請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78876完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李佳霖 | zh_TW |
| dc.contributor.author | 林婉婷 | zh_TW |
| dc.contributor.author | Wan-Ting Lin | en |
| dc.date.accessioned | 2021-07-11T15:25:57Z | - |
| dc.date.available | 2024-10-31 | - |
| dc.date.copyright | 2019-03-11 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Anderson, J. S., Druzgal, T. J., Froehlich, A., DuBray, M. B., Lange, N., Alexander, A. L., ... & Bigler, E. D. (2010). Decreased interhemispheric functional connectivity in autism. Cerebral cortex, 21(5), 1134-1146.
Antonenko, D., Brauer, J., Meinzer, M., Fengler, A., Kerti, L., Friederici, A. D., & Flöel, A. (2013). Functional and structural syntax networks in aging. Neuroimage, 83, 513-523. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95-113. Bennett, I. J., Madden, D. J., Vaidya, C. J., Howard, D. V., & Howard, J. H., Jr. (2010). Age-related differences in multiple measures of white matter integrity: A diffusion tensor imaging study of healthy aging. Hum Brain Mapp, 31(3), 378-390. doi:10.1002/hbm.20872 Bloom, J. S., & Hynd, G. W. (2005). The role of the corpus callosum in interhemispheric transfer of information: excitation or inhibition?Neuropsychol Rev, 15(2), 59-71. doi:10.1007/s11065-005-6252-y Chen, Y. J., Lo, Y. C., Hsu, Y. C., Fan, C. C., Hwang, T. J., Liu, C. M., . . . Hwu, H. G. (2015). Automatic whole brain tract‐based analysis using predefined tracts in a diffusion spectrum imaging template and an accurate registration strategy. Human brain mapping, 36(9), 3441-3458. Chen, M.-H., & Lee, C.-L. (2015). Hemispheric differences in processing word class information—ERP evidence from Chinese. Abstract of the Society for the Neurobiology of Language, 212. Chen, P.-H., Chen, M.-H., & Lee, C. L. (2017). Inter-hemispheric communication ability modulates the laterality of P600 responses to syntactic category violations in healthy young and older adults. Psychophysiology, 54, Supplement 1, S73. Demonet, J. F., Chollet, F., Ramsay, S., Cardebat, D., Nespoulous, J. L., Wise, R., ... & Frackowiak, R. (1992). The anatomy of phonological and semantic processing in normal subjects. Brain, 115(6), 1753-1768. Dronkers, N. F., Plaisant, O., Iba-Zizen, M. T., & Cabanis, E. A. (2007). Paul Broca's historic cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain, 130(5), 1432-1441. Federmeier, K. D., & Kutas, M. (2002). Picture the difference: Electrophysiological investigations of picture processing in the two cerebral hemispheres. Neuropsychologia, 40(7), 730-747. Federmeier, K. D., Mai, H., & Kutas, M. (2005). Both sides get the point: Hemispheric sensitivities to sentential constraint. Memory & Cognition, 33(5), 871-886. Friederici, A. D., Rueschemeyer, S. A., Hahne, A., & Fiebach, C. J. (2003). The role of left inferior frontal and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes. Cerebral cortex, 13(2), 170-177. Friederici, A. D. (2011). The brain basis of language processing: from structure to function. Physiological reviews, 91(4), 1357-1392. Friederici, A. D., & Gierhan, S. M. E. (2013). The language network. Current Opinion in Neurobiology, 23(2), 250-254. doi:10.1016/j.conb.2012.10.002 Geschwind, N. (1970). The organization of language and the brain. Science, 170(3961), 940-944. Griffiths, J. D., Marslen-Wilson, W. D., Stamatakis, E. A., & Tyler, L. K. (2012). Functional organization of the neural language system: dorsal and ventral pathways are critical for syntax. Cerebral Cortex, 23(1), 139-147. Häberling, I. S., Badzakova-Trajkov, G., & Corballis, M. C. (2011). Callosal tracts and patterns of hemispheric dominance: a combined fMRI and DTI study. Neuroimage, 54(2), 779-786. Hamilton, R. H., Chrysikou, E. G., & Coslett, B. (2011). Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain and language, 118(1-2), 40-50. Hsu, Y. C., Lo, Y. C., Chen, Y. J., Wedeen, V. J., & Isaac Tseng, W. Y. (2015). NTU‐DSI‐122: A diffusion spectrum imaging template with high anatomical matching to the ICBM‐152 space. Human brain mapping, 36(9), 3528-3541. Lee, C. L., & Federmeier, K. D. (2015). It’s all in the family: brain asymmetry and syntactic processing of word class. Psychological Science, 26(7), 997 –1005. Leckey, M., & Federmeier, K. D. (2017). Age-related shifts in hemispheric dominance for syntactic processing. Psychophysiology, 54(12), 1929–1939. Lo, Y. C., Soong, W. T., Gau, S. S. F., Wu, Y. Y., Lai, M. C., Yeh, F. C., ... & Tseng, W. Y. I. (2011). The loss of asymmetry and reduced interhemispheric connectivity in adolescents with autism: a study using diffusion spectrum imaging tractography. Psychiatry Research: Neuroimaging, 192(1), 60-66. Skeide, M. A., & Friederici, A. D. (2016). The ontogeny of the cortical language network. Nature Reviews Neuroscience, 17(5), 323. Neville, H. J., Kutas, M., & Schmidt, A. (1982). Event-related potential studies of cerebral specialization during reading: II. Studies of congenitally deaf adults. Brain and Language, 16(2), 316-337. Newman, A. J., Pancheva, R., Ozawa, K., Neville, H. J., & Ullman, M. T. (2001). An event-related fMRI study of syntactic and semantic violations. Journal of psycholinguistic research, 30(3), 339-364. Oldfield, R. C. (1970). The Assessment and Analysis of Handedness: THE Edinburgh Inventory. Neuropsychologia, 9, 97-113. Osterhout, L., & Holcomb, P. J. (1992). Event-related brain potentials elicited by syntactic anomaly. Journal of memory and language, 31(6), 785-806. Papoutsi, M., Stamatakis, E. A., Griffiths, J., Marslen-Wilson, W. D., & Tyler, L. K. (2011). Is left fronto-temporal connectivity essential for syntax? Effective connectivity, tractography and performance in left-hemisphere damaged patients. Neuroimage, 58(2), 656-664. Putnam MC, Wig GS, Grafton ST, et al. Structural organization of the corpus callosum predicts the extent and impact of cortical activity in the nondominant hemisphere. J Neurosci. 2008;28:2912–2918. Shafto, M., Randall, B., Stamatakis, E. A., Wright, P., & Tyler, L. K. (2012). Age-related Neural Reorganization during Spoken Word Recognition: The Interaction of Form and Meaning. Journal of Cognitive Neuroscience, 24(6), 1434-1446. doi:10.1162/jocn_a_00218 Su, Y.-S., Chen, J.-T., Tang, Y.-J., Yuan, S.-Y., McCarrey, A. C., & Soo Goh, J. O. (2018). Age-Related Differences in Striatal, Medial Temporal, and Frontal Involvement During Value-Based Decision Processing. Neurobiology of Aging. doi:https://doi.org/10.1016/j.neurobiolaging.2018.05.019 Sequeira S, et al. The association of macro- and microstructure of the corpus callosum and language lateralisation. Brain Lang. 2006;97:80–90. Talati, A., & Hirsch, J. (2005). Functional specialization within the medial frontal gyrus for perceptual go/no-go decisions based on “what,”“when,” and “where” related information: an fMRI study. Journal of cognitive neuroscience, 17(7), 981-993. Tse, C. Y., Lee, C. L., Sullivan, J., Garnsey, S. M., Dell, G. S., Fabiani, M., and Gratton, G. (2007). Imaging Cortical Dynamics of Language Processing with the Event-related Optical Signal. Proceedings of the National Academy of Sciences 104 (43), 17157-17162. Tyler, L. K., Shafto, M. A., Randall, B., Wright, P., Marslen-Wilson, W. D., & Stamatakis, E. A. (2009). Preserving syntactic processing across the adult life span: the modulation of the frontotemporal language system in the context of age-related atrophy. Cerebral Cortex, 20(2), 352-364. Westerhausen, R., Woerner, W., Kreuder, F., Schweiger, E., Hugdahl, K., & Wittling, W. (2006). The role of the corpus callosum in dichotic listening: A combined morphological and diffusion tensor imaging study. Neuropsychology, 20(3), 272. Xiang, H.-D., Fonteijn, H. M., Norris, D. G., & Hagoort, P. (2010). Topographical Functional Connectivity Pattern in the Perisylvian Language Networks. Cerebral Cortex, 20(3), 549-560. doi:10.1093/cercor/bhp119 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78876 | - |
| dc.description.abstract | 過去研究認為語言處理能力有左側化的傾向,其中以句法處理能力最為左側化。但語言功能性側化背後的腦部神經機制則尚未有定論,本研究以分視野 (Split Visual Field Paradigm) 的方式呈現中文詞組結合成的片語為媒介,並結合三種不同類型的測量工具 — 事件關聯電位(Event-Related Potential, ERP)、擴散磁振造影(Diffusion Tensor Imaging, DTI)、靜息狀態功能性磁振造影(Resting-state Functional Magnetic Resonance Imaging, RS-fMRI),更全面地從處理句法時的即時腦部功能性反應、腦部白質徑結構密度、腦部靜息態的功能性連結,來探討健康的年輕人中,腦部結構性與功能性連結與側化的句法處理能力之間的關聯。
本研究包括24位慣用右手且家族史也皆為右利手的年輕人,所有受試者們皆在七個月內進行了三個部分的實驗 — 實驗一是ERP腦波實驗,實驗二與三則是DTI腦部結構與RS-fMRI靜態功能造影。實驗ㄧ過程中,受試者將先閱讀呈現在視野中央的語詞,然後閱讀出現在左或右視野的目標詞後,判斷片語通順與否,在這當中同時利用腦波紀錄右腦和左腦優勢處理句法錯誤的歷程,如同先前研究,我們發現句法處理的效果(P600 grammaticality effect)側化至左腦。實驗二與三的過程中,受試者平躺靜止,以得到腦部掃掃瞄影像。 透過結構方程模型(Structural Equation Modeling, SEM),我們嘗試結合腦部結構、功能性連結,與側化的句法處理策略三種不同類型的資料之間的關聯。我們發現在句法處理上左腦還是主要的優勢半腦,這會受到中後區左右半腦的靜息態功能性連結強弱所影響。而前區半腦間溝通則與右腦的句法處理反應以及右腦半腦內額葉顳葉間的連結性互相影響。總體而論,我們的發現對於側化的語言能力影響因素,提供了更全面的了解。 | zh_TW |
| dc.description.abstract | Syntactic processing has been known as one of the most left-lateralized of brain cognitive functions. However, the underlying mechanism of the functional lateralization seems uncertain. We combined three kind of measurements, event-related potentials (ERP), diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (RS-fMRI) to measure the correlations between structural connectivity (SC) of white matter tracts, resting-state functional connectivity (FC) within and between hemispheres, and online functional ERP responses during the processing of Chinese grammatical judgements at the phrase level in a split visual field paradigm. We investigated the relationships between intra- and inter-hemispheric connectivity and the lateralization of syntactic processing in younger adults.
Twenty-four right-handed young adults without familial sinistrality were recruited in this experiment involving ERP, DTI and rs-fMRI data, with the MRI scan at resting state conducted within 7 months of the ERP experiment. By the spilt visual field presentation, we could collect the hemisphere-biasd ERP responses. Consistent to prior researches, we found the left-lateralized ERP response. We further analyzed the role of functional connectivity in the associations between language-processing-related white-matter structures and ERP indices of syntax processing by structural equation modeling (SEM). Our main finding is that there is a dominant role of LH in syntax processing which may associated with the functional connectivity between middle-posterior part of CC connected area. Functional connectivity between anterior part of CC connected area has bidirectional association with the functional response and frontal-temporal connection of RH. Overall, through analyzing these multimodal data jointly, we bridge some knowledge gaps in our understanding of the critical factors driving a left-lateralized language processing network. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:25:57Z (GMT). No. of bitstreams: 1 ntu-107-R05454003-1.pdf: 6619194 bytes, checksum: 08e4a034db9d1188eca14c17bf22a4b9 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Table of Contents
致謝詞...............................................................................I 中文摘要...........................................................................II Abstract..........................................................................III List of Figures .................................................................V List of Tables ..................................................................VI Main text of the thesis.......................................................1 1.Introduction......................................................................1 1.1. Left hemisphere syntactic processing................................................2 1.2. Functional brain responses reflecting syntactic processing.................2 1.3. White-matter structures involved in syntactic processing................4 1.4. Right hemisphere syntactic processing.........................................5 1.5. Inter-hemispheric communication..................................................7 1.6. The present study..........................................................................11 2. Methods.....................................................................14 2.1. Participants..............................................................................14 2.2. Materials............................................................................15 2.3. Event-related potentials (ERPs) Procedures...................................17 2.4. ERP Acquisition and Analysis.......................................................18 2.5. Magnetic Resonance Imaging (MRI) Scanning Parameters............19 2.6. Diffusion Tensor Imaging (DTI) Analysis.............................................20 2.7. White-Matter Regions of Interest (ROI) Definition...............................21 2.8. Resting State Functional MRI (rs-fMRI) Analysis ...............................25 2.9. Application of Structural Equation Modeling (SEM)............................28 3. Results.......................................................................................31 3.1. Behavioral Performance.............................................................31 3.2. ERPs.......................................................................................31 3.2.1. N400 grammaticality effect (mean amplitude measure)............34 3.2.2. P600 grammaticality effect (peak-to-peak measure).................34 3.3. Inter-Hemispheric Relationships...................................................35 3.3.1. Correlation Between ERP and DTI............................................35 3.3.2. Correlation Between ERP and rs-fMRI.....................................36 3.3.3. Correlation Between rs-fMRI and DTI.....................................38 3.4. Intra-Hemispheric Relationships.....................................................39 3.4.1. Correlation Between ERP and DTI..........................................39 3.4.2. Correlation Between ERP and rs-fMRI...................................39 3.4.3. Correlation Between rs-fMRI and DTI ...................................40 3.5. SEM Results................................................................................41 4. Discussion..........................................................................................48 4.1. Inter-Hemispheric Relationships...........................................48 4.2. Intra-Hemispheric Relationships..........................................................49 4.3. Intra- and Inter-hemispheric Interaction ..............................................50 5. Application……………………………………………………………………50 References................................................................................................52 Appendix..................................................................................................57 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 腦部連結與句法處理能力側化的關係 | zh_TW |
| dc.title | Linking Brain Connectivity to Lateralized Processing of Syntax | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 吳恩賜 | zh_TW |
| dc.contributor.coadvisor | ; | en |
| dc.contributor.oralexamcommittee | 曾文毅;李佳穎 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 句法處理,側化,腦電波,結構性連結,功能性連結, | zh_TW |
| dc.subject.keyword | syntactic processing,lateralization,ERPs,structural connectivity,functional connectivity, | en |
| dc.relation.page | 59 | - |
| dc.identifier.doi | 10.6342/NTU201804275 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2018-11-16 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 腦與心智科學研究所 | - |
| dc.date.embargo-lift | 2028-11-14 | - |
| 顯示於系所單位: | 腦與心智科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 6.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
