請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78839完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林清富(Ching-Fuh Lin) | |
| dc.contributor.author | Chun-Hsiao Kuan | en |
| dc.contributor.author | 管淳孝 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:23:09Z | - |
| dc.date.available | 2025-08-20 | |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | 1. Petroleum, B., Bp Statistical Review of World Energy: London. British Petroleum Corporate Communication Services 1992, 37. 2. PVPS, I., Evaluation of Islanding Detection Methods for Photovoltaic Utility-Interactive Power Systems. Report IEA PVPS T5-09 2002. 3. Outlook, B. E., 2019 Edition. London, United Kingdom2019 2019. 4. Prince, M., Silicon Solar Energy Converters. Journal of Applied Physics 1955, 26, 534-540. 5. Green, M. A.; Dunlop, E. D.; Levi, D. H.; Hohl‐Ebinger, J.; Yoshita, M.; Ho‐Baillie, A. W., Solar Cell Efficiency Tables (Version 54). Progress in photovoltaics: research and applications 2019, 27, 565-575. 6. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131, 6050-6051. 7. Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G., 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale 2011, 3, 4088-4093. 8. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific reports 2012, 2, 1-7. 9. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643-647. 10. Wu, Y.; Islam, A.; Yang, X.; Qin, C.; Liu, J.; Zhang, K.; Peng, W.; Han, L., Retarding the Crystallization of Pbi 2 for Highly Reproducible Planar-Structured Perovskite Solar Cells Via Sequential Deposition. Energy Environmental Science 2014, 7, 2934-2938. 11. Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature 2013, 501, 395-398. 12. Snaith, H. J., Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. The journal of physical chemistry letters 2013, 4, 3623-3630. 13. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science 2015, 348, 1234-1237. 14. Hodes, G., Perovskite-Based Solar Cells. Science 2013, 342, 317-318. 15. Zhao, X.; Wang, M., Organic Hole-Transporting Materials for Efficient Perovskite Solar Cells. Materials today energy 2018, 7, 208-220. 16. Sato, T.; Takagi, S.; Deledda, S.; Hauback, B. C.; Orimo, S.-i., Extending the Applicability of the Goldschmidt Tolerance Factor to Arbitrary Ionic Compounds. Scientific reports 2016, 6, 23592. 17. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y., Interface Engineering of Highly Efficient Perovskite Solar Cells. Science 2014, 345, 542-546. 18. Kim, H.-S.; Im, S. H.; Park, N.-G., Organolead Halide Perovskite: New Horizons in Solar Cell Research. The Journal of Physical Chemistry C 2014, 118, 5615-5625. 19. Cohen, B. N.; Labarca, C.; Davidson, N.; Lester, H. A., Mutations in M2 Alter the Selectivity of the Mouse Nicotinic Acetylcholine Receptor for Organic and Alkali Metal Cations. The Journal of general physiology 1992, 100, 373-400. 20. Koh, T. M.; Fu, K.; Fang, Y.; Chen, S.; Sum, T.; Mathews, N.; Mhaisalkar, S. G.; Boix, P. P.; Baikie, T., Formamidinium-Containing Metal-Halide: An Alternative Material for near-Ir Absorption Perovskite Solar Cells. The Journal of Physical Chemistry C 2014, 118, 16458-16462. 21. Ono, L. K.; Leyden, M. R.; Wang, S.; Qi, Y., Organometal Halide Perovskite Thin Films and Solar Cells by Vapor Deposition. Journal of Materials Chemistry A 2016, 4, 6693-6713. 22. Marinova, N.; Valero, S.; Delgado, J. L., Organic and Perovskite Solar Cells: Working Principles, Materials and Interfaces. Journal of colloid and interface science 2017, 488, 373-389. 23. Matthews, F. L.; Rawlings, R. D., Composite Materials: Engineering and Science; CRC press, 1999. 24. D’innocenzo, V.; Grancini, G.; Alcocer, M. J.; Kandada, A. R. S.; Stranks, S. D.; Lee, M. M.; Lanzani, G.; Snaith, H. J.; Petrozza, A., Excitons Versus Free Charges in Organo-Lead Tri-Halide Perovskites. Nature communications 2014, 5, 1-6. 25. Marchioro, A.; Teuscher, J.; Friedrich, D.; Kunst, M.; Van De Krol, R.; Moehl, T.; Grätzel, M.; Moser, J.-E., Unravelling the Mechanism of Photoinduced Charge Transfer Processes in Lead Iodide Perovskite Solar Cells. Nature photonics 2014, 8, 250-255. 26. Niu, G.; Guo, X.; Wang, L., Review of Recent Progress in Chemical Stability of Perovskite Solar Cells. Journal of Materials Chemistry A 2015, 3, 8970-8980. 27. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341-344. 28. Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J., Low-Temperature Processed Meso-Superstructured to Thin-Film Perovskite Solar Cells. Energy Environmental Science 2013, 6, 1739-1743. 29. Im, J.-H.; Kim, H.-S.; Park, N.-G., Morphology-Photovoltaic Property Correlation in Perovskite Solar Cells: One-Step Versus Two-Step Deposition of Ch3nh3pbi3. Apl Materials 2014, 2, 081510. 30. Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J., Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials 2014, 24, 151-157. 31. Liang, K.; Mitzi, D. B.; Prikas, M. T., Synthesis and Characterization of Organic− Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique. Chemistry of materials 1998, 10, 403-411. 32. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M., Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature 2013, 499, 316-319. 33. Im, J.-H.; Jang, I.-H.; Pellet, N.; Grätzel, M.; Park, N.-G., Growth of Ch 3 Nh 3 Pbi 3 Cuboids with Controlled Size for High-Efficiency Perovskite Solar Cells. Nature nanotechnology 2014, 9, 927-932. 34. Song, T.-B.; Chen, Q.; Zhou, H.; Jiang, C.; Wang, H.-H.; Yang, Y. M.; Liu, Y.; You, J.; Yang, Y., Perovskite Solar Cells: Film Formation and Properties. Journal of Materials Chemistry A 2015, 3, 9032-9050. 35. Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J., Efficient, High Yield Perovskite Photovoltaic Devices Grown by Interdiffusion of Solution-Processed Precursor Stacking Layers. Energy Environmental Science 2014, 7, 2619-2623. 36. Bi, C.; Yuan, Y.; Fang, Y.; Huang, J., Low‐Temperature Fabrication of Efficient Wide‐Bandgap Organolead Trihalide Perovskite Solar Cells. Advanced Energy Materials 2015, 5, 1401616. 37. Sessolo, M.; Momblona, C.; Gil-Escrig, L.; Bolink, H. J., Photovoltaic Devices Employing Vacuum-Deposited Perovskite Layers. MRS Bulletin 2015, 40, 660. 38. Era, M.; Hattori, T.; Taira, T.; Tsutsui, T., Self-Organized Growth of Pbi-Based Layered Perovskite Quantum Well by Dual-Source Vapor Deposition. Chemistry of materials 1997, 9, 8-10. 39. Luo, P.; Liu, Z.; Xia, W.; Yuan, C.; Cheng, J.; Lu, Y., Uniform, Stable, and Efficient Planar-Heterojunction Perovskite Solar Cells by Facile Low-Pressure Chemical Vapor Deposition under Fully Open-Air Conditions. ACS applied materials interfaces 2015, 7, 2708-2714. 40. Zhang, T.; Yang, M.; Zhao, Y.; Zhu, K., Controllable Sequential Deposition of Planar Ch3nh3pbi3 Perovskite Films Via Adjustable Volume Expansion. Nano letters 2015, 15, 3959-3963. 41. Chen, C. W.; Kang, H. W.; Hsiao, S. Y.; Yang, P. F.; Chiang, K. M.; Lin, H. W., Efficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition. Advanced Materials 2014, 26, 6647-6652. 42. Polander, L. E.; Pahner, P.; Schwarze, M.; Saalfrank, M.; Koerner, C.; Leo, K., Hole-Transport Material Variation in Fully Vacuum Deposited Perovskite Solar Cells. APL Materials 2014, 2, 081503. 43. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y., Planar Heterojunction Perovskite Solar Cells Via Vapor-Assisted Solution Process. Journal of the American Chemical Society 2014, 136, 622-625. 44. Zhang, H.; Shi, J.; Xu, X.; Zhu, L.; Luo, Y.; Li, D.; Meng, Q., Mg-Doped Tio 2 Boosts the Efficiency of Planar Perovskite Solar Cells to Exceed 19%. Journal of Materials Chemistry A 2016, 4, 15383-15389. 45. Hu, L.; Peng, J.; Wang, W.; Xia, Z.; Yuan, J.; Lu, J.; Huang, X.; Ma, W.; Song, H.; Chen, W., Sequential Deposition of Ch3nh3pbi3 on Planar Nio Film for Efficient Planar Perovskite Solar Cells. Acs Photonics 2014, 1, 547-553. 46. Li, X.; Bi, D.; Yi, C.; Décoppet, J.-D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M., A Vacuum Flash–Assisted Solution Process for High-Efficiency Large-Area Perovskite Solar Cells. Science 2016, 353, 58-62. 47. Liu, C.; Fan, J.; Zhang, X.; Shen, Y.; Yang, L.; Mai, Y., Hysteretic Behavior Upon Light Soaking in Perovskite Solar Cells Prepared Via Modified Vapor-Assisted Solution Process. ACS applied materials interfaces 2015, 7, 9066-9071. 48. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent Engineering for High-Performance Inorganic–Organic Hybrid Perovskite Solar Cells. Nature materials 2014, 13, 897-903. 49. Jung, J. W.; Williams, S. T.; Jen, A. K.-Y., Low-Temperature Processed High-Performance Flexible Perovskite Solar Cells Via Rationally Optimized Solvent Washing Treatments. RSC advances 2014, 4, 62971-62977. 50. Liu, Z.; Lee, E.-C., Solvent Engineering of the Electron Transport Layer Using 1, 8-Diiodooctane for Improving the Performance of Perovskite Solar Cells. Organic Electronics 2015, 24, 101-105. 51. Zheng, Y. C.; Yang, S.; Chen, X.; Chen, Y.; Hou, Y.; Yang, H. G., Thermal-Induced Volmer–Weber Growth Behavior for Planar Heterojunction Perovskites Solar Cells. Chemistry of materials 2015, 27, 5116-5121. 52. Liu, D.; Wu, L.; Li, C.; Ren, S.; Zhang, J.; Li, W.; Feng, L., Controlling Ch3nh3pbi3–X Cl X Film Morphology with Two-Step Annealing Method for Efficient Hybrid Perovskite Solar Cells. ACS applied materials interfaces 2015, 7, 16330-16337. 53. Liu, J.; Gao, C.; He, X.; Ye, Q.; Ouyang, L.; Zhuang, D.; Liao, C.; Mei, J.; Lau, W., Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell. ACS applied materials interfaces 2015, 7, 24008-24015. 54. Zhou, Q.; Jin, Z.; Li, H.; Wang, J., Enhancing Performance and Uniformity of Ch 3 Nh 3 Pbi 3− X Cl X Perovskite Solar Cells by Air-Heated-Oven Assisted Annealing under Various Humidities. Scientific reports 2016, 6, 1-8. 55. Lin, Q.; Armin, A.; Nagiri, R. C. R.; Burn, P. L.; Meredith, P., Electro-Optics of Perovskite Solar Cells. Nature Photonics 2015, 9, 106-112. 56. Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A., High-Efficiency Solution-Processed Perovskite Solar Cells with Millimeter-Scale Grains. Science 2015, 347, 522-525. 57. Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M., Lead‐Free Halide Perovskite Solar Cells with High Photocurrents Realized through Vacancy Modulation. Advanced Materials 2014, 26, 7122-7127. 58. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P.; Kanatzidis, M. G., Lead-Free Solid-State Organic–Inorganic Halide Perovskite Solar Cells. Nature photonics 2014, 8, 489-494. 59. Unger, E. L.; Hoke, E. T.; Bailie, C. D.; Nguyen, W. H.; Bowring, A. R.; Heumüller, T.; Christoforo, M. G.; McGehee, M. D., Hysteresis and Transient Behavior in Current–Voltage Measurements of Hybrid-Perovskite Absorber Solar Cells. Energy Environmental Science 2014, 7, 3690-3698. 60. Xiao, Z.; Yuan, Y.; Shao, Y.; Wang, Q.; Dong, Q.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J., Giant Switchable Photovoltaic Effect in Organometal Trihalide Perovskite Devices. Nature materials 2015, 14, 193-198. 61. Chen, H.-W.; Sakai, N.; Ikegami, M.; Miyasaka, T., Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells. The journal of physical chemistry letters 2015, 6, 164-169. 62. Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M., Understanding the Rate-Dependent J–V Hysteresis, Slow Time Component, and Aging in Ch 3 Nh 3 Pbi 3 Perovskite Solar Cells: The Role of a Compensated Electric Field. Energy Environmental Science 2015, 8, 995-1004. 63. Zhang, Y.; Liu, M.; Eperon, G. E.; Leijtens, T. C.; McMeekin, D.; Saliba, M.; Zhang, W.; de Bastiani, M.; Petrozza, A.; Herz, L. M., Charge Selective Contacts, Mobile Ions and Anomalous Hysteresis in Organic–Inorganic Perovskite Solar Cells. Materials Horizons 2015, 2, 315-322. 64. Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J., Electron-Hole Diffusion Lengths> 175 Μm in Solution-Grown Ch3nh3pbi3 Single Crystals. Science 2015, 347, 967-970. 65. Laboratory, N. R. E., Best Research‐Cell Efficiency Chart. NREL Golden, CO: 2019. 66. Sha, W. E.; Ren, X.; Chen, L.; Choy, W. C., The Efficiency Limit of Ch3nh3pbi3 Perovskite Solar Cells. Applied Physics Letters 2015, 106, 221104. 67. Saliba, M.; Correa‐Baena, J. P.; Grätzel, M.; Hagfeldt, A.; Abate, A., Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. Angewandte Chemie International Edition 2018, 57, 2554-2569. 68. Marchioro, A.; Teuscher, J.; Friedrich, D.; Kunst, M.; Van De Krol, R.; Moehl, T.; Grätzel, M.; Moser, J.-E., Unravelling the Mechanism of Photoinduced Charge Transfer Processes in Lead Iodide Perovskite Solar Cells. Nature photonics 2014, 8, 250. 69. Williams, S. T.; Zuo, F.; Chueh, C.-C.; Liao, C.-Y.; Liang, P.-W.; Jen, A. K.-Y., Role of Chloride in the Morphological Evolution of Organo-Lead Halide Perovskite Thin Films. ACS nano 2014, 8, 10640-10654. 70. Colella, S.; Mosconi, E.; Pellegrino, G.; Alberti, A.; Guerra, V. L.; Masi, S.; Listorti, A.; Rizzo, A.; Condorelli, G. G.; De Angelis, F., Elusive Presence of Chloride in Mixed Halide Perovskite Solar Cells. The journal of physical chemistry letters 2014, 5, 3532-3538. 71. Tidhar, Y.; Edri, E.; Weissman, H.; Zohar, D.; Hodes, G.; Cahen, D.; Rybtchinski, B.; Kirmayer, S., Crystallization of Methyl Ammonium Lead Halide Perovskites: Implications for Photovoltaic Applications. Journal of the American Chemical Society 2014, 136, 13249-13256. 72. Docampo, P.; Hanusch, F. C.; Stranks, S. D.; Döblinger, M.; Feckl, J. M.; Ehrensperger, M.; Minar, N. K.; Johnston, M. B.; Snaith, H. J.; Bein, T., Solution Deposition‐Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells. Advanced Energy Materials 2014, 4, 1400355. 73. Chae, J.; Dong, Q.; Huang, J.; Centrone, A., Chloride Incorporation Process in Ch3nh3pbi3–X Cl X Perovskites Via Nanoscale Bandgap Maps. Nano letters 2015, 15, 8114-8121. 74. Heo, J. H.; Lee, M. H.; Jang, M. H.; Im, S. H., Highly Efficient Ch 3 Nh 3 Pbi 3− X Cl X Mixed Halide Perovskite Solar Cells Prepared by Re-Dissolution and Crystal Grain Growth Via Spray Coating. Journal of Materials Chemistry A 2016, 4, 17636-17642. 75. Barrows, A. T.; Pearson, A. J.; Kwak, C. K.; Dunbar, A. D.; Buckley, A. R.; Lidzey, D. G., Efficient Planar Heterojunction Mixed-Halide Perovskite Solar Cells Deposited Via Spray-Deposition. Energy Environmental Science 2014, 7, 2944-2950. 76. Liao, H. C.; Guo, P.; Hsu, C. P.; Lin, M.; Wang, B.; Zeng, L.; Huang, W.; Soe, C. M. M.; Su, W. F.; Bedzyk, M. J., Enhanced Efficiency of Hot‐Cast Large‐Area Planar Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation. Advanced Energy Materials 2017, 7, 1601660. 77. Lin, S.-P.; Chang, S.-K.; Lee, H.-C.; Guo, P.-T.; Thiyagu, S.; Lin, C.-F., Efficient Planar Heterojunction Perovskite Solar Cells Via Low-Pressure Proximity Evaporation Technique. IEEE Journal of Photovoltaics 2016, 7, 184-190. 78. Kuo, P.-T.; Lin, S.-P.; Hsu, H.-C.; Lin, C.-F., The Deposition Environment Controlling Method: A Vapor-Phase Solvent-Assisted Approach to Fabricate High-Quality Crystalline Perovskite. IEEE Journal of Photovoltaics 2018, 8, 777-782. 79. Wang, P.; Zhang, X.; Zhou, Y.; Jiang, Q.; Ye, Q.; Chu, Z.; Li, X.; Yang, X.; Yin, Z.; You, J., Solvent-Controlled Growth of Inorganic Perovskite Films in Dry Environment for Efficient and Stable Solar Cells. Nature communications 2018, 9, 1-7. 80. Eperon, G. E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J., Inorganic Caesium Lead Iodide Perovskite Solar Cells. Journal of Materials Chemistry A 2015, 3, 19688-19695. 81. Steele, J. A.; Jin, H.; Dovgaliuk, I.; Berger, R. F.; Braeckevelt, T.; Yuan, H.; Martin, C.; Solano, E.; Lejaeghere, K.; Rogge, S. M., Thermal Unequilibrium of Strained Black Cspbi3 Thin Films. Science 2019, 365, 679-684. 82. Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Hörantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T., Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells. Advanced Energy Materials 2016, 6, 1502458. 83. Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; Burkhard, G. F.; Hoke, E. T.; McGehee, M. D., Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. The journal of physical chemistry letters 2016, 7, 746-751. 84. Chen, C. Y.; Lin, H. Y.; Chiang, K. M.; Tsai, W. L.; Huang, Y. C.; Tsao, C. S.; Lin, H. W., All‐Vacuum‐Deposited Stoichiometrically Balanced Inorganic Cesium Lead Halide Perovskite Solar Cells with Stabilized Efficiency Exceeding 11%. Advanced materials 2017, 29, 1605290. 85. Nam, J. K.; Jung, M. S.; Chai, S. U.; Choi, Y. J.; Kim, D.; Park, J. H., Unveiling the Crystal Formation of Cesium Lead Mixed-Halide Perovskites for Efficient and Stable Solar Cells. The journal of physical chemistry letters 2017, 8, 2936-2940. 86. Liao, W.; Zhao, D.; Yu, Y.; Shrestha, N.; Ghimire, K.; Grice, C. R.; Wang, C.; Xiao, Y.; Cimaroli, A. J.; Ellingson, R. J., Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. Journal of the American Chemical Society 2016, 138, 12360-12363. 87. Chung, I.; Song, J.-H.; Im, J.; Androulakis, J.; Malliakas, C. D.; Li, H.; Freeman, A. J.; Kenney, J. T.; Kanatzidis, M. G., Cssni3: Semiconductor or Metal? High Electrical Conductivity and Strong near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions. Journal of the American Chemical Society 2012, 134, 8579-8587. 88. Shockley, W.; Queisser, H. J., Detailed Balance Limit of Efficiency of P‐N Junction Solar Cells. Journal of applied physics 1961, 32, 510-519. 89. Hao, F.; Stoumpos, C. C.; Chang, R. P.; Kanatzidis, M. G., Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells. Journal of the American Chemical Society 2014, 136, 8094-8099. 90. Amat, A.; Mosconi, E.; Ronca, E.; Quarti, C.; Umari, P.; Nazeeruddin, M. K.; Gratzel, M.; De Angelis, F., Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting. Nano letters 2014, 14, 3608-3616. 91. Xu, X.; Chueh, C.-C.; Yang, Z.; Rajagopal, A.; Xu, J.; Jo, S. B.; Jen, A. K.-Y., Ascorbic Acid as an Effective Antioxidant Additive to Enhance the Efficiency and Stability of Pb/Sn-Based Binary Perovskite Solar Cells. Nano Energy 2017, 34, 392-398. 92. Xu, X.; Wang, M., Photocurrent Hysteresis Related to Ion Motion in Metal-Organic Perovskites. Science China Chemistry 2017, 60, 396-404. 93. Dastidar, S.; Hawley, C. J.; Dillon, A. D.; Gutierrez-Perez, A. D.; Spanier, J. E.; Fafarman, A. T., Quantitative Phase-Change Thermodynamics and Metastability of Perovskite-Phase Cesium Lead Iodide. The journal of physical chemistry letters 2017, 8, 1278-1282. 94. Smith, I. C.; Hoke, E. T.; Solis‐Ibarra, D.; McGehee, M. D.; Karunadasa, H. I., A Layered Hybrid Perovskite Solar‐Cell Absorber with Enhanced Moisture Stability. Angewandte Chemie 2014, 126, 11414-11417. 95. Li, N.; Zhu, Z.; Chueh, C. C.; Liu, H.; Peng, B.; Petrone, A.; Li, X.; Wang, L.; Jen, A. K. Y., Mixed Cation Faxpea1–Xpbi3 with Enhanced Phase and Ambient Stability toward High‐Performance Perovskite Solar Cells. Advanced Energy Materials 2017, 7, 1601307. 96. Yang, Z.; Rajagopal, A.; Chueh, C. C.; Jo, S. B.; Liu, B.; Zhao, T.; Jen, A. K. Y., Stable Low‐Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells. Advanced Materials 2016, 28, 8990-8997. 97. Juarez-Perez, E. J.; Hawash, Z.; Raga, S. R.; Ono, L. K.; Qi, Y., Thermal Degradation of Ch 3 Nh 3 Pbi 3 Perovskite into Nh 3 and Ch 3 I Gases Observed by Coupled Thermogravimetry–Mass Spectrometry Analysis. Energy environmental science 2016, 9, 3406-3410. 98. Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A., Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency. Energy environmental science 2016, 9, 1989-1997. 99. Leijtens, T.; Eperon, G. E.; Pathak, S.; Abate, A.; Lee, M. M.; Snaith, H. J., Overcoming Ultraviolet Light Instability of Sensitized Tio 2 with Meso-Superstructured Organometal Tri-Halide Perovskite Solar Cells. Nature communications 2013, 4, 1-8. 100. Chen, Y.; Chen, T.; Dai, L., Layer‐by‐Layer Growth of Ch3nh3pbi3− Xclx for Highly Efficient Planar Heterojunction Perovskite Solar Cells. Advanced Materials 2015, 27, 1053-1059. 101. Aristidou, N.; Sanchez‐Molina, I.; Chotchuangchutchaval, T.; Brown, M.; Martinez, L.; Rath, T.; Haque, S. A., The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. Angewandte Chemie 2015, 127, 8326-8330. 102. Christians, J. A.; Miranda Herrera, P. A.; Kamat, P. V., Transformation of the Excited State and Photovoltaic Efficiency of Ch3nh3pbi3 Perovskite Upon Controlled Exposure to Humidified Air. Journal of the American Chemical Society 2015, 137, 1530-1538. 103. Yang, J.; Siempelkamp, B. D.; Liu, D.; Kelly, T. L., Investigation of Ch3nh3pbi3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques. ACS nano 2015, 9, 1955-1963. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78839 | - |
| dc.description.abstract | 在環境污染、資源短缺日益加劇的的情況下,太陽能作為一種可再生能源的發展刻不容緩。為瞭解決能源的可替代問題,科學家們研究出了許許多多種類型的太陽能電池,而傳統矽太陽能電池由於其不俗的光電轉換效率和穩定性長期以來被當做是太陽能電池的主要規模化生產的材料,但是生產成本過於高昂以至於各國在推進商業化的過程不斷碰壁,就在太陽能產業發展困難的時候,鈣鈦礦一詞出現在了人們的眼前,憑藉著優異的光電特性和較低的材料成本,再加上製作過程也相對簡單,鈣鈦礦成為當下最有潛力的太陽能電池材料,而短短數年間,鈣鈦礦太陽能電池的光電轉換效率也從不到10%迅速上升到25.2%,逐漸接近了矽太陽能電池的當下最高的光電轉換效率的世界紀錄。 雖然採用一步驟溶液法可以很容易製作出鈣鈦礦太陽能電池,但是過於依賴個人手法,容錯率較低,難以大量生產。而作為半導體材料領域的常用製作手段,採在真空環境下加熱蒸發固體粉末的鍍膜方法被看做是鈣鈦礦太陽能電池工業化中最具潛力的方法,但是製作成本高,且難以完全反應便是限制其發展的障礙。本研究階段為此提出了一種新的方法可以有效解決上述問題。結合溶液法和蒸鍍製程,本研究採用實驗室新創的製作方法三明治蒸鍍法,並創新提出(Growth process control) GPC生長控制技術以及(Solvent annealing) SA溶劑輔助加熱技術。將MAI作為種子層旋塗在塗有PEDOT:PSS的ITO基板上,並分別用蒸鍍完成PbI2和MAI粉末,其中,MAI粉末通過實驗室自製的低真空SET腔體製作並退火形成MAPbI3鈣鈦礦主動層,基於MAI-PbI2-MAI的雙互擴散的原理,MAI和PbI2會擴散到中間層PbI2之中並且形成MAPbI3鈣鈦礦,將製作好的元件至於低真空下生長一段時間後,隨著時間的增長,鈣鈦礦層逐漸完全反應,蒸鍍製程中存在的過量未反應的PbI2殘留物也被完全消除。最終形成高結晶度的MAPbI3鈣鈦礦太陽能電池。所製作的太陽能電池最高效率可以達到16.4%。 在傳統的MAPbI3鈣鈦礦中加入一定比例的Br和Cl有助於光譜範圍藍移以及開路電壓上昇,因此摻雜氯的鈣鈦礦一直被認為是鈣鈦礦太陽能電池和矽太陽能電池結合的最好選擇。而通常要實現摻雜工藝往往會採用溶液法去完成,若能採用蒸鍍製程製備,對於大量生產來說具有非常重要的意義。而本研究階段開發溶劑輔助蒸發技術,利用三明治蒸鍍法製備MAPbIxCl3-x的鈣鈦礦之後,在利用一定比例的DMSO前驅液的進行溶劑輔助加熱處理,不但可以讓蒸鍍法所製作的MAPbIxCl3-x具有非常完整的成膜度,還能大幅提升所製作出的太陽能電池的光電性能。最終我們所製作出的含氯鈣鈦礦太陽能電池最高效率達到15%。 雖然作為當下太陽能電池的明星材料,傳統鈣鈦礦材料MAPbI3還是存在諸如穩定性差,光照下易分解,光譜範圍有限等問題。為了有效解決這些問題,本研究提出了兩種有效的光譜調變手段。首先,採用溶液法,研製出全無機鉛錫共摻雜鈣鈦礦太陽能電池和2D+3D新型Cs base鉛錫共摻雜鈣鈦礦太陽能電池。摻雜一定比例Sn可以讓鈣鈦礦光譜紅移,加入一定濃度的二維材料PEAI可以提高無機鈣鈦礦的相位穩定性,眾所周知,A位有以機大分子離子為主的鈣鈦礦諸如MAPbI3在光照下容易產生分解,而以無機Cs為主的鈣鈦礦結構在光照下較為穩定。我們製作出效率達到16.1%的無機為主體的鈣鈦礦太陽能電池。 | zh_TW |
| dc.description.abstract | With the increasing environmental pollution and resource shortage, the development of solar energy as a renewable energy is important. To solve the problem of substitution of energy source, scientists have developed many types of solar cells. Because of its excellent photoelectric conversion efficiency and stability, traditional silicon solar cells have been regarded as the main materials for large-scale production of solar cells, but the cost of production is too high. When the development of solar energy industry is difficult, perovskite with excellent photoelectric properties and low material cost, plus the relatively easy manufacturing, has become the most potential solar cell material. In a short few years, the photoelectric conversion efficiency of perovskite solar cells has risen rapidly from less than 10% to 25.2%, it has gradually entered the world record of the highest photoelectric conversion efficiency of silicon solar cells. Although perovskite solar cells can be easily produced by one-step solution method, it is difficult to mass produce due to its low error tolerance and over dependence on personal techniques. As a common manufacturing method in the field of semiconductor materials, the evaporation method in vacuum environment is regarded as the most potential method in the industrialization of perovskite solar cells, but the high manufacturing cost and the difficulty of complete reaction are big obstacles to its development. A new method is proposed to solve the above problems. Combined with the solution method and the evaporation process, the sandwich evaporation method, which is a new manufacturing method developed in our laboratory, is adopted in this study. The (growth process control) GPC growth control technology and (solvent annealing) SA solvent assisted heating technology are innovated. MAI, used as the seed layer, was spin-coated on ITO substrate coated with PEDOT: PSS. PbI2 and MAI powders were evaporated respectively. Among them, MAI powder was made by low vacuum SET cavity, made in our laboratory, to form MAPbI3 perovskite active layer. Based on the principle of dual diffusion of MAI- PbI2-MAI, MAI would diffuse into PbI2 intermediate layer and form MAPbI3 perovskite, which would make good performance after a period of time of growth in low vacuum. With the increase of time, the perovskite active layer gradually reacts completely, and the excessive unreacted PbI2 residue in the evaporation process is eliminated completely. Finally, a high crystallinity MAPbI3 perovskite solar cell was formed. The highest efficiency of the solar cell could reach 16.4%. Adding a certain proportion of Br and Cl to the traditional MAPbI3 perovskite helps shift the spectral range toward blue spectrum and increase the open circuit voltage. Therefore,the chlorine Doped Perovskite has been considered as the best choice for the combination of perovskite solar cells and silicon solar cells. The solution process is usually used to realize the doping process. If we can use the Deposition process, it is very helpful for mass production. In this research stage, the solvent annealing Deposition technology is developed. After the perovskite of MAPbIxCl3-x prepared by sandwich evaporation method, a certain proportion of DMSO precursor solution is used for solvent annealing treatment, which can not only make the MAPbIxCl3-x produced by evaporation method have a very complete film, but also greatly improve the photoelectric performance of the solar cell. Finally, the efficiency of the perovskite solar cell is 15%. As the star material of solar cell, MAPbI3, a traditional perovskite material, also has some problems such as poor stability, easy decomposition under light, limited spectral range and so on. To solve these problems, two effective methods of spectral modulation are proposed. First, a new type of Cs base lead-tin mixed perovskite solar cell was developed by solution process. Doping a certain proportion of Sn can make the spectrum of perovskite red shift, adding a certain concentration of two-dimensional material PEAI can improve the phase stability of inorganic perovskite. As we all know, perovskite with organic macromolecular ions as the main position, such as MAPbI3, is easy to decompose under light, while perovskite structure with organic Cs as the main position is relatively stable under light. We have made perovskite solar cells with an efficiency of 16.1%. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:23:09Z (GMT). No. of bitstreams: 1 U0001-1908202002003100.pdf: 6343236 bytes, checksum: 9076ac1c9953082012552b4f37d9eb24 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝........................................................................................................................................... I 中文摘要.................................................................................................................................. II Abstract ................................................................................................................................. IV 圖目錄................................................................................................................................... VII 表目錄.................................................................................................................................... XI 第一章 緒論.............................................................................................................................. 1 1.1 研究背景 .................................................................................................................................. 1 1.1.1 世界能源與太陽能的使用發展 ................................................................................. 1 1.1.2 太陽能電池現況與發展 ............................................................................................. 3 1.2文獻回顧 ................................................................................................................................... 6 1.2.1 鈣鈦礦太陽能電池歷史沿革 ..................................................................................... 6 1.2.2 鈣鈦礦晶格與電池結構 ............................................................................................. 8 第二章 太陽能電池實驗原理 ............................................................................................... 11 2.1太陽能電池基本理論 .............................................................................................................. 11 2.1.1 太陽能電池運作原理 ............................................................................................... 11 2.1.2. 太陽能電池運作的IV曲線 ..................................................................................... 12 2.2 鈣鈦礦太陽能電池之技術原理............................................................................................ 18 2.2.1 鈣鈦礦太陽能電池工作機制 ................................................................................... 18 2.2.2 鈣鈦礦製備方式 ....................................................................................................... 21 2.2.3 量測的遲滯現象與環境穩定性 ............................................................................... 27 第三章 利用生長控制技術改良三明治蒸鍍法製備MAPbI3鈣鈦礦太陽能電池............ 32 3.1三明治蒸鍍法的介紹 .............................................................................................................. 32 3.2生長控制技術的介紹 .............................................................................................................. 34 3.3元件製程步驟 .......................................................................................................................... 35 3.2.1 實驗溶液製備........................................................................................................... 35 3.2.2 元件製備流程........................................................................................................... 36 3.4結果與討論 .............................................................................................................................. 41 3.5結論 ......................................................................................................................................... 48 第四章 利用三明治蒸鍍法和溶劑輔助加熱技術製備含氯CH3NH3PbI3-xClx鈣鈦礦太陽能電池................................................................................................................................. 49 4.1研究動機 ................................................................................................................................. 49 4.2元件製程步驟 .......................................................................................................................... 51 4.2.1 實驗溶液製備........................................................................................................... 51 4.2.2 元件製備流程........................................................................................................... 53 4.3結果與討論 .............................................................................................................................. 57 第五章 利用溶液法製備基於銫陽離子無機鉛錫共摻雜鈣鈦礦太陽能電池 ................. 66 5.1研究背景 ................................................................................................................................. 66 5.2 研究動機 ................................................................................................................................ 72 5.3元件製程步驟 .......................................................................................................................... 73 5.3.1 實驗溶液製備........................................................................................................... 74 5.3.2 元件製備流程........................................................................................................... 75 5.4結果與討論 .............................................................................................................................. 77 5.5結論 ......................................................................................................................................... 97 第六章 結論與未來展望 ..................................................................................................... 99 6.1結論 ......................................................................................................................................... 99 6.2未來展望 ............................................................................................................................... 101 著作列表............................................................................................................................... 102 期刊論文(1篇再投2篇正在撰稿) ........................................................................................ 102 研討會論文(9篇) ................................................................................................................... 102 參考資料............................................................................................................................... 104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 溶劑輔助加熱 | zh_TW |
| dc.subject | 鈣鈦礦太陽能電池 | zh_TW |
| dc.subject | 一步驟溶液法 | zh_TW |
| dc.subject | 雙向傳輸 | zh_TW |
| dc.subject | 生長控制技術 | zh_TW |
| dc.subject | 三明治蒸鍍法 | zh_TW |
| dc.subject | 2D+3D無機鈣鈦礦 | zh_TW |
| dc.subject | 大氣製程 | zh_TW |
| dc.subject | bidirectional transmission | en |
| dc.subject | Perovskite solar cell | en |
| dc.subject | one-step solution method | en |
| dc.subject | 2D + 3D inorganic perovskite | en |
| dc.subject | sandwich evaporation | en |
| dc.subject | growth process control | en |
| dc.subject | atmospheric process | en |
| dc.subject | solvent assisted heating | en |
| dc.title | 多種類型鈣鈦礦太陽能電池與製作之研究 | zh_TW |
| dc.title | Study on the fabrication of different types of perovskite solar cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳奕君(I-Chun Cheng),黃定洧(Ding-Wei Huang),何文章(Wen-Jeng Ho) | |
| dc.subject.keyword | 鈣鈦礦太陽能電池,一步驟溶液法,2D+3D無機鈣鈦礦,三明治蒸鍍法,生長控制技術,雙向傳輸,大氣製程,溶劑輔助加熱, | zh_TW |
| dc.subject.keyword | Perovskite solar cell,one-step solution method,2D + 3D inorganic perovskite,sandwich evaporation,growth process control,bidirectional transmission,atmospheric process,solvent assisted heating, | en |
| dc.relation.page | 112 | |
| dc.identifier.doi | 10.6342/NTU202004057 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1908202002003100.pdf 未授權公開取用 | 6.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
