.language.iso | zh-TW | |
dc.title | 具力量感知能力之藍芽智慧刀桿 | zh_TW |
dc.title | A Bluetooth Smart Tool Holder with Force Sensing Capability | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 胡毓忠 | |
dc.contributor.oralexamcommittee | 黃榮堂(Jung-Tang Huang),李尉彰 | |
dc.subject.keyword | 力學模型,應變規,全橋式電路,藍牙切削力感測模組,去耦合,切削力預測,智慧刀桿, | zh_TW |
dc.subject.keyword | Mechanics model,Strain gauges,Full bridge circuit,Bluetooth cutting force measurement module,Forces decouple,Cutting force prediction,Smart tool holder, | en |
dc.relation.page | 78 | |
dc.identifier.doi | 10.6342/NTU201804114 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-09-13 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
dc.date.embargo-lift | 2023-09-14 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-R05543055-1.pdf 目前未授權公開取用 | 8.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。