Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78826
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 張以承 | zh_TW |
dc.contributor.advisor | Yi-Cheng Chang | en |
dc.contributor.author | 陳詩宜 | zh_TW |
dc.contributor.author | Shih-Yi Chen | en |
dc.date.accessioned | 2021-07-11T15:22:12Z | - |
dc.date.available | 2024-08-16 | - |
dc.date.copyright | 2019-03-11 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Reference
[ 1 ] Lehrke M, Lazar MA. The many faces of PPARgamma. Cell. 123, 993-999 (2005) [ 2 ] Rosen ED, Spiegelman BM. PPARgamma : a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem. 276, 37731-37734 (2001) [ 3 ] Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med. 19, 557-566 (2013) [ 4 ] Poulsen Ll, Siersbæk M, Mandrup S. PPARs: fatty acid sensors controlling metabolism. Semin Cell Dev Biol. 23, 631-639 (2012) [ 5 ] Itoh T, Fairall L, Amin K, Inaba Y, Szanto A, Balint BL, Nagy L, Yamamoto K, Schwabe JW. Structural basis for the activation of PPARgamma by oxidized fatty acids. Nat Struct Mol Biol. 15, 924-931 (2008) [ 6 ] Soccio RE, Chen ER, Lazar MA. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 20, 573-591 (2014) [ 7 ] Yokoi T. Troglitazone. Handb Exp Pharmacol. 419-435 (2010) [ 8 ] Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 356, 2457-2471 (2007) [ 9 ] Mahaffey KW, Hafley G, Dickerson S, Burns S, Tourt-Uhlig S, White J, Newby LK, Komajda M, McMurray J, Bigelow R, Home PD, Lopes RD. Results of a reevaluation of cardiovascular outcomes in the RECORD trial. Am Heart J. 166, 240-249 (2013) [ 10 ] Wright MB, Bortolini M, Tadayyon M, Bopst M. Minireview: Challenges and opportunities in development of PPAR agonists. Mol Endocrinol. 28, 1756-1768 (2014) [ 11 ] Shiraki T, Kamiya N, Shiki S, Kodama TS, Kakizuka A, Jingami H. Alpha,beta-unsaturated ketone is a core moiety of natural ligands for covalent binding to peroxisome proliferator-activated receptor gamma. J Biol Chem. 280, 14145-14153 (2005). [ 12 ] Chou WL, Chuang LM, Chou CC, Wang AH, Lawson JA, FitzGerald GA, Chang ZF. Identification of a novel prostaglandin reductase reveals the involvement of prostaglandin E2 catabolism in regulation of peroxisome proliferator-activated receptor gamma activation. J Biol Chem. 282, 18162-18172 (2007) [ 13 ] Wu YH, Ko TP, Guo RT, Hu SM, Chuang LM, Wang AH. Structural basis for catalytic and inhibitory mechanisms of human prostaglandin reductase PTGR2. Structure. 16, 1714-1723 (2008) [ 14 ] Sugii S, Olson P, Sears DD, Saberi M, Atkins AR, Barish GD, Hong SH, Castro GL, Yin YQ, Nelson MC, Hsiao G, Greaves DR, Downes M, Yu RT, Olefsky JM, Evans RM. PPARgamma activation in adipocytes is sufficient for systemic insulin sensitization. Proc Natl Acad Sci U S A. 106, 22504-22509 (2009) [ 15 ] Nugent C, Prins JB, Whitehead JP, Savage D, Wentworth JM, Chatterjee VK, O'Rahilly S. Potentiation of glucose uptake in 3T3-L1 adipocytes by PPAR gamma agonists is maintained in cells expressing a PPAR gamma dominant-negative mutant: evidence for selectivity in the downstream responses to PPAR gamma activation. Mol Endocrinol. 15, 1729-1738 (2001) [ 16 ] Shepherd PR, Gnudi L, Tozzo E, Yang H, Leach F, Kahn BB. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J Biol Chem. 268, 22243-22246 (1993) [ 17 ] Stenbit AE1, Tsao TS, Li J, Burcelin R, Geenen DL, Factor SM, Houseknecht K, Katz EB, Charron MJ. GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nat Med. 3, 1096-1101 (1997) [ 18 ] Baumann CA, Ribon V, Kanzaki M, Thurmond DC, Mora S, Shigematsu S, Bickel PE, Pessin JE, Saltiel AR. CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature. 407, 202-207 (2000) [ 19 ] Hammarstedt A, Sopasakis VR, Gogg S, Jansson PA, Smith U. Improved insulin sensitivity and adipose tissue dysregulation after short-term treatment with pioglitazone in non-diabetic, insulin-resistant subjects. Diabetologia. 48, 96-104 (2005) [ 20 ] Sandouk T, Reda D, Hofmann C. Antidiabetic agent pioglitazone enhances adipocyte differentiation of 3T3-F442A cells. Am J Physiol. 264 1600-1608 (1993) [ 21 ] Kletzien RF, Clarke SD, Ulrich RG. Enhancement of adipocyte differentiation by an insulin-sensitizing agent. Mol Pharmacol. 41, 393-398 (1992) [ 22 ] Wu Z, Xie Y, Morrison RF, Bucher NL, Farmer SR. PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes. J Clin Invest. 101, 22-32 (1998) [ 23 ] Armoni M, Harel C, Karnieli E. Transcriptional regulation of the GLUT4 gene: from PPAR-gamma and FOXO1 to FFA and inflammation. Trends Endocrinol Metab. 18, 100-107 (2007) [ 24 ] Zhou L, Chen H, Lin CH, Cong LN, McGibbon MA, Sciacchitano S, Lesniak MA, Quon MJ, Taylor SI. Insulin receptor substrate-2 (IRS-2) can mediate the action of insulin to stimulate translocation of GLUT4 to the cell surface in rat adipose cells. J Biol Chem. 272, 29829-29833 (1997) [ 25 ] Smith U, Gogg S, Johansson A, Olausson T, Rotter V, Svalstedt B. Thiazolidinediones (PPARgamma agonists) but not PPARalpha agonists increase IRS-2 gene expression in 3T3-L1 and human adipocytes. FASEB J. 15, 215-220 (2001) [ 26 ] Standaert ML, Kanoh Y, Sajan MP, Bandyopadhyay G, Farese RV. Cbl, IRS-1, and IRS-2 mediate effects of rosiglitazone on PI3K, PKC-lambda, and glucose transport in 3T3/L1 adipocytes. Endocrinology. 143, 1705-1716 (2002) [ 27 ] Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 93, 229-240 (1998) [ 28 ] Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell. 83, 803-812 (1995) [ 29 ] Kobayashi M, Iwanishi M, Egawa K, Shigeta Y. Pioglitazone increases insulin sensitivity by activating insulin receptor kinase. Diabetes. 41, 476-483 (1992) [ 30 ] Nesto RW, Bell D, Bonow RO, Fonseca V, Grundy SM, Horton ES, Le Winter M, Porte D, Semenkovich CF, Smith S, Young LH, Kahn R. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care. 27, 256-263 (2004) [ 31 ] Betteridge DJ. Thiazolidinediones and fracture risk in patients with Type 2 diabetes. Diabet Med. 28, 759-771 (2011) [ 32 ] Cohen RN. Nuclear receptor corepressors and PPARgamma. Nucl Recept Signal. (2006) [ 33 ] Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature. 395, 137-143 (1998) [ 34 ] Fernando Lizcano and Diana Vargas. Diverse coactivator recruitment through differential PPARγ nuclear receptor agonism. Genet Mol Biol. 36, 134-139 (2013) [ 35 ] Lam VQ, Zheng J, Griffin PR. Unique Interactome Network Signatures for Peroxisome Proliferator-activated Receptor Gamma (PPARγ) Modulation by Functional Selective Ligands. Mol Cell Proteomics. 16, 2098-2110 (2017) [ 36 ] Olefsky JM, Saltiel AR. PPAR gamma and the treatment of insulin resistance. Trends Endocrinol Metab. 11, 362-368 (2000) [ 37 ] Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell. 83, 813-819 (1995) [ 38 ] Powell WS. 15-Deoxy-delta12,14-PGJ2: endogenous PPARgamma ligand or minor eicosanoid degradation product? J Clin Invest. 112, 828-830 (2003) [ 39 ] L. Chastine Bell-Parikh, Tomomi Ide, John A. Lawson, Peter McNamara, Muredach Reilly, and Garret A. FitzGerald. Biosynthesis of 15-deoxy-Δ12,14-PGJ2 and the ligation of PPARγ. J Clin Invest. 112, 945-955 (2003) [ 40 ] Schopfer FJ, Lin Y, Baker PR, Cui T, Garcia-Barrio M, Zhang J, Chen K, Chen YE, Freeman BA. Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor gamma ligand. Proc Natl Acad Sci U S A. 102, 2340-2345 (2005) [ 41] Baker PR, Schopfer FJ, Sweeney S, Freeman BA. Red cell membrane and plasma linoleic acid nitration products: synthesis, clinical identification, and quantitation. Proc Natl Acad Sci U S A. 101, 11577-11582 (2004) [ 42 ] Baker LM, Baker PR, Golin-Bisello F, Schopfer FJ, Fink M, Woodcock SR, Branchaud BP, Radi R, Freeman BA. Nitro-fatty acid reaction with glutathione and cysteine. Kinetic analysis of thiol alkylation by a Michael addition reaction. J Biol Chem. 282, 31085-31093 (2007) [ 43 ] Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 53, 409-435 (2002) [ 44 ] Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 62, 720-733 (2015) [ 45 ] Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci U S A. 96, 7473-7478 (1999) [ 46 ] Serrano A, Del Arco I, Javier Pavón F, Macías M, Perez-Valero V, Rodríguez de Fonseca F. The cannabinoid CB1 receptor antagonist SR141716A (Rimonabant) enhances the metabolic benefits of long-term treatment with oleoylethanolamide in Zucker rats. Neuropharmacology. 54, 226-234 (2008) [ 47 ] Chen IJ, Hee SW, Liao CH, Lin SY, Su L, Shun CT, Chuang LM. Targeting the 15-keto-PGE2-PTGR2 axis modulates systemic inflammation and survival in experimental sepsis. Free Radic Biol Med. 115, 113-126 (2018) | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78826 | - |
dc.description.abstract | PPARγ是一由配體活化的核內受體與轉錄因子。它藉由調控脂肪細胞分化、脂質代謝以及葡萄糖恆定等相關基因的轉錄,影響代謝平衡。Thiazolidinediones (TZDs)是人工合成的PPARγ配體,廣泛使用於治療第二型糖尿病,能夠有效改善胰島素敏感性,但TZDs有水分滯留、體重增加及骨質疏鬆等的副作用,亟待有新型的活化PPARγ方法出現。
PPARγ的內生性配體迄今尚未有定論。在我們團隊先前的研究發現15-keto prostaglandin E2 (15-keto-PGE2) 極可能為PPARγ的內生性配體。15-keto-PGE2是前列腺素E2 (prostaglandin E2, PGE2) 經由NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH)催化產生的下游產物,而15-keto-PGE2會進一步被前列腺素還原酶 (PTGR2) 還原成13,14-dihydro-15-keto-PGE2。在細胞模式中, 我們發現15-keto-PGE2可活化PPARγ,更進一步發現Ptgr2基因剔除鼠在餵食高脂高糖飼料下,相較於對照組老鼠,胰島素敏感性大幅改善。 在此研究中,我們在餵食高脂高糖飼料的老鼠施打15-keto-PGE2,能夠大幅提升胰島素敏感性與改善葡萄糖耐受性。在細胞模式,我們發現15-keto-PGE2在白色脂肪細胞中能夠促進葡萄糖攝取,伴隨有PPARγ下游基因表現增加,15-keto-PGE2並可與PPARγ 配體結合區結合,增加下游報導基因訊號。分子模擬對接實驗顯示,15-keto-PGE2可與PPARγ以共價鍵結合,與pioglitzaone和PPARγ結合模式不相同,藉由液相層析串聯質譜儀分析,我們發現15-keto-PGE2以共價鍵結合在PPARγ半胱胺酸313的位置,並利用相互免疫共沉澱法驗證此結果,若將PPARγ半胱胺酸313突變,則會大幅影響15-keto-PGE2結合PPARγ能力,並消除15-keto-PGE2促進白色脂肪細胞葡萄糖攝取之效果。 這些實驗顯示PPARγ可能的內生性配體15-keto-PGE2會與PPARγ半胱胺酸313形成共價鍵結合,造成PPARγ活化,進而在小鼠與細胞模式中,達到改善胰島素敏感性。 | zh_TW |
dc.description.abstract | Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor and transcription factor with an essential role in metabolic homeostasis through regulating the transcription of genes involved in adipogenesis, lipid metabolism and glucose homeostasis. The synthetic PPARγ agonists, thiazolidinediones (TZDs), are widely used as anti-diabetic drug owing to their insulin-sensitizing ability. However, TZDs have several side effects, including fluid retention, weight gain and osteoporosis.
The endogenous ligand of PPARγ remains inconclusive. We previously found 15-keto prostaglandin E2 (15-keto-PGE2), a metabolite of prostaglandin E2, was probably an endogenous ligand of PPARγ. Prostaglandin E2 is metabolized to 15-keto-PGE2 by NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH). 15-keto-PGE2 is further catalyzed to 13, 14-dihydro-15-keto-PGE2 by prostaglandin reductase-2 (PTGR2). In cultured cells, we found that inhibition of PTGR2 increases 15-keto-PGE2, leading to activation of PPARγ. We further found that Ptgr2 knockout mice are more insulin sensitive than wild-type littermates fed on high-fat high-sucrose diet (HFHSD). In this study, 15-keto-PGE2-treatment significantly improved insulin sensitivity and glucose tolerance in mice on HFHSD. We found that 15-keto-PGE2 promoted glucose uptake in white adipocytes, accompanied by upregulation of PPARγ target genes. Molecular docking showed that 15-keto-PGE2 can bind to PPARγ through covalent binding, which is different from the binding of pioglitazone to PPARγ. Liquid chromatography-tandem mass spectrometry analysis data indicated that 15-keto-PGE2 formed a covalent bond with the cysteine-313 residue of PPARγ, which was further confirmed by reciprocal co-immunoprecipitation. The PPARγ-transactivating activity of 15-keto-PGE2 was abolished in cells expressing PPARγ with a cysteine-313 mutation, and enhancement of glucose uptake induced by 15-keto-PGE2 was eliminated. Taken together, these results suggest that 15-keto-PGE2, a potential endogenous ligand of PPARγ, activates PPARγ through covalently binding to Cys313 residue, leading to enhanced insulin sensitivity in both cultured cell and mouse model. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:22:12Z (GMT). No. of bitstreams: 1 ntu-108-R05455005-1.pdf: 2975732 bytes, checksum: 5ee18b9fffdca41e378f2e02cd5f5a2e (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書
謝辭 i 中文摘要 ii 英文摘要 iv Chapter I – Background and Experimental Rational. 1 1. PPARγ is a key transcriptional regulator of metabolism 1 2. The synthetic PPARγ agonists, thiazolidinediones 3 3. 15-keto-PGE2 is an endogenous PPARγ ligand 4 4. Metabolic phenotype of Ptgr2 knockout mice 6 5. Specific aim of this study 7 Chapter II – Materials and Methods. 8 1. Animal model 8 2. Glucose and insulin tolerance test 8 3. In vivo measurement of insulin signaling 9 4. Cell culture 9 5. Plasmid construction and site-directed mutagenesis 10 6. Reporter assay 11 7. RNA extraction, cDNA synthesis and RT-qPCR 11 8. Glucose uptake assay 12 9. Immunoprecipitation and proteomic analysis 13 10. Generation of PPARγ-null 3T3-L1 stable cell lines using CRISPR/Cas9 System 15 11. Lentivirus production and transduction 16 Chapter III – Results. 17 1. The therapeutic effect of 15-keto-PGE2 on glucose intolerance 17 (1) Metabolic phenotype of mice treated with 15-keto-PGE2 17 (2) Effect of 15-keto-PGE2 on insulin signaling 18 2. The metabolic changes induced by 15-keto-PGE2 in white adipocyte 18 (1) Glucose uptake assay in 3T3-L1 adipocytes 18 (2) Effect of 15-keto-PGE2 on expression of Glut4 and PPARγ-downstream genes 19 3. The molecular mechanism by which 15-keto-PGE2 increase glucose uptake 20 (1) 15-keto-PGE2 activates PPARγ-mediated transcription 20 (2) Structure of PPARγ with 15-keto-PGE2 predicted by molecular docking 21 (3) 15-keto-PGE2 is bound to murine PPARγ covalently at Cys313 21 (4) Cys313 is essential for activation of PPARγ by 15-keto-PGE2 22 Chapter IV – Discussion. 24 Figures 27 Tables 41 References 43 | - |
dc.language.iso | en | - |
dc.title | 15-keto-PGE2 對胰島素阻抗性之治療作用及其機轉 | zh_TW |
dc.title | Therapeutic Effect of 15-keto-PGE2 on Insulin Resistance: Molecular Mechanism | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 莊立民;陳佑宗 | zh_TW |
dc.contributor.oralexamcommittee | Lee-Ming Chuang;You-Tzung Chen | en |
dc.subject.keyword | PPARγ,第二型糖尿病,15-keto-PGE2,胰島素敏感性,葡萄糖攝取, | zh_TW |
dc.subject.keyword | PPARγ,type 2 diabetes,15-keto-PGE2,insulin sensitivity,glucose uptake, | en |
dc.relation.page | 50 | - |
dc.identifier.doi | 10.6342/NTU201701626 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-02-12 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 基因體暨蛋白體醫學研究所 | - |
dc.date.embargo-lift | 2024-03-11 | - |
Appears in Collections: | 基因體暨蛋白體醫學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-107-1.pdf Restricted Access | 2.91 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.