Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78854
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林盈仲zh_TW
dc.contributor.advisorYing-Chung Jimmy Linen
dc.contributor.author繆芳zh_TW
dc.contributor.authorFang Miaoen
dc.date.accessioned2021-07-11T15:24:17Z-
dc.date.available2024-01-23-
dc.date.copyright2019-01-24-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citationAspeborg, H., Schrader, J., Coutinho, P.M. (2005) Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiology 137: 983-997.
Boerjan, W., Ralph, J., Baucher, M. (2003) Lignin biosynthesis. Annu Rev Plant Biol 54: 519-546
Chaffey, N. et al. (2002) Secondary xylem development in Arabidopsis: a model for wood formation. Physiologia Plantarum 114(4): 594-600
French, S. et al. (2016) A robust platform for chemical genomics in bacterial systems. Mol Biol Cell 27:1015-1025.
Gaudinier, A. et al. (2011) Enhanced Y1H assays for Arabidopsis. Nature Methods 8: 1053-1055
Gietz, R.D.and Schiestl, R.H. (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols 2: 31-34
Goffeau, A. et al. (1996) Life with 6000 Genes. Science. 274 (5287): 546, 563-7.
Jansson, S., Douglas, C.J. (2007) Populus: a model system for plant biology. Annual Review of Plant Biology 58: 435-458
Kumar, M., Campbell, L., Turner, S. (2016) Secondary cell walls: biosynthesis and manipulation. Journal of Experimental Botany 64(1): 555-531
Li, S., Bashline, L., Lei, L., Gu, Y. (2014) Cellulose Synthesis and Its Regulation. The Arabidopsis Book 11: e0169
Li, S., Zhen, C., Xu, W., Wang, C., Cheng, Y. (2017) Simple, rapid and efficient transformation of genotype Nisqually-1: a basic tool for the first sequenced model tree. Scientific Reports 7: 2638
Lin, Y.J., et al. (2017) Reciprocal cross-regulation of VND and SND multigene TF families for wood formation in Populus trichocarpa. Proceedings of the National Academy of Sciences of the United States of Amerca. 114(45): 9722-7929
Miedes, E. et al. (2014) The role of the secondary cell wall in plant resistance to pathogens. Frontiers in plant science 5: 358
Taylor, N.G., Laurie, S., Turner, S.R. (2000) Multiple Cellulose Synthase Catalytic Subunits Are Required for Cellulose Synthesis in Arabidopsis. The plant cell.12: 2529-2539
Nilsson, J. et al. (2008) Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20(4): 843-55.
Novaes, E. et al. (2010) Lignin and Biomass: A Negative Correlation for Wood Formation and Lignin Content in Trees. Plant physiology 154(2): 555-561
Oh, S., Park, S., Han, K.H. (2003) Transcriptional regulation of secondary growth in Arabidopsis thaliana. Journal of Experimental Botany 54(393): 2709-2722
Pavy, N. et al. (2018) Identification of conserved core xylem gene sets: conifer cDNA microarray development, transcript profiling and computational analyses. New Phytol. 180(4): 766-86.
Peter, I. S., Davidson, E.H. (2016) Chapter Thirteen - Implications of Developmental Gene Regulatory Networks Inside and Outside Developmental Biology. Current Topics in Developmental Biology. 117: 237-251.
Plomion, C., Leprovost, G., Stokes, A. (2001) Wood Formation in Trees. Plant physiology 127: 1513-1523
Reece-Hoyes, J.S. et al. (2011) Enhanced yeast one-hybrid assays for high-throughput gene-centered regulatory network mapping. Nature Methods 8(12): 1059-1064
Reece-Hoyes, J.S., Marian Walhout, A.J. (2012) Yeast one-hybrid assays: A historical and technical perspective. Methods 57: 441-447
Schuetz, M., Smith, R., and Ellis, B. (2013) Xylem tissue specification, patterning, and differentiation mechanisms. Journal of Experimental Botany 64(1): 11-31.
Shahmuradov, I. A., Solovyev, V. V., and Gammerman1 A. J. (2005) Plant promoter prediction with confidence estimation. Nucleic Acids Research 33(3): 1069-1076
Song, J. et al. (2006) Genetic Transformation of Populus trichocarpa Genotype Nisqually-1: A Functional Genomic Tool for Woody Plants. Plant Cell Physiology 47: 1582-1589
Sun, Y. et al. (2017) Application of the yeast one-hybrid technique to plant functional genomics studies. Biotechnology & Biotechnological Equipment 31(6): 1087-1092
Taylor, N.G. et al. (2002) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proceedings of the National Academy of Sciences of the United States of Amerca.100(3): 1450-1455
Tong, A.H.Y., et al. (2001) Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants. Science 294 (5550): 2364-2368
Tong, A.H.Y., et al. (2004) Global Mapping of the Yeast Genetic Interaction Network. Science 303(5659): 808-813
Tuskan, G.A., et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793): 1596-1604
Wang, M., et al. (2009) Dynamic changes in transcripts during regeneration of the secondary vascular system in Populus tomentosa Carr. revealed by cDNA microarrays. BMC Genomics 10: 215.
Ye, Z.H., and Zhong, R. (2015) Molecular control of wood formation in trees. Journal of Experimental Botany 66(14): 4119-4131
Yu, C.P., Lin, J.J., Li, W.H. (2016) Positional distribution of transcription factor binding sites in Arabidopsis thaliana. Scientific Reports 6: 25164
Zhang, J., Elo, A., Helariutta, Y. (2010) Arabidopsis as a model for wood formation. Current Opinion in Biotechnology 22(2): 293-299
Zhong, R. and Ye, Z.H. (2014) Complexity of the transcriptional network controlling secondary wall biosynthesis. Plant science 229: 193-207
Zhong, R. and Ye, Z.H. (2015) Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant and Cell Physiology 56(2): 195–214.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78854-
dc.description.abstract基因調控網路 (gene regulatory networks, GRNs) 可以幫助人們瞭解在基因進行轉錄表達的時候調控因子 (transcription factor, TF) 和目標基因 (target gene) 之間的相互作用關係,而酵母單雜交 (yeast one-hybrid, Y1H) 系統是可以快速建立這種網路的研究方法之一。酵母單雜交的原理是分別將含有目標基因接著報導基因的質體和含有TF表達序列的質體轉殖到酵母菌中,使TF和目標DNA存在於同一個細胞裡,然後通過對這種酵母菌細胞中報導基因表達的篩選,來偵測TF和DNA是否有交互作用。在過去的研究中,酵母單雜交依照操作方式分為兩種類型:單倍體轉殖法 (haploid-transformation) 和雙倍體交配法 (diploid-mating)。
我們透過酵母單雜交系統研究木材合成相關的TF和DNA之間的結合,來初步建立木材形成相關的基因調控網路。本文以木本模式植物毛果楊為研究物種,挑選與木材形成相關的基因為研究材料。接著基於傳統酵母單雜交系統,我們引入了合成遺傳陣列 (synthetic genetic array, SGA) 技術,開發出一種適應高通量操作的新酵母單雜交系統,即減數分裂-酵母單雜交系統 (meiosis-directed Y1H system)。
通過和傳統的酵母單雜交系統進行測試對比,我們發現這種減數分裂-酵母單雜交系統,能夠進行快速簡便的高通量操作,並且得到最高的偵測結合數量,是一種可以快速高效建立基因調控網路的研究方法。
zh_TW
dc.description.abstractGene regulatory networks (GRNs) can demonstrate the interactions between transcription factors (TFs) and their target genes, which would be detected by yeast one-hybrid (Y1H). In Y1H, two components are needed: DNA baits and TF preys, and the interactions between TF and their target DNA are measured by the downstream reporter gene activation in yeast. In the past studies, the yeast one-hybrid system was categorized into two different methods: haploid-transformation and mating diploid-mating. In our study, a high-throughput meiosis-directed Y1H system was developed by synthetic genetic array (SGA) technique. After testing meiosis-direct method, haploid-transformation and diploid-mating method together, we found that the novel method has benefits in highest discovery rate and short processing time. This meiosis-direct Y1H system can be used to quickly constructing the gene regulatory network in wood formation.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:24:17Z (GMT). No. of bitstreams: 1
ntu-107-R05b21035-1.pdf: 3836442 bytes, checksum: bf8bb02a2003a05d3f66324a5d05a6ce (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄
中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 VIII
壹、前言 1
1.1 木材 1
1.1.1 毛果楊 1
1.1.2 木材形成 1
1.1.3 木材形成相關的基因 2
1.1.4 在其他植物中木材形成基因調控網路的研究 3
1.2 基因調控網路 4
1.2.1 轉錄因子 5
1.2.2 啟動子 5
1.3 酵母單雜交 6
1.3.1 酵母的繁殖方式 6
1.3.2 酵母單雜交原理 6
1.3.3 酵母單雜交試驗的分類 7
1.4 Synthetic genetic array (SGA) 8
1.5減數分裂酵母單雜交系統 8
貳、實驗目的 10
叁、材料與方法 11
3.1 TF和啟動子的來源 11
3.2 聚合酶鏈式反應 11
3.2.1 Pfu聚合酶鏈式反應 11
3.2.2 Taq聚合酶鏈式反應 13
3.2.3 DNA瓊脂糖凝膠電泳 14
3.2.4 切膠純化回收DNA 15
3.3 大腸桿菌轉殖和質體DNA純化 16
3.3.1 以擴增質體DNA為目的的大腸桿菌轉殖 16
3.3.2 Ligation產物之質體DNA的大腸桿菌轉殖 16
3.3.3 從大腸桿菌中純化質體DNA 17
3.4 DNA ligation反應 18
3.5 菌株來源 18
3.5.1 Y1HGold菌株 18
3.5.2 Magic Marker及相關的基因 18
3.5.3 Y1HGold-MM菌株 19
3.6 cDNA庫的建立 20
3.7 構建誘導質體 20
3.8 培養基配製 22
3.9 TF轉殖(PEG/LiAc轉殖系統) 27
3.10 TF轉殖後的單株菌落挑選 28
3.11 菌株的保存 28
3.12 構建誘導菌株 29
3.13 報導基因表達測試 29
3.14 高通量操作流程 30
3.14.1 機器和耗材 30
3.14.2 培養平盤的配製 30
3.14.3 構建96孔盤和384陣列盤 30
3.14.4 主要流程 31
3.15 偵測蛋白質-DNA結合 32
3.16 數據分析 33
3.17 構建蛋白表達質體 34
3.17.1 構建表達質體 34
3.17.2 質體的純化 34
3.17.3 TF蛋白表達 36
3.18 西方墨點法 36
肆、結果 42
4.1 質體的構建 42
4.2 轉殖酵母菌的構建和篩選 42
4.2.1 單倍體轉殖法中的酵母菌 42
4.2.2 Y1HGold-MM單倍體酵母菌 43
4.2.3 雙倍體交配法中的酵母菌 44
4.2.4 減數分裂法中的酵母菌 45
4.3 報導基因表達測試 45
4.4 構建高通量操作使用的陣列盤 46
4.5 減數分裂酵母單雜交系統和兩種傳統方法的對比 47
4.6 減數分裂法的重複性 48
4.7 構建基因調控網路 48
4.8 蛋白表達質體的構建結果 49
伍、結論 50
5.1 酵母單雜交系統的限制 50
5.2 減數分裂酵母單雜交系統的優勢 50
5.3 總結 52
陸、參考文獻 54
-
dc.language.isozh_TW-
dc.subject酵母單雜交zh_TW
dc.subject啟動子zh_TW
dc.subject基因調控網路zh_TW
dc.subject合成遺傳陣列zh_TW
dc.subject轉錄因子zh_TW
dc.subjecttranscription factoren
dc.subjectgene regulatory networken
dc.subjectpromoteren
dc.subjectyeast one-hybriden
dc.subjectsynthetic genetic arrayen
dc.title使用減數分裂-酵母單雜交方法研究毛果楊中木材形成的基因調控網路zh_TW
dc.titleA meiosis-directed yeast one-hybrid system to uncover the transcriptional regulatory network in Populous trichocarpa wood formationen
dc.typeThesis-
dc.date.schoolyear107-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張典顯;王雅筠;周信宏zh_TW
dc.contributor.oralexamcommitteeTien-Hsien Chang;Ya-Yun Wang;Hsin-Hung David Chouen
dc.subject.keyword基因調控網路,轉錄因子,啟動子,酵母單雜交,合成遺傳陣列,zh_TW
dc.subject.keywordgene regulatory network,transcription factor,promoter,yeast one-hybrid,synthetic genetic array,en
dc.relation.page85-
dc.identifier.doi10.6342/NTU201804193-
dc.rights.note未授權-
dc.date.accepted2019-01-16-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生命科學系-
dc.date.embargo-lift2024-01-24-
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved