請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78878
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃義侑 | |
dc.contributor.author | Hung-Jun Lin | en |
dc.contributor.author | 林宏潤 | zh_TW |
dc.date.accessioned | 2021-07-11T15:26:06Z | - |
dc.date.available | 2023-11-08 | |
dc.date.copyright | 2018-11-08 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-11-06 | |
dc.identifier.citation | [1] C.C. Teng, Fine structure of the human cornea: epithelium and stroma, Am J Ophthalmol 54 (1962) 969-1002.
[2] J.M. Fitch, D.E. Birk, A. Mentzer, K.A. Hasty, C. Mainardi, T.F. Linsenmayer, Corneal collagen fibrils: dissection with specific collagenases and monoclonal antibodies, Invest Ophthalmol Vis Sci 29(7) (1988) 1125-36. [3] C. Hahnel, S. Somodi, D.G. Weiss, R.F. Guthoff, The keratocyte network of human cornea: a three-dimensional study using confocal laser scanning fluorescence microscopy, Cornea 19(2) (2000) 185-93. [4] What Is The Function Of The Cornea, Schmidt's optical and hearing website. [5] P. Gain, R. Jullienne, Z. He, M. Aldossary, S. Acquart, F. Cognasse, D. Thuret, Global survey of corneal transplantation and eye banking, JAMA Ophthalmology 134(2) (2016) 167-173. [6] A.F. Di Stefano, VISION 2020: the right to sight. A global initiative for the elimination of avoidable blindness, Optometry 72(10) (2001) 619-22. [7] J.Y. Niederkorn, The immune privilege of corneal grafts, J Leukoc Biol 74(2) (2003) 167-71. [8] K. McClellan, T. Lai, J. Grigg, F. Billson, Penetrating keratoplasty in children: visual and graft outcome, Br J Ophthalmol 87(10) (2003) 1212-4. [9] V.M. Borderie, E. Guilbert, O. Touzeau, L. Laroche, Graft rejection and graft failure after anterior lamellar versus penetrating keratoplasty, Am J Ophthalmol 151(6) (2011) 1024-1029 e1. [10] D.J. Coster, K.A. Williams, The Australian Corneal Graft Registry (ACGR), Klin Monbl Augenheilkd 205(5) (1994) 271-4. [11] K. Engelmann, J. Bednarz, M. Valtink, Prospects for endothelial transplantation, Exp Eye Res 78(3) (2004) 573-8. [12] S.L. Moffatt, V.A. Cartwright, T.H. Stumpf, Centennial review of corneal transplantation, Clin Exp Ophthalmol 33(6) (2005) 642-57. [13] V. Lamm, H. Hara, A. Mammen, D. Dhaliwal, D.K. Cooper, Corneal blindness and xenotransplantation, Xenotransplantation 21(2) (2014) 99-114. [14] D.T. Tan, J.K. Dart, E.J. Holland, S. Kinoshita, Corneal transplantation, Lancet 379(9827) (2012) 1749-61. [15] V. Jhanji, A.L. Young, J.S. Mehta, N. Sharma, T. Agarwal, R.B. Vajpayee, Management of corneal perforation, Surv Ophthalmol 56(6) (2011) 522-38. [16] T.V. Chirila, C.R. Hicks, The origins of the artificial cornea: Pellier de Quengsy and his contribution to the modern concept of keratoprosthesis, Gesnerus 56(1-2) (1999) 96-106. [17] H. Bakhshandeh, M. Soleimani, S.S. Hosseini, H. Hashemi, I. Shabani, A. Shafiee, A.H. Nejad, M. Erfan, R. Dinarvand, F. Atyabi, Poly (epsilon-caprolactone) nanofibrous ring surrounding a polyvinyl alcohol hydrogel for the development of a biocompatible two-part artificial cornea, Int J Nanomedicine 6 (2011) 1509-15. [18] K. Kim do, B.R. Sim, G. Khang, Nature-Derived Aloe Vera Gel Blended Silk Fibroin Film Scaffolds for Cornea Endothelial Cell Regeneration and Transplantation, ACS Appl Mater Interfaces 8(24) (2016) 15160-8. [19] L. Liu, L. Kuffova, M. Griffith, Z. Dang, E. Muckersie, Y. Liu, C.R. McLaughlin, J.V. Forrester, Immunological responses in mice to full-thickness corneal grafts engineered from porcine collagen, Biomaterials 28(26) (2007) 3807-14. [20] L. Zhang, D. Zou, S. Li, J. Wang, Y. Qu, S. Ou, C. Jia, J. Li, H. He, T. Liu, J. Yang, Y. Chen, Z. Liu, W. Li, An Ultra-thin Amniotic Membrane as Carrier in Corneal Epithelium Tissue-Engineering., Scientific Reports 6(1) (2016) 21021. [21] v.a.e. health, Corneal graft. [22] B.L. Zerbe, M.W. Belin, J.B. Ciolino, G. Boston Type 1 Keratoprosthesis Study, Results from the multicenter Boston Type 1 Keratoprosthesis Study, Ophthalmology 113(10) (2006) 1779 e1-7. [23] C.R. Hicks, G.J. Crawford, X. Lou, D.T. Tan, G.R. Snibson, G. Sutton, N. Downie, L. Werner, T.V. Chirila, I.J. Constable, Corneal replacement using a synthetic hydrogel cornea, AlphaCor: device, preliminary outcomes and complications, Eye (London, England) 17(3) (2003) 385-92. [24] H. Bleckmann, S. Holak, Preliminary results after implantation of four AlphaCor artificial corneas, Graefes Arch Clin Exp Ophthalmol 244(4) (2006) 502-6. [25] C.C. Chow, A.D. Kulkarni, D.M. Albert, J.K. Darlington, D.R. Hardten, Clinicopathologic correlation of explanted AlphaCor artificial cornea after exposure of implant, Cornea 26(8) (2007) 1004-7. [26] J. Chen, Q. Li, J. Xu, Y. Huang, Y. Ding, H. Deng, S. Zhao, R. Chen, Study on biocompatibility of complexes of collagen-chitosan-sodium hyaluronate and cornea, Artif Organs 29(2) (2005) 104-13. [27] B.D. Lawrence, J.K. Marchant, M.A. Pindrus, F.G. Omenetto, D.L. Kaplan, Silk film biomaterials for cornea tissue engineering, Biomaterials 30(7) (2009) 1299-308. [28] X. Duan, H. Sheardown, Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions, Biomaterials 27(26) (2006) 4608-17. [29] K. Sadtler, A. Singh, M.T. Wolf, X. Wang, D.M. Pardoll, J.H. Elisseeff, Design, clinical translation and immunological response of biomaterials in regenerative medicine, Nature Reviews Materials 1(7) (2016) 16040. [30] S.L. Wilson, L.E. Sidney, S.E. Dunphy, H.S. Dua, A. Hopkinson, Corneal Decellularization: A Method of Recycling Unsuitable Donor Tissue for Clinical Translation?, Curr Eye Res 41(6) (2016) 769-82. [31] Z. Ibrahim, J. Busch, M. Awwad, R. Wagner, K. Wells, D.K.C. Cooper, Selected physiologic compatibilities and incompatibilities between human and porcine organ systems, Xenotransplantation 13(6) (2006) 488-499. [32] M.L. Wong, L.G. Griffiths, Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization, Acta Biomater 10(5) (2014) 1806-16. [33] P.M. Crapo, T.W. Gilbert, S.F. Badylak, An overview of tissue and whole organ decellularization processes, Biomaterials 32(12) (2011) 3233-43. [34] D.M. Faulk, C.A. Carruthers, H.J. Warner, C.R. Kramer, J.E. Reing, L. Zhang, A. D'Amore, S.F. Badylak, The effect of detergents on the basement membrane complex of a biologic scaffold material, Acta Biomater 10(1) (2014) 183-93. [35] Y.C. Chen, R.N. Chen, H.J. Jhan, D.Z. Liu, H.O. Ho, Y. Mao, J. Kohn, M.T. Sheu, Development and Characterization of Acellular Extracellular Matrix Scaffolds from Porcine Menisci for Use in Cartilage Tissue Engineering, Tissue Eng Part C Methods 21(9) (2015) 971-86. [36] Formic acid, US Code of Federal Regulations, 21 CFR 186.1316. [37] Acetic acid, US Code of Federal Regulations, 21 CFR 184.1005. [38] Citric acid, US Code of Federal Regulations, 21 CFR 184.1033. [39] A.P. Lynch, M. Ahearne, Strategies for developing decellularized corneal scaffolds, Exp Eye Res 108 (2013) 42-7. [40] M. Griffith, D.G. Harkin, Recent advances in the design of artificial corneas, Curr Opin Ophthalmol 25(3) (2014) 240-7. [41] T.W. Gilbert, Strategies for tissue and organ decellularization, J Cell Biochem 113(7) (2012) 2217-22. [42] M.A. Shafiq, R.A. Gemeinhart, B.Y. Yue, A.R. Djalilian, Decellularized human cornea for reconstructing the corneal epithelium and anterior stroma, Tissue Eng Part C Methods 18(5) (2012) 340-8. [43] Y.-H. Huang, F.-W. Tseng, W.-H. Chang, I.-C. Peng, D.-J. Hsieh, S.-W. Wu, M.-L. Yeh, Preparation of acellular scaffold for corneal tissue engineering by supercritical carbon dioxide extraction technology., Acta Biomaterialia 58 (2017) 238-243. [44] Y. Hashimoto, S. Funamoto, S. Sasaki, T. Honda, S. Hattori, K. Nam, T. Kimura, M. Mochizuki, T. Fujisato, H. Kobayashi, A. Kishida, Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering, Biomaterials 31(14) (2010) 3941-8. [45] S. Amano, N. Shimomura, S. Yokoo, K. Araki-Sasaki, S. Yamagami, Decellularizing corneal stroma using N2 gas, Mol Vis 14 (2008) 878-82. [46] M. Gonzalez-Andrades, V. Carriel, M. Rivera-Izquierdo, I. Garzon, E. Gonzalez-Andrades, S. Medialdea, M. Alaminos, A. Campos, Effects of Detergent-Based Protocols on Decellularization of Corneas With Sclerocorneal Limbus. Evaluation of Regional Differences, Transl Vis Sci Technol 4(2) (2015) 13. [47] A. Pizzoferrato, G. Ciapetti, S. Stea, E. Cenni, C.R. Arciola, D. Granchi, L. Savarino, Cell culture methods for testing biocompatibility, Clin Mater 15(3) (1994) 173-90. [48] A. Karkhaneh, H. Mirzadeh, A. Ghaffariyeh, A. Ebrahimi, N. Honarpisheh, M. Hosseinzadeh, M.H. Heidari, Novel materials to enhance corneal epithelial cell migration on keratoprosthesis, Br J Ophthalmol 95(3) (2011) 405-9. [49] H. Yin, P. Qiu, F. Wu, W. Zhang, W. Teng, Z. Qin, C. Li, J. Zhou, Z. Fang, Q. Tang, Q. Fu, J. Ma, Y. Yang, Construction of a Corneal Stromal Equivalent with SMILE-Derived Lenticules and Fibrin Glue, Sci Rep 6 (2016) 33848. [50] D.M. Maurice, The structure and transparency of the cornea, J Physiol 136(2) (1957) 263-86. [51] K. Hadinoto, A. Sundaresan, W.S. Cheow, Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 85(3 Pt A) (2013) 427-43. [52] J.L. Alio del Barrio, M. Chiesa, N. Garagorri, N. Garcia-Urquia, J. Fernandez-Delgado, L. Bataille, A. Rodriguez, F. Arnalich-Montiel, T. Zarnowski, J.P. Alvarez de Toledo, J.L. Alio, M.P. De Miguel, Acellular human corneal matrix sheets seeded with human adipose-derived mesenchymal stem cells integrate functionally in an experimental animal model, Exp Eye Res 132 (2015) 91-100. [53] G.H. Yam, N.Z. Yusoff, T.W. Goh, M. Setiawan, X.W. Lee, Y.C. Liu, J.S. Mehta, Decellularization of human stromal refractive lenticules for corneal tissue engineering, Sci Rep 6 (2016) 26339. [54] C.M. Murphy, F.J. O'Brien, Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds, Cell Adh Migr 4(3) (2010) 377-81. [55] Y. Lin, Q. Zheng, S. Hua, Y. Meng, W. Chen, Y. Wang, Cross-linked decellularized porcine corneal graft for treating fungal keratitis., Scientific Reports 7(1) (2017) 9955. [56] H. Luo, Y. Lu, T. Wu, M. Zhang, Y. Zhang, Y. Jin, Construction of tissue-engineered cornea composed of amniotic epithelial cells and acellular porcine cornea for treating corneal alkali burn, Biomaterials 34(28) (2013) 6748-59. [57] K. Palucka, J. Banchereau, Cancer immunotherapy via dendritic cells, Nature Reviews Cancer 12(4) (2012) 265-277. [58] D.M. Paiva, V.O. Rodrigues, M.G. Cesca, P.V. Palma, I.C. Leite, Prevalence of lymphedema in women undergoing treatment for breast cancer in a referral center in southeastern Brazil, BMC Womens Health 13 (2013) 6. [59] S.A. McLaughlin, M.J. Wright, K.T. Morris, G.L. Giron, M.R. Sampson, J.P. Brockway, K.E. Hurley, E.R. Riedel, K.J. Van Zee, Prevalence of lymphedema in women with breast cancer 5 years after sentinel lymph node biopsy or axillary dissection: objective measurements, J Clin Oncol 26(32) (2008) 5213-9. [60] A. Shimony, D. Tidhar, Lymphedema: a comprehensive review, Ann Plast Surg 60(2) (2008) 228. [61] R. Ito, H. Suami, Overview of lymph node transfer for lymphedema treatment, Plast Reconstr Surg 134(3) (2014) 548-56. [62] M.F. Scaglioni, M. Arvanitakis, Y.C. Chen, P. Giovanoli, J. Chia-Shen Yang, E.I. Chang, Comprehensive review of vascularized lymph node transfers for lymphedema: Outcomes and complications, Microsurgery 38(2) (2018) 222-229. [63] C.H. Lin, R. Ali, S.C. Chen, C. Wallace, Y.C. Chang, H.C. Chen, M.H. Cheng, Vascularized groin lymph node transfer using the wrist as a recipient site for management of postmastectomy upper extremity lymphedema, Plast Reconstr Surg 123(4) (2009) 1265-75. [64] M.H. Cheng, J.J. Huang, D.H. Nguyen, M. Saint-Cyr, M.R. Zenn, B.K. Tan, C.L. Lee, A novel approach to the treatment of lower extremity lymphedema by transferring a vascularized submental lymph node flap to the ankle, Gynecol Oncol 126(1) (2012) 93-8. [65] B.F. Shesol, R. Nakashima, A. Alavi, R.W. Hamilton, Successful lymph node transplantation in rats, with restoration of lymphatic function, Plast Reconstr Surg 63(6) (1979) 817-23. [66] H. Engel, C.Y. Lin, J.J. Huang, M.H. Cheng, Outcomes of Lymphedema Microsurgery for Breast Cancer-related Lymphedema With or Without Microvascular Breast Reconstruction, Ann Surg (2017). [67] S. Azuma, T. Yamamoto, I. Koshima, Donor-site lymphatic function after microvascular lymph node transfer should be followed using indocyanine green lymphography, Plast Reconstr Surg 131(3) (2013) 443e-4e. [68] S. Vignes, M. Blanchard, A. Yannoutsos, M. Arrault, Complications of autologous lymph-node transplantation for limb lymphoedema, Eur J Vasc Endovasc Surg 45(5) (2013) 516-20. [69] S.A. Patel, Vascularized Lymph Node Transfer and Lymphovenous Bypass Provide Relief from Lymphedema, Fox chase cancer center (2014). [70] A.M. Moulin, The immune system: a key concept for the history of immunology, Hist Philos Life Sci 11(2) (1989) 221-36. [71] R. Medzhitov, Origin and physiological roles of inflammation, Nature 454(7203) (2008) 428-35. [72] A.E. Thompson, JAMA patient page. The immune system, JAMA 313(16) (2015) 1686. [73] E.R. Unanue, Perspective on antigen processing and presentation, Immunol Rev 185 (2002) 86-102. [74] M.T. Lotze, Not just an antigen-presenting cell: 5th international symposium on dendritic cells in fundamental and clinical immunology, J Leukoc Biol 66(2) (1999) 195-200. [75] F. Masson, G.T. Belz, Mobilizing forces--CD4+ helper T cells script adaptive immunity, Cell Res 20(1) (2010) 1-3. [76] A. Lahiri, P. Das, D. Chakravortty, Engagement of TLR signaling as adjuvant: towards smarter vaccine and beyond, Vaccine 26(52) (2008) 6777-83. [77] A. Kretz-Rommel, F. Qin, N. Dakappagari, R. Torensma, S. Faas, D. Wu, K.S. Bowdish, In vivo targeting of antigens to human dendritic cells through DC-SIGN elicits stimulatory immune responses and inhibits tumor growth in grafted mouse models, J Immunother 30(7) (2007) 715-26. [78] Y.J. Liu, H. Kanzler, V. Soumelis, M. Gilliet, Dendritic cell lineage, plasticity and cross-regulation, Nat Immunol 2(7) (2001) 585-9. [79] Y. Becker, The changes in the T helper 1 (Th1) and T helper 2 (Th2) cytokine balance during HIV-1 infection are indicative of an allergic response to viral proteins that may be reversed by Th2 cytokine inhibitors and immune response modifiers--a review and hypothesis, Virus Genes 28(1) (2004) 5-18. [80] N.H. Hamilton, J.L. Banyer, A.J. Hapel, S. Mahalingam, A.J. Ramsay, I.A. Ramshaw, S.A. Thomson, IFN-gamma regulates murine interferon-inducible T cell alpha chemokine (I-TAC) expression in dendritic cell lines and during experimental autoimmune encephalomyelitis (EAE), Scand J Immunol 55(2) (2002) 171-7. [81] S.A. Boackle, M.A. Morris, V.M. Holers, D.R. Karp, Complement opsonization is required for presentation of immune complexes by resting peripheral blood B cells, J Immunol 161(12) (1998) 6537-43. [82] P. Choi, H. Reiser, IL-4: role in disease and regulation of production, Clin Exp Immunol 113(3) (1998) 317-9. [83] S. Dillon, A. Agrawal, T. Van Dyke, G. Landreth, L. McCauley, A. Koh, C. Maliszewski, S. Akira, B. Pulendran, A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells, J Immunol 172(8) (2004) 4733-43. [84] L. Hipra, Immunology DC and Th1/Th2 pathway, HIPRA. [85] D.N. Khalil, E.L. Smith, R.J. Brentjens, J.D. Wolchok, The future of cancer treatment: immunomodulation, CARs and combination immunotherapy, Nat Rev Clin Oncol 13(6) (2016) 394. [86] F. Cavallo, R. Offringa, S.H. van der Burg, G. Forni, C.J. Melief, Vaccination for treatment and prevention of cancer in animal models, Adv Immunol 90 (2006) 175-213. [87] Z. Mou, Y. He, Y. Wu, Immunoproteomics to identify tumor-associated antigens eliciting humoral response, Cancer Lett 278(2) (2009) 123-129. [88] N. Mody, S. Dubey, R. Sharma, U. Agrawal, S.P. Vyas, Dendritic cell-based vaccine research against cancer, Expert Rev Clin Immunol 11(2) (2015) 213-32. [89] J. Constantino, C. Gomes, A. Falcão, B.M. Neves, M.T. Cruz, Dendritic cell-based immunotherapy: a basic review and recent advances., Immunologic research 65(4) (2017) 798-810. [90] I.J. De Vries, D.J. Krooshoop, N.M. Scharenborg, W.J. Lesterhuis, J.H. Diepstra, G.N. Van Muijen, S.P. Strijk, T.J. Ruers, O.C. Boerman, W.J. Oyen, G.J. Adema, C.J. Punt, C.G. Figdor, Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state, Cancer Res 63(1) (2003) 12-7. [91] A.M. Eggermont, Therapeutic vaccines in solid tumours: can they be harmful?, Eur J Cancer 45(12) (2009) 2087-90. [92] M. Kajihara, K. Takakura, T. Kanai, Z. Ito, K. Saito, S. Takami, S. Shimodaira, M. Okamoto, T. Ohkusa, S. Koido, Dendritic cell-based cancer immunotherapy for colorectal cancer, World J Gastroenterol 22(17) (2016) 4275-86. [93] T. Seya, H. Shime, Y. Takeda, M. Tatematsu, K. Takashima, M. Matsumoto, Adjuvant for vaccine immunotherapy of cancer - focusing on TLR2 and TLR3 agonists for safely enhancing antitumor immunity., Cancer science 106(12) (2015) n/a-n/a. [94] C. Bode, G. Zhao, F. Steinhagen, T. Kinjo, D.M. Klinman, CpG DNA as a vaccine adjuvant, Expert Rev Vaccines 10(4) (2011) 499-511. [95] Y. Kumagai, O. Takeuchi, S. Akira, TLR9 as a key receptor for the recognition of DNA, Adv Drug Deliv Rev 60(7) (2008) 795-804. [96] J. Scheiermann, D.M. Klinman, Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer, Vaccine 32(48) (2014) 6377-89. [97] S.M. Advani, P. Advani, S.M. DeSantis, D. Brown, H.M. VonVille, M. Lam, J.M. Loree, A. Mehrvarz Sarshekeh, J. Bressler, D.S. Lopez, C.R. Daniel, M.D. Swartz, S. Kopetz, Clinical, Pathological, and Molecular Characteristics of CpG Island Methylator Phenotype in Colorectal Cancer: A Systematic Review and Meta-analysis, Transl Oncol 11(5) (2018) 1188-1201. [98] J.S. Weber, J.J. Mule, Cancer immunotherapy meets biomaterials, Nat Biotechnol 33(1) (2015) 44-5. [99] C.J. Park, N.P. Gabrielson, D.W. Pack, R.D. Jamison, A.J. Wagoner Johnson, The effect of chitosan on the migration of neutrophil-like HL60 cells, mediated by IL-8, Biomaterials 30(4) (2009) 436-44. [100] M. Friedemann, L. Kalbitzer, S. Franz, S. Moeller, M. Schnabelrauch, J.C. Simon, T. Pompe, K. Franke, Instructing Human Macrophage Polarization by Stiffness and Glycosaminoglycan Functionalization in 3D Collagen Networks, Adv Healthc Mater 6(7) (2017). [101] S. Jhunjhunwala, S. Aresta-DaSilva, K. Tang, D. Alvarez, M.J. Webber, B.C. Tang, D.M. Lavin, O. Veiseh, J.C. Doloff, S. Bose, A. Vegas, M. Ma, G. Sahay, A. Chiu, A. Bader, E. Langan, S. Siebert, J. Li, D.L. Greiner, P.E. Newburger, U.H. von Andrian, R. Langer, D.G. Anderson, Neutrophil Responses to Sterile Implant Materials, PLoS One 10(9) (2015) e0137550. [102] S.A. Bencherif, R.W. Sands, O.A. Ali, W.A. Li, S.A. Lewin, T.M. Braschler, T.-Y. Shih, C.S. Verbeke, D. Bhatta, G. Dranoff, D.J. Mooney, Injectable cryogel-based whole-cell cancer vaccines, Nature Communications 6 (2015) 1-13. [103] Z. Wang, Y. Cui, J. Wang, X. Yang, Y. Wu, K. Wang, X. Gao, D. Li, Y. Li, X.L. Zheng, Y. Zhu, D. Kong, Q. Zhao, The effect of thick fibers and large pores of electrospun poly(epsilon-caprolactone) vascular grafts on macrophage polarization and arterial regeneration, Biomaterials 35(22) (2014) 5700-10. [104] A.S. Cheung, D.K.Y. Zhang, S.T. Koshy, D.J. Mooney, Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells, Nat Biotechnol 36(2) (2018) 160-169. [105] A.W. Li, M.C. Sobral, S. Badrinath, Y. Choi, A. Graveline, A.G. Stafford, J.C. Weaver, M.O. Dellacherie, T.Y. Shih, O.A. Ali, J. Kim, K.W. Wucherpfennig, D.J. Mooney, A facile approach to enhance antigen response for personalized cancer vaccination, Nat Mater 17(6) (2018) 528-534. [106] Tissue-engineered 3D human lymphatic microvascular network for in vitro studies oflymphangiogenesis, (2017) 1-12. [107] S.A. Bencherif, R. Warren Sands, O.A. Ali, W.A. Li, S.A. Lewin, T.M. Braschler, T.Y. Shih, C.S. Verbeke, D. Bhatta, G. Dranoff, D.J. Mooney, Injectable cryogel-based whole-cell cancer vaccines, Nat Commun 6 (2015) 7556. [108] T. Hoshiba, H. Lu, N. Kawazoe, G. Chen, Decellularized matrices for tissue engineering, Expert Opinion on Biological Therapy 10(12) (2010) 1717-1728. [109] S. Funamoto, K. Nam, T. Kimura, A. Murakoshi, Y. Hashimoto, K. Niwaya, S. Kitamura, T. Fujisato, A. Kishida, The use of high-hydrostatic pressure treatment to decellularize blood vessels, Biomaterials 31(13) (2010) 3590-5. [110] M. Fedecostante, O.G. Onciu, K.G.C. Westphal, R. Masereeuw, Towards a bioengineered kidney: recellularization strategies for decellularized native kidney scaffolds, Int J Artif Organs 40(4) (2017) 150-158. [111] J.J. Song, J.P. Guyette, S.E. Gilpin, G. Gonzalez, J.P. Vacanti, H.C. Ott, Regeneration and experimental orthotopic transplantation of a bioengineered kidney, Nat Med 19(5) (2013) 646-51. [112] T. Woods, P.F. Gratzer, Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft, Biomaterials 26(35) (2005) 7339-49. [113] D.A. Cuzzone, N.J. Albano, S.Z. Aschen, S. Ghanta, B.J. Mehrara, Decellularized Lymph Nodes as Scaffolds for Tissue Engineered Lymph Nodes, Lymphatic Research and Biology 13(3) (2015) 186-194. [114] H. Lin, T. Wang, T. Li, Y. Chang, M.T. Sheu, Y.Y. Huang, D.Z. Liu, Development of Decellularized Cornea by Organic acid Treatment for Corneal Regeneration, Tissue Eng Part A (2018). [115] C.P. Larsen, S.C. Ritchie, R. Hendrix, P.S. Linsley, K.S. Hathcock, R.J. Hodes, R.P. Lowry, T.C. Pearson, Regulation of immunostimulatory function and costimulatory molecule (B7-1 and B7-2) expression on murine dendritic cells, J Immunol 152(11) (1994) 5208-19. [116] J. Slaats, J. Ten Oever, F.L. van de Veerdonk, M.G. Netea, IL-1beta/IL-6/CRP and IL-18/ferritin: Distinct Inflammatory Programs in Infections, PLoS pathogens 12(12) (2016) e1005973. [117] O. Dienz, M. Rincon, The effects of IL-6 on CD4 T cell responses, Clin Immunol 130(1) (2009) 27-33. [118] G. Trinchieri, Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity, Annual review of immunology 13 (1995) 251-76. [119] O.A. Ali, N. Huebsch, L. Cao, G. Dranoff, D.J. Mooney, Infection-mimicking materials to program dendritic cells in situ, Nat Mater 8(2) (2009) 151-8. [120] C. Heufler, F. Koch, U. Stanzl, G. Topar, M. Wysocka, G. Trinchieri, A. Enk, R.M. Steinman, N. Romani, G. Schuler, Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells, European journal of immunology 26(3) (1996) 659-68. [121] M.Y. Gerner, L.M. Heltemes-Harris, B.T. Fife, M.F. Mescher, Cutting edge: IL-12 and type I IFN differentially program CD8 T cells for programmed death 1 re-expression levels and tumor control, J Immunol 191(3) (2013) 1011-5. [122] E.R. Steenblock, T.M. Fahmy, A comprehensive platform for ex vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cells, Mol Ther 16(4) (2008) 765-72. [123] T.R. Fadel, F.A. Sharp, N. Vudattu, R. Ragheb, J. Garyu, D. Kim, E. Hong, N. Li, G.L. Haller, L.D. Pfefferle, S. Justesen, K.C. Herold, T.M. Fahmy, Corrigendum: A carbon nanotube–polymer composite for T-cell therapy, Nature Nanotechnology 9 (2014) 723. [124] M.W. Moore, F.R. Carbone, M.J. Bevan, Introduction of soluble protein into the class I pathway of antigen processing and presentation, Cell 54(6) (1988) 777-85. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78878 | - |
dc.description.abstract | 近年來全球人口老化及罹患疾病趨勢提高,以再生醫學重建人體健康是熱門的研發策略,而組織工程結合幹細胞治療被視為最具臨床應用潛力的重要研究。去細胞支架具有天然的組織結構及生物因子,適合在體外建立最佳的培育條件,因此值得深入研究其臨床應用方式。本研究建立有機酸去細胞組織工程技術,針對角膜再生及樹突狀細胞支架癌症免疫療法之應用潛力進行相關探討。
將豬眼角膜以有機酸去細胞方式得到去細胞眼角膜支架,結果顯示甲酸能清除支架內多數細胞,並保留支架內膠原蛋白和葡萄糖胺聚合醣。此外,去細胞眼角膜支架呈現與原有結構相似之機械強度及平行薄板結構。在細胞實驗顯示,去細胞眼角膜支架具有良好生物相容性,角膜上皮細胞能適當的生長於支架上,而甲酸去細胞創造之支架孔洞可利於角膜基質細胞存活於去細胞眼角膜支架內。動物眼角膜移植試驗證實,甲酸去細胞眼角膜支架植入動物後,角膜上皮細胞能快速生長佈滿其支架表面,角膜基質細胞能進入支架內生長並釋放基質填滿內部孔洞,且能長時間維持角膜原有透明度。因此本研究證實,以有機酸去細胞技術建立之去細胞眼角膜支架,具有應用於臨床角膜移植潛力。 在癌症免疫治療應用方面,本研究建立帶有活化樹突狀細胞之去細胞淋巴結支架,植入體內後觀察其抑制癌細胞生長之能力。結果顯示甲酸對於大鼠淋巴結能有效去除原有細胞,對於基質內膠原蛋白及葡萄糖胺聚合醣能有效保留。而樹突狀細胞可存活於去細胞淋巴結支架內,經抗原OVA (Ovalbumin)刺激後活化成熟標記CD80、CD86和MHC-Ⅱ分子,並釋放細胞激素IL-1β、IL-6和IL-12。此外,將帶有樹突狀細胞之去細胞淋巴結支架與CD8+毒殺型T淋巴球共同培養後,對於細胞激素IL-1β、IL-6、IL-12和IFN-γ能顯著提升其釋放量,這有助於後續免疫反應強度的提升。動物腫瘤實驗證實,給予抗原活化樹突狀細胞之去細胞淋巴結支架免疫後之小鼠,能完全抑制E.G7腫瘤細胞的生長,具有良好的免疫預防效果。而在取出免疫後小鼠脾臟細胞經由體外給予抗原OVA再刺激後,細胞激素IFN-γ、IL-4、IL-6和IL-2有明顯提升,且脾臟細胞增生率也有增加的情形。這些結果證實,抗原活化樹突狀細胞之去細胞淋巴結支架可誘發抗原專一性免疫反應,對於動物之腫瘤細胞能有效抑制其生長,因此在臨床癌症細胞免疫治療具有應用價值。 | zh_TW |
dc.description.abstract | In recent decades, decellularized extracellular matrix (ECM) showed its potential as a promising scaffold used in the fields of tissue regeneration. In this study, organic acid decellularized technique was evaluated for corneal regeneration and DC (dendritic cells)-based scaffold cancer vaccine.
For corneal regeneration, the decellularized porcine corneal scaffolds (dPC) were prepared by organic acid treatment. Cell removal and intact extracellular matrix preservation was evidenced by histological and biochemical quantitative analysis, and the dPC scaffolds showed porous parallel lamellar microstructure and great biomechanical properties. In-vitro cell culture demonstrated that the dPC scaffolds had good biocompatibility, and the porous microstructure provided an ideal space for the growth of stroma keratocytes. Moreover, in-vivo implantation revealed ideal re-epithelialization, stromal recellularization and complete transparency during the full follow-up period. Thus, dPC scaffolds that prepared by organic acid treatment could be a promising biological material for use in corneal transplantation. For cancer immunotherapy, the decellularized lymph node scaffolds (dLN) also prepared by organic acid treatment. The results showed the highly efficient removal of cell debris from lymph node, and great preservation of ECM architecture and biomolecules. In addition, bone marrow dendritic cells (BMDC) grown preferably inside the dLN, displayed maturation marker CD80, CD86 and MHC-Ⅱ, and produced high level of cytokine IL-1β, IL-6 and IL-12 when stimulated with ovalbumin (OVA) and CpG oligodeoxynucleotides (CPG-ODN). Furthermore, BMDC-dLN co-cultured with CD8+ T lymphocytes revealed higher production of IL-1β, IL-6, IL-12 and IFN-γ. In animal model, the BMDC-dLN showed completely rejected the E.G7-OVA tumor, and the splenocytes from BMDC-dLN immunized mice produced more IFN-γ, IL-4, IL-6 and IL-2, and higher proliferation rate than other groups when re-stimulated with OVA. Hence, this could be a promising DC-based scaffold for delivery in-vivo to induce potent anti-tumor immunity. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:26:06Z (GMT). No. of bitstreams: 1 ntu-107-D02548004-1.pdf: 3810461 bytes, checksum: c075d311add7b45fab0e043044c40568 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | List of Contents
論文口試委員審定書 i 誌謝 ii 中文摘要 iv Abstract vi List of Contents viii List of Figures xiii Abbreviations xiv Introduction 1 Part 1 Development of Decellularized Cornea for Corneal Regeneration 2 Chapter 1 Background 3 1.1 Cornea 3 1.1.1 Anatomy and functions of cornea 3 1.1.2 Cornea transplantation 4 1.2 Scaffold types used in corneal tissue engineering 5 1.2.1 Synthetic corneal scaffolds 6 1.2.2 Biological corneal scaffolds 7 1.2.3 Decellularized Corneal Scaffolds 7 1.3 The Aim of this research 9 Chapter 2 Materials and Methods 10 2.1 Materials 10 2.2 Decellularization of porcine corneas 11 2.3 Assessment of the optical property of dPC scaffolds 12 2.4 Mechanical properties and microstructure of dPC scaffolds 12 2.5 Biochemical analysis and histological examination 13 2.6 Recellularization on dPC scaffolds 14 2.7 dPC scaffolds for corneal xenotransplantation 16 2.7 Statistical analysis 17 Chapter 3 Results 18 3.1 Transparency, mechanical properties, and microstructure of the dPC scaffolds 18 3.2 The efficacy of the decellularization process 19 3.3 Characterization of ECM components 20 3.4 In-vitro dPC scaffolds recellularization 21 3.5 Implantation of the dPC scaffolds in-vivo 22 Chapter 4 Discussion 31 4.1. The comparison of decellularized methods 31 4.2. Re-cellularization of corneal epithelial cells and keratocytes on dPC 32 4.3. Corneal regeneration of dPC on rabbit model 33 Chapter 5 Conclusions 35 Part 2 Development of Decellularized Lymph node for Cancer immunotherapy 36 Chapter 6 Background 37 6.1 Lymph node 37 6.1.1 Anatomy and functions of lymph node 37 6.1.2 Lymphedema 39 6.1.3 Lymph node transfer 40 6.2 Immune system 41 6.2.1 Adaptive immune system 42 6.2.2 Dendritic cells 43 6.2.3 T lymphocytes 44 6.3 Cancer immunotherapy 45 6.4 Vaccine adjuvant 47 6.5 The aim of this research 48 Chapter 7 Materials and Methods 49 7.1 Materials 49 7.2 Decellularization of lymph node 50 7.3 Microstructure of dLN scaffolds 50 7.4 DNA quantification analysis and histological examination 51 7.5 Recellularization of BMDC into dLN scaffolds 52 7.6 Stimulation of BMDC-dLN and the cytokine profile 53 7.7 BMDC co-cultured with CD8+ T lymphocytes in dLN 53 7.8 Immunization of mice and tumor challenge 54 7.9 Analysis of cells population inside the BMDC-dLN after immunization 55 7.10 Ex-vivo re-stimulation of splenocytes 55 7.11 Statistical analysis 56 Chapter 8 Results 57 8.1 The efficacy of the decellularization process 57 8.2 Microstructure and ECM examination of the dLN scaffolds 57 8.3 Maturation marker analysis and cytokine released of BMDC-dLN 58 8.4 CD8+ T lymphocytes co-cultured with BMDC-dLN 60 8.5 Protective effect of BMDC-dLN vaccine against tumor challenge 61 8.6 Analysis of cell population in BMDC-dLN after immunization 61 8.7 Ex-vivo re-stimulation of splenocytes 62 Chapter 9 Discussion 78 9.1 The dLN scaffolds provided suitable 3D environment 78 9.2 Cytokine production ability of the BMDC-dLN 80 9.3 In-vivo anti-tumor effects of the BMDC-dLN 82 Chapter 10 Conclusions 84 References 85 | |
dc.language.iso | en | |
dc.title | 去細胞組織工程應用於眼角膜再生醫學及癌症免疫治療之研究 | zh_TW |
dc.title | Application of Decelluarized Tissue Engineering for Corneal Regeneration and Cancer Immunotherapy | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 劉得任,鍾次文,許明照,張育嘉,王宗仁 | |
dc.subject.keyword | 組織工程,去細胞支架,角膜再生,癌症免疫治療,樹突狀細胞, | zh_TW |
dc.subject.keyword | Tissue engineering,decellularized scaffold,corneal regeneration,cancer immunotherapy,dendritic cell, | en |
dc.relation.page | 94 | |
dc.identifier.doi | 10.6342/NTU201804231 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-11-07 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
dc.date.embargo-lift | 2023-11-08 | - |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-D02548004-1.pdf 目前未授權公開取用 | 3.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。