請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78888完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 程蘊菁 | zh_TW |
| dc.contributor.advisor | Yen-Ching Chen | en |
| dc.contributor.author | 翁珮瑄 | zh_TW |
| dc.contributor.author | Pei-Hsuan Weng | en |
| dc.date.accessioned | 2021-07-11T15:26:51Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2019-03-11 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. World Health Organization, Fact sheet on dementia. http://www.who.int/en/news-room/fact-sheets/detail/dementia, 2017.
2. World Health Organization, Dementia: a public health priority. http://wwwwhoint/mental_health/publications/dementia_report, 2012. 3. Sun, Y., et al., A nationwide survey of mild cognitive impairment and dementia, including very mild dementia, in Taiwan. PLoS One, 2014. 9(6): p. e100303. 4. Zhang, Y., et al., Prevalence of dementia and major dementia subtypes in the Chinese populations: a meta-analysis of dementia prevalence surveys, 1980-2010. J Clin Neurosci, 2012. 19(10): p. 1333-7. 5. Scheltens, P., et al., Alzheimer's disease. Lancet, 2016. 388(10043): p. 505-17. 6. McKhann, G., et al., Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 1984. 34(7): p. 939-44. 7. Blacker, D., et al., Reliability and validity of NINCDS-ADRDA criteria for Alzheimer's disease. The National Institute of Mental Health Genetics Initiative. Arch Neurol, 1994. 51(12): p. 1198-204. 8. O'Brien, J.T. and A. Thomas, Vascular dementia. Lancet, 2015. 386(10004): p. 1698-706. 9. Roman, G.C., et al., Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology, 1993. 43(2): p. 250-60. 10. Staekenborg, S.S., et al., Small vessel versus large vessel vascular dementia: risk factors and MRI findings. J Neurol, 2008. 255(11): p. 1644-51; discussion 1813-4. 11. Staekenborg, S.S., et al., Neurological signs in relation to type of cerebrovascular disease in vascular dementia. Stroke, 2008. 39(2): p. 317-22. 12. Rao, R., et al., Ischaemic stroke subtypes and their genetic basis: a comprehensive meta-analysis of small and large vessel stroke. Eur Neurol, 2009. 61(2): p. 76-86. 13. Albert, M.S., et al., The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 2011. 7(3): p. 270-9. 14. Fagan, A.M., et al., Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol, 2006. 59(3): p. 512-9. 15. Jagust, W., Positron emission tomography and magnetic resonance imaging in the diagnosis and prediction of dementia. Alzheimers Dement, 2006. 2(1): p. 36-42. 16. Larrieu, S., et al., Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology, 2002. 59(10): p. 1594-9. 17. Alzheimer's Association, Changing the trajectory of Alzheimer's disease : How a treatment by 2025 saves lives and dollars. 2015. 18. Schmidt, R., et al., Sex differences in Alzheimer's disease. Neuropsychiatr, 2008. 22(1): p. 1-15. 19. Qiu, C., B. Winblad, and L. Fratiglioni, The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol, 2005. 4(8): p. 487-99. 20. Lu, F.P., K.P. Lin, and H.K. Kuo, Diabetes and the risk of multi-system aging phenotypes: a systematic review and meta-analysis. PLoS One, 2009. 4(1): p. e4144. 21. Anstey, K.J., D.M. Lipnicki, and L.F. Low, Cholesterol as a risk factor for dementia and cognitive decline: a systematic review of prospective studies with meta-analysis. Am J Geriatr Psychiatry, 2008. 16(5): p. 343-54. 22. Beydoun, M.A., H.A. Beydoun, and Y. Wang, Obesity and central obesity as risk factors for incident dementia and its subtypes: a systematic review and meta-analysis. Obes Rev, 2008. 9(3): p. 204-18. 23. Thomas, A.J., R.N. Kalaria, and J.T. O'Brien, Depression and vascular disease: what is the relationship? J Affect Disord, 2004. 79(1-3): p. 81-95. 24. Cherbuin, N., S. Kim, and K.J. Anstey, Dementia risk estimates associated with measures of depression: a systematic review and meta-analysis. BMJ Open, 2015. 5(12): p. e008853. 25. Li, J.Q., et al., Risk factors for predicting progression from mild cognitive impairment to Alzheimer's disease: a systematic review and meta-analysis of cohort studies. J Neurol Neurosurg Psychiatry, 2016. 87(5): p. 476-84 . 26. Starkstein, S.E. and R. Jorge, Dementia after traumatic brain injury. Int Psychogeriatr, 2005. 17 Suppl 1: p. S93-107. 27. Poirier, J., et al., Apolipoprotein E polymorphism and Alzheimer's disease. Lancet, 1993. 342(8873): p. 697-9. 28. Chen, H.H. and C.J. Hu, Genetic characteristics of dementia in Taiwan. Acta Neurol Taiwan, 2006. 15(3): p. 161-9. 29. Van Cauwenberghe, C., C. Van Broeckhoven, and K. Sleegers, The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med, 2016. 18(5):p.421-30. 30. Kim, Y. and C. Lee, The gene encoding transforming growth factor beta 1 confers risk of ischemic stroke and vascular dementia. Stroke, 2006. 37(11): p. 2843-5. 31. Lee, C. and M. Kong, An interactive association of common sequence variants in the neuropeptide Y gene with susceptibility to ischemic stroke. Stroke, 2007. 38(10): p. 2663-9. 32. Joutel, A., et al., Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature, 1996. 383(6602): p. 707-10. 33. Dwyer, R., et al., Using Alzgene-like approaches to investigate susceptibility genes for vascular cognitive impairment. J Alzheimers Dis, 2013. 34(1): p. 145-54. 34. Grande, G., et al., Physical activity reduces the risk of dementia in mild cognitive impairment subjects: a cohort study. J Alzheimers Dis, 2014. 39(4): p. 833-9. 35. Lautenschlager, N.T., et al., Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA, 2008. 300(9): p. 1027-37. 36. Cao, L., et al., Dietary Patterns and Risk of Dementia: a Systematic Review and Meta-Analysis of Cohort Studies. Mol Neurobiol, 2016. 53(9): p.6144-6154. 37. Morris, M.C., et al., MIND diet slows cognitive decline with aging. Alzheimers Dement, 2015. 11(9): p. 1015-22. 38. Cheung, B.H., et al., Current evidence on dietary pattern and cognitive function. Adv Food Nutr Res, 2014. 71: p. 137-63. 39. Loef, M. and H. Walach, Fruit, vegetables and prevention of cognitive decline or dementia: a systematic review of cohort studies. J Nutr Health Aging, 2012. 16(7): p. 626-30. 40. Smyth, A., et al., Healthy eating and reduced risk of cognitive decline: A cohort from 40 countries. Neurology, 2015. 84(22): p. 2258-65. 41. Zhong, G., et al., Smoking is associated with an increased risk of dementia: a meta-analysis of prospective cohort studies with investigation of potential effect modifiers. PLoS One, 2015. 10(3): p. e0118333. 42. Ilomaki, J., et al., Alcohol Consumption, Dementia and Cognitive Decline: An Overview of Systematic Reviews. Curr Clin Pharmacol, 2015. 10(3): p. 204-12. 43. Chapko, D., et al., Life-course determinants of cognitive reserve (CR) in cognitive aging and dementia - a systematic literature review. Aging Ment Health, 2017: p. 1-12. 44. Xu, W., et al., Education and Risk of Dementia: Dose-Response Meta-Analysis of Prospective Cohort Studies. Mol Neurobiol, 2016. 53(5): p. 3113-23. 45. Valenzuela, M.J. and P. Sachdev, Brain reserve and dementia: a systematic review. Psychol Med, 2006. 36(4): p. 441-54. 46. Martikainen, P., et al., Determinants of socioeconomic differences in change in physical and mental functioning. Soc Sci Med, 1999. 49(4): p. 499-507. 47. Stern, Y., et al., Influence of education and occupation on the incidence of Alzheimer's disease. JAMA, 1994. 271(13): p. 1004-10. 48. Smart, E.L., A.J. Gow, and I.J. Deary, Occupational complexity and lifetime cognitive abilities. Neurology, 2014. 83(24): p. 2285-91. 49. Ouvrard, C., et al., Psychosocioeconomic Precariousness, Cognitive Decline and Risk of Developing Dementia: A 25-Year Study. Dement Geriatr Cogn Disord, 2016. 41(3-4): p. 137-145. 50. Fischer, C., et al., Impact of socioeconomic status on the prevalence of dementia in an inner city memory disorders clinic. Int Psychogeriatr, 2009. 21(6): p. 1096-104. 51. Stern, Y., et al., Rate of memory decline in AD is related to education and occupation: cognitive reserve? Neurology, 1999. 53(9): p. 1942-7. 52. Chiao, C., A. Botticello, and J.L. Fuh, Life-course socio-economic disadvantage and late-life cognitive functioning in Taiwan: results from a national cohort study. Int Health, 2014. 6(4): p. 322-30. 53. Lee, Y., et al., Multiple socioeconomic risks and cognitive impairment in older adults. Dement Geriatr Cogn Disord, 2010. 29(6): p. 523-9. 54. Murcray, C.E., J.P. Lewinger, and W.J. Gauderman, Gene-environment interaction in genome-wide association studies. Am J Epidemiol, 2009. 169(2): p. 219-26. 55. Wang, H.Y., et al., Beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J Biol Chem, 2000. 275(8): p. 5626-32. 56. Hunter, B.E., et al., A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus. Neurosci Lett, 1994. 168(1-2): p. 130-4. 57. Dineley, K.T., Beta-amyloid peptide-nicotinic acetylcholine receptor interaction: the two faces of health and disease. Front Biosci, 2007. 12: p. 5030-8. 58. Akaike, A., et al., Mechanisms of neuroprotective effects of nicotine and acetylcholinesterase inhibitors: role of alpha4 and alpha7 receptors in neuroprotection. J Mol Neurosci, 2010. 40(1-2): p. 211-6. 59. Mayen, A.L., et al., Socioeconomic determinants of dietary patterns in low- and middle-income countries: a systematic review. Am J Clin Nutr, 2014. 100(6): p. 1520-31. 60. Galobardes, B., et al., Trends in risk factors for lifestyle-related diseases by socioeconomic position in Geneva, Switzerland, 1993-2000: health inequalities persist. Am J Public Health, 2003. 93(8): p. 1302-9. 61. Blaxter, M., Health and lifestyles. London: Tavistock/Routledge, 1990. 62. Birch, S., M. Jerrett, and J. Eyles, Heterogeneity in the determinants of health and illness: the example of socioeconomic status and smoking. Soc Sci Med, 2000. 51(2): p. 307-17. 63. Savva, G.M., B.C. Stephan, and G. Alzheimer's Society Vascular Dementia Systematic Review, Epidemiological studies of the effect of stroke on incident dementia: a systematic review. Stroke, 2010. 41(1): p. e41-6. 64. Gao, Y., et al., Depression as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Int J Geriatr Psychiatry, 2013. 28(5): p. 441-9. 65. Pedditizi, E., R. Peters, and N. Beckett, The risk of overweight/obesity in mid-life and late life for the development of dementia: a systematic review and meta-analysis of longitudinal studies. Age Ageing, 2016. 45(1): p. 14-21. 66. Liu, M., et al., Apolipoprotein E gene polymorphism and Alzheimer's disease in Chinese population: a meta-analysis. Sci Rep, 2014. 4: p. 4383. 67. London, E.D., M.J. Ball, and S.B. Waller, Nicotinic binding sites in cerebral cortex and hippocampus in Alzheimer's dementia. Neurochem Res, 1989. 14(8): p. 745-50. 68. Selkoe, D.J., et al., Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer's disease. Science, 1987. 235(4791): p. 873-7. 69. Colloby, S.J., et al., Alterations in nicotinic α4β2 receptor binding in vascular dementia using ¹²³I-5IA-85380 SPECT: comparison with regional cerebral blood flow. Neurobiol Aging, 2011. 32(2): p. 293-301. 70. Frazier, C.J., et al., Synaptic potentials mediated via alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons. J Neurosci, 1998. 18(20): p. 8228-35. 71. Kihara, T., et al., Alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloid-induced neurotoxicity. J Biol Chem, 2001. 276(17): p. 13541-6. 72. Cataldo, J.K., J.J. Prochaska, and S.A. Glantz, Cigarette smoking is a risk factor for Alzheimer's Disease: an analysis controlling for tobacco industry affiliation. J Alzheimers Dis, 2010. 19(2): p. 465-80. 73. Hofman, A., et al., Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer's disease in the Rotterdam Study. Lancet, 1997. 349(9046): p. 151-4. 74. Gotti, C., M. Zoli, and F. Clementi, Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci, 2006. 27(9): p. 482-91. 75. Carson, R., et al., Alpha7 nicotinic acetylcholine receptor gene and reduced risk of Alzheimer's disease. J Med Genet, 2008. 45(4): p. 244-8. 76. Barabash, A., et al., APOE, ACT and CHRNA7 genes in the conversion from amnestic mild cognitive impairment to Alzheimer's disease. Neurobiol Aging, 2009. 30(8): p. 1254-64. 77. Heinzen, E.L., et al., Genome-wide scan of copy number variation in late-onset Alzheimer's disease. J Alzheimers Dis, 2010. 19(1): p. 69-77. 78. Swaminathan, S., et al., Genomic Copy Number Analysis in Alzheimer's Disease and Mild Cognitive Impairment: An ADNI Study. Int J Alzheimers Dis, 2011. 2011: p. 729478. 79. Cook, L.J., et al., Candidate gene association studies of genes involved in neuronal cholinergic transmission in Alzheimer's disease suggests choline acetyltransferase as a candidate deserving further study. Am J Med Genet B Neuropsychiatr Genet, 2005. 132B(1): p. 5-8. 80. Kawamata, J. and S. Shimohama, Association of novel and established polymorphisms in neuronal nicotinic acetylcholine receptors with sporadic Alzheimer's disease. J Alzheimers Dis, 2002. 4(2): p. 71-6. 81. Li, H., et al., Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol, 2008. 65(1): p. 45-53. 82. Reiman, E.M., et al., GAB2 alleles modify Alzheimer's risk in APOE epsilon4 carriers. Neuron, 2007. 54(5): p. 713-20. 83. Marchant, N.L., et al., Positive effects of cholinergic stimulation favor young APOE epsilon4 carriers. Neuropsychopharmacology. 35(5): p. 1090-6. 84. Schmechel, D.E., et al., Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci U S A, 1993. 90(20): p. 9649-53. 85. Yeager, D.S. and J.A. Krosnick, The validity of self-reported nicotine product use in the 2001-2008 National Health and Nutrition Examination Survey. Med Care, 2010. 48(12): p. 1128-32. 86. Folstein, M.F., S.E. Folstein, and P.R. McHugh, "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res, 1975. 12(3): p. 189-98. 87. Trivedi, D., Cochrane Review Summary: Mini-Mental State Examination (MMSE) for the detection of dementia in clinically unevaluated people aged 65 and over in community and primary care populations. Prim Health Care Res Dev, 2017. 18(6): p. 527-528. 88. Pfeiffer, E., A short portable mental status questionnaire for the assessment of organic brain deficit in elderly patients. J Am Geriatr Soc, 1975. 23(10): p. 433-41. 89. Erkinjuntti, T., et al., Short Portable Mental Status Questionnaire as a screening test for dementia and delirium among the elderly. J Am Geriatr Soc, 1987. 35(5): p. 412-6. 90. Malhotra, C., et al., Diagnostic performance of short portable mental status questionnaire for screening dementia among patients attending cognitive assessment clinics in Singapore. Ann Acad Med Singapore, 2013. 42(7): p. 315-9. 91. Chen, Y.C., et al., Sequence variants of Toll-like receptor 4 and susceptibility to prostate cancer. Cancer Res, 2005. 65(24): p. 11771-8. 92. Gabriel, S.B., et al., The structure of haplotype blocks in the human genome. Science, 2002. 296(5576): p. 2225-9. 93. Stram, D.O., et al., Modeling and E-M estimation of haplotype-specific relative risks from genotype data for a case-control study of unrelated individuals. Hum Hered, 2003. 55(4): p. 179-90. 94. Chapman, J., et al., A simple and efficient method for apolipoprotein E genotype determination. Neurology, 1996. 46(5): p. 1484-5. 95. Ghebranious, N., et al., Detection of ApoE E2, E3 and E4 alleles using MALDI-TOF mass spectrometry and the homogeneous mass-extend technology. Nucleic Acids Res, 2005. 33(17): p. e149. 96. Benjamini, Y. and Y. Hochberg, Controlling the false discovery rate - a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Methodological, 1995. 57(1): p. 289-300. 97. Gillentine, M.A. and C.P. Schaaf, The human clinical phenotypes of altered CHRNA7 copy number. Biochem Pharmacol, 2015. 97(4): p. 352-62. 98. Gault, J., et al., Genomic organization and partial duplication of the human alpha7 neuronal nicotinic acetylcholine receptor gene (CHRNA7). Genomics, 1998. 52(2): p. 173-85. 99. Szafranski, P., et al., Structures and molecular mechanisms for common 15q13.3 microduplications involving CHRNA7: benign or pathological? Hum Mutat, 2010. 31(7): p. 840-50. 100. Barash, Y., et al., Deciphering the splicing code. Nature, 2010. 465(7294): p. 53-9. 101. Wonnacott, S., et al., Nicotinic receptors modulate transmitter cross talk in the CNS: nicotinic modulation of transmitters. J Mol Neurosci, 2006. 30(1-2): p. 137-40. 102. Weng, P.H., et al., CHRNA7 polymorphisms and response to cholinesterase inhibitors in Alzheimer's disease. PLoS One, 2013. 8(12): p. e84059. 103. Gay, E.A., R.C. Klein, and J.L. Yakel, Apolipoprotein E-derived peptides block alpha7 neuronal nicotinic acetylcholine receptors expressed in xenopus oocytes. J Pharmacol Exp Ther, 2006. 316(2): p. 835-42. 104. Poirier, J., et al., Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci U S A, 1995. 92(26): p. 12260-4. 105. Mukhin, A.G., et al., Greater nicotinic acetylcholine receptor density in smokers than in nonsmokers: a PET study with 2-18F-FA-85380. J Nucl Med, 2008. 49(10): p. 1628-35. 106. Mousavi, M., et al., Protein and mRNA levels of nicotinic receptors in brain of tobacco using controls and patients with Alzheimer's disease. Neuroscience, 2003. 122(2): p. 515-20. 107. Inestrosa, N.C., et al., Nicotine prevents synaptic impairment induced by amyloid-beta oligomers through alpha7-nicotinic acetylcholine receptor activation. Neuromolecular Med, 2013. 15(3): p. 549-69. 108. Breese, C.R., et al., Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia. Neuropsychopharmacology, 2000. 23(4): p. 351-64. 109. Pimlott, S.L., et al., Nicotinic acetylcholine receptor distribution in Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease, and vascular dementia: in vitro binding study using 5-[(125)i]-a-85380. Neuropsychopharmacology, 2004. 29(1): p. 108-16. 110. Kim, Y., et al., Genetic dissection of susceptibility to vascular dementia. Psychiatr Genet, 2011. 21(2): p. 69-76. 111. Seshadri, S., et al., The lifetime risk of stroke: estimates from the Framingham Study. Stroke, 2006. 37(2): p. 345-50. 112. Deckers, K., et al., Target risk factors for dementia prevention: a systematic review and Delphi consensus study on the evidence from observational studies. Int J Geriatr Psychiatry, 2015. 30(3): p. 234-46. 113. Govil, S.R., et al., Socioeconomic status and improvements in lifestyle, coronary risk factors, and quality of life: the Multisite Cardiac Lifestyle Intervention Program. Am J Public Health, 2009. 99(7): p. 1263-70. 114. Contoyannis, P. and A.M. Jones, Socio-economic status, health and lifestyle. J Health Econ, 2004. 23(5): p. 965-95. 115. Nandi, A., M.M. Glymour, and S.V. Subramanian, Association among socioeconomic status, health behaviors, and all-cause mortality in the United States. Epidemiology, 2014. 25(2): p. 170-7. 116. Pampel, F.C. and R.G. Rogers, Socioeconomic status, smoking, and health: a test of competing theories of cumulative advantage. J Health Soc Behav, 2004. 45(3): p. 306-21. 117. Blondell, S.J., R. Hammersley-Mather, and J.L. Veerman, Does physical activity prevent cognitive decline and dementia?: A systematic review and meta-analysis of longitudinal studies. BMC Public Health, 2014. 14: p. 510. 118. Norton, S., et al., Potential for primary prevention of Alzheimer's disease: an analysis of population-based data. Lancet Neurol, 2014. 13(8): p. 788-94. 119. Sofi, F., et al., Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J Intern Med, 2011. 269(1): p. 107-17. 120. Guure, C.B., et al., Impact of Physical Activity on Cognitive Decline, Dementia, and Its Subtypes: Meta-Analysis of Prospective Studies. Biomed Res Int, 2017. 2017: p. 9016924. 121. Wang, C., et al., Non-pharmacological interventions for patients with mild cognitive impairment: a meta-analysis of randomized controlled trials of cognition-based and exercise interventions. J Alzheimers Dis, 2014. 42(2): p. 663-78. 122. Yates, L.A., et al., Cognitive leisure activities and future risk of cognitive impairment and dementia: systematic review and meta-analysis. Int Psychogeriatr, 2016. 28(11): p. 1791-1806. 123. Kuiper, J.S., et al., Social relationships and risk of dementia: A systematic review and meta-analysis of longitudinal cohort studies. Ageing Res Rev, 2015. 22: p. 39-57. 124. Yannakoulia, M., M. Kontogianni, and N. Scarmeas, Cognitive health and Mediterranean diet: just diet or lifestyle pattern? Ageing Res Rev, 2015. 20: p. 74-8. 125. Jacobs, D.R., Jr. and L.M. Steffen, Nutrients, foods, and dietary patterns as exposures in research: a framework for food synergy. Am J Clin Nutr, 2003. 78(3 Suppl): p. 508S-513S. 126. Singh, B., et al., Association of mediterranean diet with mild cognitive impairment and Alzheimer's disease: a systematic review and meta-analysis. J Alzheimers Dis, 2014. 39(2): p. 271-82. 127. Mottaghi, T., F. Amirabdollahian, and F. Haghighatdoost, Fruit and vegetable intake and cognitive impairment: a systematic review and meta-analysis of observational studies. Eur J Clin Nutr, 2017. Nov 17. doi: 10.1038/s41430-017-0005-x. 128. Wu, S., et al., Omega-3 fatty acids intake and risks of dementia and Alzheimer's disease: a meta-analysis. Neurosci Biobehav Rev, 2015. 48: p. 1-9. 129. Zhang, Y., et al., Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: a dose-response meta-analysis of 21 cohort studies. Am J Clin Nutr, 2016. 103(2): p. 330-40. 130. Health Quality, O., Vitamin B12 and cognitive function: an evidence-based analysis. Ont Health Technol Assess Ser, 2013. 13(23): p. 1-45. 131. Malouf, R. and J. Grimley Evans, Folic acid with or without vitamin B12 for the prevention and treatment of healthy elderly and demented people. Cochrane Database Syst Rev, 2008(4): p. CD004514. 132. Mizwicki, M.T., et al., Genomic and nongenomic signaling induced by 1alpha,25(OH)2-vitamin D3 promotes the recovery of amyloid-beta phagocytosis by Alzheimer's disease macrophages. J Alzheimers Dis, 2012. 29(1): p. 51-62. 133. Brondum-Jacobsen, P., et al., 25-hydroxyvitamin D and symptomatic ischemic stroke: an original study and meta-analysis. Ann Neurol, 2013. 73(1): p. 38-47. 134. Shen, L. and H.-F. Ji, Vitamin D deficiency is associated with increased risk of Alzheimer's disease and dementia: evidence from meta-analysis. Nutr J, 2015. 14: p. 76. 135. Rossom, R.C., et al., Calcium and vitamin D supplementation and cognitive impairment in the women's health initiative. J Am Geriatr Soc, 2012. 60(12): p. 2197-205. 136. Canas, P.M., et al., Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci, 2009. 29(47): p. 14741-51. 137. Wu, L., D. Sun, and Y. He, Coffee intake and the incident risk of cognitive disorders: A dose-response meta-analysis of nine prospective cohort studies. Clin Nutr, 2017. 36(3): p. 730-736. 138. Santos, C., et al., Caffeine intake and dementia: systematic review and meta-analysis. J Alzheimers Dis, 2010. 20 Suppl 1: p. S187-204. 139. Kaneko, S., et al., Nicotine protects cultured cortical neurons against glutamate-induced cytotoxicity via alpha7-neuronal receptors and neuronal CNS receptors. Brain Res, 1997. 765(1): p. 135-40. 140. Peters, R., et al., Alcohol, dementia and cognitive decline in the elderly: a systematic review. Age Ageing, 2008. 37(5): p. 505-12. 141. Soni, M., et al., Phytoestrogens and cognitive function: a review. Maturitas, 2014. 77(3): p. 209-20. 142. Agarwal, D.P., Cardioprotective effects of light-moderate consumption of alcohol: a review of putative mechanisms. Alcohol Alcohol, 2002. 37(5): p. 409-15. 143. Turrell, G., et al., Socioeconomic position across the lifecourse and cognitive function in late middle age. J Gerontol B Psychol Sci Soc Sci, 2002. 57(1): p. S43-51. 144. Zhao, J.H., et al., APOE polymorphism, socioeconomic status and cognitive function in mid-life--the Whitehall II longitudinal study. Soc Psychiatry Psychiatr Epidemiol, 2005. 40(7): p. 557-63. 145. Staff, R.T., et al., Life course socioeconomic status and the decline in information processing speed in late life. Soc Sci Med, 2016. 151: p. 130-8. 146. Chiao, C. and L.J. Weng, Mid-life socioeconomic status, depressive symptomatology and general cognitive status among older adults: inter-relationships and temporal effects. BMC Geriatr, 2016. 16(1): p. 88. 147. Goveas, J.S., et al., Predictors of Optimal Cognitive Aging in 80+ Women: The Women's Health Initiative Memory Study. J Gerontol A Biol Sci Med Sci, 2016. 71 Suppl 1: p. S62-71. 148. Lynch, J.W., et al., Income inequality and mortality: importance to health of individual income, psychosocial environment, or material conditions. BMJ, 2000. 320(7243): p. 1200-4. 149. Cassarino, M. and A. Setti, Environment as 'Brain Training': A review of geographical and physical environmental influences on cognitive ageing. Ageing Res Rev, 2015. 23(Pt B): p. 167-82. 150. Everson, S.A., et al., Epidemiologic evidence for the relation between socioeconomic status and depression, obesity, and diabetes. J Psychosom Res, 2002. 53(4): p. 891-5. 151. Kondo, N., Socioeconomic disparities and health: impacts and pathways. J Epidemiol, 2012. 22(1): p. 2-6. 152. Seeman, T., et al., Socio-economic differentials in peripheral biology: cumulative allostatic load. Ann N Y Acad Sci, 2010. 1186: p. 223-39. 153. Harrison, S.L., et al., Exploring strategies to operationalize cognitive reserve: A systematic review of reviews. J Clin Exp Neuropsychol, 2015. 37(3): p. 253-64. 154. Azagba, S. and M.F. Sharaf, Disparities in the frequency of fruit and vegetable consumption by socio-demographic and lifestyle characteristics in Canada. Nutr J, 2011. 10: p. 118. 155. Dijkstra, S.C., et al., Adherence to dietary guidelines for fruit, vegetables and fish among older Dutch adults; the role of education, income and job prestige. J Nutr Health Aging, 2014. 18(2): p. 115-21. 156. Ngandu, T., et al., Education and dementia: what lies behind the association? Neurology, 2007. 69(14): p. 1442-50. 157. Ross, C.E.a.C.-L.W., The links between education and health. American Sociological Review, 1995. 60: p. 719-745. 158. Cooper, C., et al., Modifiable predictors of dementia in mild cognitive impairment: a systematic review and meta-analysis. Am J Psychiatry, 2015. 172(4): p. 323-34. 159. Ngandu, T., et al., A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet, 2015. 385(9984): p. 2255-63. 160. Sink, K.M., et al., Effect of a 24-Month Physical Activity Intervention vs Health Education on Cognitive Outcomes in Sedentary Older Adults: The LIFE Randomized Trial. JAMA, 2015. 314(8): p. 781-90. 161. Wechsler, D.A., 1997, , Wechsler Memory Scale for Adults, 3rd Ed. San Antonio, TX: The Psychological Corporation., 1997. 162. Chen, Y., & Chen, H., Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) Manual for Taiwan. The Chinese Behavioral Science Corporation., 2002. 163. Philip, B., L.R. Philip, and A.B. Maury, The Usefulness of Unit Weights in Creating Composite Scores. Organizational Research Methods, 2007. 10(4): p. 689-709. 164. Araujo, N.B., et al., Verbal fluency in Alzheimer's disease, Parkinson's disease, and major depression. Clinics (Sao Paulo), 2011. 66(4): p. 623-7. 165. Whiteside, D.M., et al., Verbal Fluency: Language or Executive Function Measure? Appl Neuropsychol Adult, 2016. 23(1): p. 29-34. 166. Bowden, S.C., et al., Exploring the dimensionality of digit span. Assessment, 2013. 20(2): p. 188-98. 167. Yang, S.Y., et al., Leisure activities, apolipoprotein E e4 status, and the risk of dementia. J Formos Med Assoc, 2015. 114(12): p. 1216-24. 168. Bennette, C. and A. Vickers, Against quantiles: categorization of continuous variables in epidemiologic research, and its discontents. BMC Med Res Methodol, 2012. 12: p. 21. 169. Lee, M.S., et al., Reproducibility and validity of a Chinese food frequency questionnaire used in Taiwan. Asia Pac J Clin Nutr, 2006. 15(2): p. 161-9. 170. Chou, Y.C., et al., Dietary intake of vitamin B(6) and risk of breast cancer in Taiwanese women. J Epidemiol, 2011. 21(5): p. 329-36. 171. Chen, Y.C., et al., Association of Dietary Patterns With Global and Domain-Specific Cognitive Decline in Chinese Elderly. J Am Geriatr Soc, 2017. 65(6): p. 1159-1167. 172. Huang, Y.C., et al., Validation of a simplified food frequency questionnaire as used in the Nutrition and Health Survey in Taiwan (NAHSIT) for the elderly. Asia Pac J Clin Nutr, 2011. 20(1): p. 134-40. 173. Food and Drug Administration. Diary Diet Guideline. Ministry of Health and Welfare, Taiwan, 2012. 174. Craig, C.L., et al., International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc, 2003. 35(8): p. 1381-95. 175. Deng, H.B., et al., Reliability and validity of the IPAQ-Chinese: the Guangzhou Biobank Cohort study. Med Sci Sports Exerc, 2008. 40(2): p. 303-7. 176. Parker, A.J., E.J. Marshall, and D.M. Ball, Diagnosis and management of alcohol use disorders. BMJ, 2008. 336(7642): p. 496-501. 177. Schneider, A.L., et al., Education and cognitive change over 15 years: the atherosclerosis risk in communities study. J Am Geriatr Soc, 2012. 60(10): p. 1847-53. 178. WHO Collaborating Centre for Drug Statistics Methodology, Guidelines for ATC Classification and DDD Assignment. 2012. 179. Cheng, S.T. and A.C. Chan, The Center for Epidemiologic Studies Depression Scale in older Chinese: thresholds for long and short forms. Int J Geriatr Psychiatry, 2005. 20(5): p. 465-70. 180. Radloff, L.S., The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Applied Psychological Measurement, 1977. 1(3): p. 385-481. 181. Stahl, D., et al., Screening for depressive symptoms: validation of the center for epidemiologic studies depression scale (CES-D) in a multiethnic group of patients with diabetes in Singapore. Diabetes Care, 2008. 31(6): p. 1118-9. 182. Armitage, P., Tests for Linear Trends in Proportions and Frequencies. Biometrics (International Biometric Society), 1955. 11(3): p. 375-386. 183. Harrison, J., et al., A neuropsychological test battery for use in Alzheimer disease clinical trials. Arch Neurol, 2007. 64(9): p. 1323-9. 184. Wu, L., D. Sun, and Y. Tan, Intake of Fruit and Vegetables and the Incident Risk of Cognitive Disorders: A Systematic Review and Meta-Analysis of Cohort Studies. J Nutr Health Aging, 2017. 21(10): p. 1284-1290. 185. Engelhart, M.J., et al., Dietary intake of antioxidants and risk of Alzheimer disease. JAMA, 2002. 287(24): p. 3223-9. 186. United States Departement of agriculture. USDA National Nutrient Database for Standard Reference, Release 22. 2010 ; available from: http://www.ars.usda.gov/Services/docs.htm?docid=18877. 187. Barberger-Gateau, P., et al., Dietary patterns and risk of dementia: the Three-City cohort study. Neurology, 2007. 69(20): p. 1921-30. 188. Kalmijn, S., et al., Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology, 2004. 62(2): p. 275-80. 189. Mozaffarian, D. and E.B. Rimm, Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA, 2006. 296(15): p. 1885-99. 190. Weil, M., et al., Blood mercury levels and neurobehavioral function. JAMA, 2005. 293(15): p. 1875-82. 191. American Heart Association., Fish and omega-3 fatty acids. http://www.heart.org/HEARTORG/HealthyLiving/HealthyEating/HealthyDietGoals/Fish-and-Omega-3-Fatty-Acids_UCM_303248_Article.jsp#.WqftZWpua00, 2016. 192. Sofi, F., et al., Leisure time but not occupational physical activity significantly affects cardiovascular risk factors in an adult population. Eur J Clin Invest, 2007. 37(12): p. 947-53. 193. Chodzko-Zajko, W.J. and K.A. Moore, Physical fitness and cognitive functioning in aging. Exerc Sport Sci Rev, 1994. 22: p. 195-220. 194. Gomez-Pinilla, F., V. So, and J.P. Kesslak, Spatial learning and physical activity contribute to the induction of fibroblast growth factor: neural substrates for increased cognition associated with exercise. Neuroscience, 1998. 85(1): p. 53-61. 195. Kalmijn, S., et al., A prospective study on cortisol, dehydroepiandrosterone sulfate, and cognitive function in the elderly. J Clin Endocrinol Metab, 1998. 83(10): p. 3487-92. 196. Northey, J.M., et al., Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sports Med, 2018. 52(3): p. 154-160. 197. Hwang, A.C., et al., Higher Daily Physical Activities Continue to Preserve Muscle Strength After Mid-Life, But Not Muscle Mass After Age of 75. Medicine (Baltimore), 2016. 95(22): p. e3809. 198. Durazzo, T.C., et al., Smoking and increased Alzheimer's disease risk: a review of potential mechanisms. Alzheimers Dement, 2014. 10(3 Suppl): p. S122-45. 199. Rimm, E.B., et al., Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. BMJ, 1999. 319(7224): p. 1523-8. 200. Femia, R., et al., Coronary atherosclerosis and alcohol consumption: angiographic and mortality data. Arterioscler Thromb Vasc Biol, 2006. 26(7): p. 1607-12. 201. Zuccala, G., et al., Dose-related impact of alcohol consumption on cognitive function in advanced age: results of a multicenter survey. Alcohol Clin Exp Res, 2001. 25(12): p. 1743-8. 202. Eibner C, E.W., Relative deprivation, poor health habits, and mortality. The Journal of Human Resources, 2005. 40(3): p. 591-620. 203. Chichlowska, K.L., et al., Life course socioeconomic conditions and metabolic syndrome in adults: the Atherosclerosis Risk in Communities (ARIC) Study. Ann Epidemiol, 2009. 19(12): p. 875-83. 204. Jousilahti, P., et al., Association of markers of systemic inflammation, C reactive protein, serum amyloid A, and fibrinogen, with socioeconomic status. J Epidemiol Community Health, 2003. 57(9): p. 730-3. 205. Finkel, D., et al., The role of occupational complexity in trajectories of cognitive aging before and after retirement. Psychol Aging, 2009. 24(3): p. 563-73. 206. Xu, X., et al., Socioeconomic stratification and multidimensional health trajectories: evidence of convergence in later old age. J Gerontol B Psychol Sci Soc Sci, 2015. 70(4): p. 661-71. 207. Thrane, C., Explaining educational-related inequalities in health: Mediation and moderator models. Soc Sci Med, 2006. 62(2): p. 467-78. 208. Parrott, M.D., et al., Relationship between diet quality and cognition depends on socioeconomic position in healthy older adults. J Nutr, 2013. 143(11): p. 1767-73. 209. Cox, E.P., et al., Relationship between physical activity and cognitive function in apparently healthy young to middle-aged adults: A systematic review. J Sci Med Sport, 2016. 19(8):p.616-28. 210. Oliveira, R.S., et al., Learning effect of computerized cognitive tests in older adults. Einstein (Sao Paulo), 2014. 12(2): p. 149-53. 211. Wilson, B.A., et al., Improvement or simply practice? The effects of twenty repeated assessments on people with and without brain injury. J Int Neuropsychol Soc, 2000. 6(4): p. 469-79. 212. Valenzuela, M. and P. Sachdev, Can cognitive exercise prevent the onset of dementia? Systematic review of randomized clinical trials with longitudinal follow-up. Am J Geriatr Psychiatry, 2009. 17(3): p. 179-87. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78888 | - |
| dc.description.abstract | 前言: 失智症末期會讓人嚴重失能,對老年化的社會帶來巨大的健康及經濟負擔。目前眾所皆知的失智症危險因子包括高齡、女性、低社經地位、心血管疾病、憂鬱、apolipoprotein (APOE) ε4對偶基因狀況,以及不健康的生活型態。然而,過去的遺傳關聯研究常忽略基因-基因、基因-環境的交互作用,可能會因此導致重要的遺傳因子未被發現。另外,很少研究探討華人族群的各種生活型態,對於各面項的認知能力改變之綜合影響。此外,目前尚無研究探討生活型態對於認知變化的影響是否會因不同社經地位有所改變。本論文涵蓋兩部分,分別探討基因及生活型態這兩種失智症的重要預測因子。
第一部分: CHRNA7基因多型性與失智症之風險: 與Apolipoprotein ε4基因及吸菸之交互作用 前言: α7尼古丁乙醯膽鹼受體(α7 nAChR,由CHRNA7基因轉錄),透過影響膽鹼性神經傳導、神經保護、以及與乙型類澱粉蛋白(amyloid β)之交互作用等機轉,在失智症的致病機轉中扮演重要角色。吸菸會使血管硬化增加失智症風險,但尼古丁也經由α7 nAChR產生神經保護的效果。目前尚無研究探討CHRNA7、APOE ε4(轉錄amyloid β)基因多型性、與吸菸對失智症的基因-基因, 基因-環境交互作用。 研究方法: 本研究是病例對照研究,於2007-2010年在三家教學醫院的神經科門診招募254位晚發型阿茲海默失智症、115位小血管性失智症患者,與435位來自健檢及志工的對照組,病人和對照組均 ≥65歲,選擇具代表性的九個CHRNA7標籤單核苷酸多型性[haplotype tagging single nucleotide polymorphism (htSNP) ]作基因分型。 結果: 在未帶APOE ε4對偶基因的人,CHRNA7 rs7179008的變異顯著降低晚發型阿茲海默症的風險,經多重校正後仍顯著(GG+AG vs. AA: 變項調整後的勝算比= 0.29,95%信賴區間 = 0.13-0.64, P = 0.002)。CHRNA7 第四單倍型區塊(haplotype block)的GT單倍型變異亦發現可降低晚發型阿茲海默症的風險。CHRNA7 rs7179008變異、CHRNA7 第四單倍型區塊的GT單倍型變異與APOE ε4帶原狀態對於晚發型阿茲海默症有顯著的交互作用。CHRNA7 rs7179008變異也可以減少吸菸對晚發型阿茲海默症的危害風險。CHRNA7基因與小血管性失智症未發現關聯。 結論: 在未帶APOE ε4對偶基因的長者,CHRNA7 rs7179008變異顯著降低晚發型阿茲海默症的風險。APOE ε4對偶基因與吸菸的狀態會改變CHRNA7基因多型性對於晚發型阿茲海默症的風險影響。 第二部分: 不同社經背景下生活型態對老年認知功能變化之影響 前言:本研究目的在找出可能會影響認知功能變化的生活型態,並探討這些生活型態在不同社經背景下是否對認知功能有不同的影響。 研究方法:本研究於2011年至2013年基線招募參與台大醫院老人健檢 ≥ 65歲的長者,在收案基線時(N = 603)及收案兩年後(N = 509)進行認知功能測驗,包含整體認知功能、邏輯記憶、執行能力、語文流暢度、以及專注力的評估。經過文獻回顧後選取九個生活型態因子及三個社經地位指標,探討這些因子對於兩年後認知變化的影響。使用線性迴歸分析,調整年齡、性別、教育、APOE ε4對偶基因狀態、以及基線時的認知功能。 結果:本研究發現,在調整年齡、性別、教育程度、APOE ε4對偶基因狀態、基線時的認知功能後,五種生活型態(較多的蔬菜攝取、較多的魚類攝取、規律運動、不抽菸、少至中量的飲酒)以及三種社經指標[較高收入(家庭年收入 >33,333 美元)、較高的工作複雜度、以及較高的教育程度( >12年)]可降低認知功能退化 (在任一個認知功能面項的P < 0.1,ß值介於0.06到0.38之間)。進一步的校正上述所有的生活型態及社經指標後,只有較多的魚類攝取、較高收入、較高的工作複雜度仍顯著的降低認知功能退化。健康的生活型態模式(定義為擁有 ≥ 3種健康的生活型態)與家庭年收入對於認知變化的影響有顯著交互作用(整體認知功能:Pinteraction = 0.02; 邏輯記憶:Pinteraction = 0.04)。健康的生活型態模式只有在較低收入的族群才對認知有保護效果(整體認知功能: ß = 0.17,95%信賴區間= 0.07-0.26;邏輯記憶:ß = 0.30,95% 信賴區間= 0.14-0.46)。 結論:據我們所知,本研究為首篇探討生活型態與社經背景對於認知功能變化的交互作用,研究結果可以協助發展失智症的預防計畫及改善健康不平等的狀況。 | zh_TW |
| dc.description.abstract | Introduction: Advanced dementia is a debilitating disease that caused tremendous health economic burden in the aging society. The well-recognized risk factors for dementia include older age, female gender, lower socioeconomic status (SES), cardiovascular diseases, depression, APOE ε4 status, and unhealthful lifestyles. However, important genetic variant might be missed in previous genetic association studies neglecting gene-gene, gene-environment interactions. Besides, few studies evaluated the effect of combined lifestyle factors on cognitive change in different cognitive domains in Chinese population. It is also currently unknown that whether the effect of lifestyles differs under different SES. This dissertation is composed of two parts focusing on the genetic and lifestyle factors.
Part 1. CHRNA7 polymorphisms and dementia Risk: interactions with apolipoprotein ε4 and cigarette smoking Background: α7 nicotinic acetylcholine receptor (α7nAChR, encoded by CHRNA7) is involved in dementia pathogenesis through cholinergic neurotransmission, neuroprotection and interactions with amyloid-β. Smoking promotes atherosclerosis and increases dementia risk, but nicotine exerts neuroprotective effect via α7nAChR in preclinical studies. No studies explored the gene-gene, gene-environment interactions between CHRNA7 polymorphism, APOE ε4 status and smoking on dementia risk. Methods: This case-control study recruited 254 late-onset Alzheimer’s disease (LOAD) and 115 vascular dementia (VaD) cases (age ≥ 65) from the neurology clinics of three teaching hospitals in Taiwan during 2007-2010. Controls (N = 435) were recruited from health checkup programs and volunteers during the same period. Nine CHRNA7 haplotype-tagging single nucleotide polymorphisms representative for Taiwanese were genotyped. Results: Among APOE ε4 non-carriers, CHRNA7 rs7179008 variant carriers had significantly decreased LOAD risk after correction for multiple tests (GG + AG vs. AA: adjusted odds ratio = 0.29, 95% confidence interval = 0.13-0.64, P = 0.002). Similar findings were observed for carriers of GT haplotype in CHRNA7 block4. A significant interaction was found between rs7179008, GT haplotype in block4 and APOE ε4 status on LOAD risk. rs7179008 variant also reduced the detrimental effect of smoking on LOAD risk. No significant association was found between CHRNA7 and VaD. Conclusion: CHRNA7 rs7179008 is associated with decreased LOAD risk in APOE ε4 non-carriers. APOE ε4 and smoking status substantially modified the effect of CHRNA7 polymorphisms on dementia risk. Part 2. The effect of lifestyle on late-life cognitive change under different socioeconomic status Background: This study aimed to identify lifestyle factors associated with cognitive change and to explore whether the effect of lifestyle varies by socioeconomic status (SES). Methods: Participants aged 65 years and older were recruited from elderly health checkup programs from 2011 to 2013 in Taiwan. Neuropsychological tests, including tests of global cognition, logical memory, executive function, verbal fluency and attention, were administered at baseline (N = 603) and 2 years later (N = 509). After literature review, 9 lifestyle factors and 3 SES indicators were chosen and their effects on cognitive change were evaluated using linear regression adjusting for age, sex, education, APOE ε4 status, and baseline cognitive score. Results: After adjusting for age, sex, years of education, APOE ε4 status, and baseline cognitive domain score, five lifestyle factors (high vegetable and fish intake, regular exercise, not smoking, and light to moderate alcohol consumption) and 3 SES indicators [annual household income [> US dollar (USD) 33,333 vs. less], occupational complexity (high vs. low mental demanding job), and years of education (> 12 years vs. less)] were found to be protective against cognitive decline (P < 0.1 in any cognitive domains, ß ranging from 0.06 to 0.38). After further adjusting for all the lifestyle and SES factors, fish intake, higher income and occupational complexity remained protective. Significant interactions were found between a healthful lifestyle (defined as having ≥ 3 healthful lifestyle factors) and income on changes of global cognition and verbal fluency (Pinteraction = 0.02 and 0.04). The protective effect of a healthful lifestyle was observed only among participants with lower income in global cognition and logical memory [ß = 0.17, 95% confidence interval (CI) = 0.07-0.26; ß = 0.30, 95% CI = 0.14-0.46]. Conclusion: To the best of our knowledge, this study for the first time explored how the interaction of lifestyle and SES affect cognitive change. Our findings will aid in developing dementia prevention programs and reduce health inequalities. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:26:51Z (GMT). No. of bitstreams: 1 ntu-107-D00849015-1.pdf: 15225994 bytes, checksum: 751de7253a40dfcd1aab871e4824e768 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 縮寫表 iii 中文摘要 v Abstract vii List of Figures xi List of Tables xii List of Appendices xiii Chapter 1. Introduction 1 1.1 Dementia 1 1.2 Mild cognitive impairment 4 1.3 Risk and protective factors for cognitive impairment 6 1.4 Aims of this study 9 Chapter 2. CHRNA7 polymorphisms and dementia risk: interactions with apolipoprotein ε4 and cigarette smoking 14 2.1 Introduction 14 2.2 Aim of the study 17 2.3 Materials and methods 18 2.4 Results 23 2.5 Discussion 26 Chapter 3. The effect of lifestyle on cognitive change under different socioeconomic status 44 3.1 Introduction 44 3.2 Research gap and study aims 53 3.3 Materials and methods 54 3.4 Results 66 3.5 Discussion 70 Chapter 4. Conclusions 102 Clinical and policy implication and future perspectives 103 References 105 Appendix 117 | - |
| dc.language.iso | en | - |
| dc.subject | 失智症 | zh_TW |
| dc.subject | 生活型態 | zh_TW |
| dc.subject | CHRNA7基因多型性 | zh_TW |
| dc.subject | 社經地位 | zh_TW |
| dc.subject | 認知功能障礙 | zh_TW |
| dc.subject | dementia | en |
| dc.subject | cognitive change | en |
| dc.subject | CHRNA7 polymorphism | en |
| dc.subject | lifestyle | en |
| dc.subject | socioeconomic status | en |
| dc.title | 老年人基因多型性、生活型態與認知功能障礙之關聯性研究 | zh_TW |
| dc.title | Association of Genetic Polymorphisms and Lifestyle with the Risk of Cognitive Impairment in the Elderly | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳人豪;陳達夫;杜裕康;丘政民 | zh_TW |
| dc.contributor.oralexamcommittee | Jen-Hau Chen;Ta-Fu Chen;Yu-Kang Tu;Jeng-Min Chiou | en |
| dc.subject.keyword | 失智症,認知功能障礙,CHRNA7基因多型性,生活型態,社經地位, | zh_TW |
| dc.subject.keyword | dementia,cognitive change,CHRNA7 polymorphism,lifestyle,socioeconomic status, | en |
| dc.relation.page | 147 | - |
| dc.identifier.doi | 10.6342/NTU201804176 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2018-10-12 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
| dc.date.embargo-lift | 2024-03-11 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 14.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
