Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78813Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 王淑珍 | zh_TW |
| dc.contributor.advisor | Shu-Jen Wang | en |
| dc.contributor.author | 陳芝云 | zh_TW |
| dc.contributor.author | Chih-Yun Chen | en |
| dc.date.accessioned | 2021-07-11T15:21:14Z | - |
| dc.date.available | 2024-02-14 | - |
| dc.date.copyright | 2019-02-15 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 行政院農業委員會動植物防疫檢疫局 (2016) 農藥資訊服務網,農藥統計,農藥產銷量值統計,105年農藥產銷量值。資料來源網址
https://pesticide.baphiq.gov.tw/web/Insecticides_MenuItem9_4S.aspx?no=45 林柏均 (2014) 印度梨型孢真菌可增進水稻生長及鹽分/乾旱逆境之耐受性。國立臺灣大學生物資源暨農學院農藝學系碩士論文。 張毓安 (2015) 瘤野螟咬食對水稻蔗糖轉運蛋白OsSUT4基因表現之調控。國立臺灣大學生物資源暨農學院農藝學系碩士論文。 黃柏勳 (2016) 印度梨形孢真菌提升水稻幼苗對瘤野螟之耐受性。國立臺灣大學生物資源暨農學院農藝學系碩士論文。 廖君達、林金樹、陳啟吉 (2006) 瘤野螟族群消長、防治適期及水稻品種抗。臺中區農業改良場研究彙報 91: 31-38。 蔡璿如 (2016) 探討印度梨形孢真菌增強水稻耐乾旱逆境能力之生理機制。國立臺灣大學生物資源暨農學院農藝學系碩士論文。 鄭清煥 (2003) 瘤野螟。植物保護圖鑑系列8─水稻保護。 Achatz B, Kogel K, Franken P, Waller F (2010) Piriformospora indica mycorrhization increases grain yield by accelerating early development of barley plants. Plant Signaling & Behavior 5: 1685–1687. Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols 2: 875–877. Ansari MW, Trivedi DK, Sahoo RK, Gill SS, Tuteja N (2013) A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. Plant Plant Physiology and Biochemistry 70: 403–410. Arora P, Bhardwaj R, Kanwar MK (2010) 24-Epibrassinolide regulated diminution of Cr metal toxicity in Brassica juncea L. plants. Brazilian Journal of Plant Physiology 22:159-165. Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist 180: 501–510. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44: 276–287. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nature Communications 1: 48. Botelho-Júnior S, Siqueira-Júnior CL, Jardim BC, Machado OLT, Neves-Ferreira AGC, Perales J, Jacinto T (2008) Trypsin inhibitors in passion fruit (Passiflora f. edulis flavicarpa) leaves: accumulation in response to methyl jasmonate, mechanical wounding, and herbivory. Agricultural and Food Chemistry 56: 9404–9409. Boter M, Ruíz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes & Development 18: 1577–1591. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism and nutritional significance, Nutrition Reviews 56: 317-333. Chagas FO, Pessotti RC, Caraballo-Rodríguez AM, Pupo MT (2018) Chemical signaling involved in plant–microbe interactions. Chemical Society Reviews 47: 1652–1704. Chao YY, Chen CY, Huang WD, Kao CH (2010) Salicylic acid-mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant Soil 329: 327–337. Chehab EW, Perea JV, Gopalan B, Theg S, Dehesh K (2007) Oxylipin pathway in rice and Arabidopsis. Journal of Integrative Plant Biology 49: 43–51. Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiology 129: 706–716. Chen H (2014) Biotechnology of Lignocellulose: Theory and Practice. Netherlands : Springer. pp. 57. Chen HJ, Wang SJ, Chen CC, Yeh KW (2006) New gene construction strategy in T-DNA vector to enhance expression level of sweet potato sporamin and insect resistance in transgenic Brassica oleracea. Plant Science 171: 367–374. Chen YL, Lee CY, Cheng KT, Chang WH, Huang RN, Nam HG, Chen YR (2014) Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato. Plant Cell 26: 4135–4148. Chu C, Lee TM (1989) The relationship between ethylene biosynthesis and chilling tolerance in seedlings of rice (Oryza sativa). Botanical Bulletin of Academia Sinica 30: 263-273. Cocetta G, Rossoni M, Gardana C, Mignani I, Ferrante A, Spinardi A (2015) Methyl jasmonate affects phenolic metabolism and gene expression in blueberry (Vaccinium corymbosum). Plant Physiology 153: 269–283. Conrath U, Pieterse CM, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends in Plant Science 7: 210–216. Cosme M, Lu J, Erb M, Stout MJ, Franken P, Wurst S (2016) A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling. New Phytologist 211: 1065–1076. Dao TTH, Linthorst HJM, Verpoorte R (2011) Chalcone synthase and its functions in plant resistance. Phytochemistry Reviews 10: 397– 412. Denness L, McKenna JF, Segonzac C, Wormit A, Madhou P, Bennett M, Mansfield J, Zipfel C, Hamann T (2011) Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiology 156: 1364–1374. Deshmukh SD, Kogel KH (2007) Piriformospora indica protects barley from root rot caused by Fusarium graminearum. Journal of Plant Diseases and Protection 114: 263–268. Doares SH, Narvaez-Vasquez J, Conconi A, Ryan CA (1995) Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiology 108: 1741–1746. Dong X (1998) SA, JA, ethylene, and disease resistance in plants. Current Opinion in Plant Biology 1: 316–323. Edilberto D (2013) Standard evaluation system for rice, 5th edition. Los Banos : International Rice Research Institute. pp. 31. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends in Plant Sciences 5: 199–206. Farmer EE, Johnson RR, Ryan CA (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiology 98: 995–1002. Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proceedings of the National Academy of Sciences 87: 7713–7716. Foster JG, Hess JL (1980) Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiology 66: 482–487. Fraser CM, Chapple C (2011) The Phenylpropanoid Pathway in Arabidopsis. The Arabidopsis Book / American Society of Plant Biologists, 9, e0152. Fukumoto K, Alamgir KM, Yamashita Y, Mori IC, Matsuura H, Galis I (2013) Response of Rice to Insect Elicitors and the Role of OsJAR1 in Wound and Herbivory-Induced JA-Ile Accumulation. Journal of Integrative Plant Biology 55: 775–784. Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N (2016) Piriformospora indica: Potential and Significance in Plant Stress Tolerance. Frontiers in Microbiology 7: 332. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48: 909–930. Goufo P, Trindade H (2014) Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Science & Nutrition 2: 75–104. Han Y, Lei W, Wen L, Hou M (2015) Silicon-mediated resistance in a susceptible rice variety to the rice leaf folder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). PLOS ONE 10: e0120557. Han Y, Li P, Gong S, Yang L, Wen L, Hou M (2016) Defense responses in rice induced by silicon amendment against infestation by the leaf folder Cnaphalocrocis medinalis. PLOS ONE 11: e0153918. Harms K, Ramirez I, Peña-Cortés H (1998) Inhibition of wound-induced accumulation of allene oxide synthase transcripts in flax leaves by aspirin and salicylic acid. Plant Physiology 118: 1057–1065. Harrach BD, Baltruschat H, Barna B, Fodor J, Kogel KH (2013) The mutualistic fungus Piriformospora indica protects barley roots from a loss of antioxidant capacity caused by the necrotrophic pathogen Fusarium culmorum. Molecular Plant-Microbe Interactions 26: 599–605. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125: 189–198. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Research 27: 297–300. Hilbert M, Voll LM, Ding Y, Hofmann J, Sharma M, Zuccaro A (2012) Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. New Phytologist 196: 520–534. Hill, T, Kafer E (2001) Improved protocols for Aspergillus minimal medium: trace element and minimal medium salt stock solutions. Fungal Genetics Reports 48: 20–21. Hodges DM, Forney CF, Wismer WV (2001) Antioxidant responses in harvested leaves of two cultivars of spinach differing in senescence rates. American Society for Horticultural Science 126: 611–617. Huot B, Yao J, Montgomery BL, He SY (2014) Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Molecular Plant 7: 1267–1287. Ithal N, Recknor J, Nettleton D, Maier T, Baum TJ, Mitchum MG (2007) Developmental transcript profiling of cyst nematode feeding cells in soybean roots. Molecular Plant-Microbe Interactions 20: 510–525. Jannoey P, Channei D, Kotcharerk J, Pongprasert W, Nomura M (2017) Expression analysis of genes related to rice resistance against brown planthopper, Nilaparvata lugens. Rice Science 24: 163–172. Johnson D, Gilbert L (2014) Interplant signalling through hyphal networks. New Phytologist 205: 1448–1453. Johnson R, Narvaez J, An G, Ryan C (1989) Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proceedings of the National Academy of Sciences 86: 9871–9875. Kan J, Fang R, Jia Y (2017) Interkingdom signaling in plant-microbe interactions. Science China Life Sciences 60: 785–796. Kato M, Shimizu S (1985) Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation. Plant and Cell Physiology 26: 1291–1301. Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6: 4. Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annual Review of Plant Biology 53: 299–328. Kieber JJ, Schaller GE (2018) Cytokinin signaling in plant development. Cambridge, England : Development, vol. 145 (4). Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends in Plant Science 2: 379–384. Kumar M, Yadav V, Kumar H, Sharma R, Singh A, Tuteja N, Johri AK (2011) Piriformospora indica enhances plant growth by transferring phosphate. Plant Signaling & Behavior 6: 723–725. Lee YC, Johnson JM, Chien CT, Sun C, Cai D, Lou B, Oelmüller R, Yeh KW (2011) Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Plant-Microbe Interactions 24: 421–431. Leshem YY, Halevy AH, Frenkel C (1986) Processes and control of plant senescence. Amsterdam : Elsevier. pp. 70. Li H, Smith SE, Holloway RE, Zhu Y, Smith FA (2006) Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytologist 172: 536–543. Liu Q, Luo L, Zheng L (2018a) Lignins: biosynthesis and biological functions in plants. International Journal of Molecular Sciences 19: 335. Liu Q, Zheng L, He F, Zhao FJ, Shen Z, Zheng L (2015) Transcriptional and physiological analyses identify a regulatory role for hydrogen peroxide in the lignin biosynthesis of copper-stressed rice roots. Plant and Soil 387: 323–336. Liu X, Li J, Xu L, Wang Q, Lou Y (2018b) Expressing OsMPK4 impairs plant growth but enhances the resistance of rice to the striped stem borer Chilo suppressalis. International Journal of Molecular Sciences 19:1182. Lu J, Robert CAM, Riemann M, Cosme M, Mène-Saffrané L, Massana J, Stout MJ, Lou Y, Gershenzon J, Erb M (2015) Induced Jasmonate Signaling Leads to Contrasting Effects on Root Damage and Herbivore Performance1. Plant Physiology 167: 1100–1116. Lyons R, Manners JM, Kazan K (2013) Jasmonate biosynthesis and signaling in monocots: a comparative overview. Plant Cell Reports, 32: 815–827. Mancinelli AL, Yang CP, Lindquist P, Anderson OR, Rabino I (1975) Photocontrol of anthocyanin synthesis: III. The Action of Streptomycin on the Synthesis of Chlorophyll and Anthocyanin. Plant Physiology 55: 251–257. Murakami S, Nakata R, Aboshi T, Yoshinaga N, Teraishi M, Okumoto Y, Ishihara A, Morisaka H, Huffaker A, Schmelz EA, Mori N (2014) Insect-induced daidzein, formononetin and their conjugates in soybean leaves. Metabolites 4: 532–546. Murphy A (2015) Hormone crosstalk in plants. Journal of Experimental Botany 66: 4853–4854. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology 22: 867–880. Nanda AK, Andrio E, Marino D, Pauly N, Dunand C (2010) Reactive oxygen species during plant-microorganism early interactions. Journal of Integrative Plant Biology 52: 195–204. Ngwene B, Boukail S, Söllner L, Franken P, Andrade-Linares DR (2016) Phosphate utilization by the fungal root endophyte Piriformospora indica. Plant Soil 405: 231–241. Oelmüller R, Sherameti I, Tripathi S, Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis (2009) 49: 1–17. Ogawa S, Kawahara-Miki R, Miyamoto K, Yamane H, Nojiri H, Tsujii Y, Okada K (2017) OsMYC2 mediates numerous defence-related transcriptional changes via jasmonic acid signalling in rice. Biochemical and Biophysical Research Communications 486: 796–803. Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences 96: 6553–6557. Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13: 179–191. Pan Z, Camara B, Gardner HW, Backhaus RA (1998) Aspirin Inhibition and Acetylation of the Plant Cytochrome P450, Allene Oxide Synthase, Resembles that of Animal Prostaglandin Endoperoxide H Synthase. Journal of Biological Chemistry. 273: 18139–18145. Paoletti F, Aldinucci D, Mocali A, Caparrini A (1986) A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Analytical Biochemistry 154: 536–541. Parr AJ, Bolwell GP (2000) Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. Journal of the Science of Food and Agriculture 80: 985–1012. Rai M, Acharya D, Singh A, Varma A (2001) Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11: 123–128. Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant and Cell Physiology 49: 865–879. Richard S, Lapointe G, Rutledge RG, Séguin A (2000) Induction of chalcone synthase expression in white spruce by wounding and jasmonate. Plant and Cell Physiology 41: 982–987. Ruben Ve, Brecht D, Kris M, John R, Wout B (2010) Lignin Biosynthesis and Structure. Plant Physiology 153 (3): 895-905 Ryan CA (1989) Proteinase inhibitor gene families: strategies for transformation to improve plant defenses against herbivores. Bioessays 10: 20–24. Schmelz EA, Alborn HT, Tumlinson JH (2003) Synergistic interactions between volicitin, jasmonic acid and ethylene mediate insect-induced volatile emission in Zea mays. Plant Physiology 117: 403–412. Shahollari B, Vadassery J, Varma A, Oelmüller R (2007) A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant Journal 50: 1–13. Shamsi TN, Parveen R, Fatima S (2016) Characterization, biomedical and agricultural applications of protease inhibitors: A review. International Journal of Biological Macromolecules 91: 1120–1133. Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmüller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. Journal of Biological Chemistry 280: 26241–26247. Shukle RH, Wu L (2003) The role of protease inhibitors and parasitoids on the population dynamics of Sitotroga cerealella (Lepidoptera: Gelechiidae). Environmental Entomology 32: 488–498. Singh PK, Nag A, Arya P, Kapoor R, Singh A, Jaswal R, Sharma TR (2018) Prospects of understanding the molecular biology of disease resistance in rice. International Journal of Molecular Sciences 19: 1141. Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology 167: 1009–1017. Sun C, Shao Y, Vahabi K, Lu J, Bhattacharya S, Dong S, Yeh KW, Sherameti I, Lou B, Baldwin IT, Oelmüller R (2014) The beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahliae infection by downregulation plant defense responses. BMC Plant Biology 14: 268. Trivedi DK, Srivastava A, Verma PK, Tuteja N, Gill SS (2016) Piriformospora indica: a friend in need is a friend in deed. Research & Reviews: Journal of Botanical Sciences 5: 17–19. Uji Y, Taniguchi S, Tamaoki D, Shishido H, Akimitsu K, Gomi K (2016) Overexpression of OsMYC2 results in the up-regulation of early JA-responsive genes and bacterial blight resistance in rice. Plant and Cell Physiology 57: 1814–1827. Vadassery J, Tripathi S, Prasad R, Varma A, Oelmüller R (2009) Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. Journal of Plant Physiology 166: 1263–1274. Vallet C, Chabbert B, Czaninski Y, Monties B (1996) Histochemistry of lignin deposition during sclerenchyma differentiation in Alfalfa stems. Annals of Botany 78: 625–632. Van der Ent S, Van Hulten M, Pozo MJ, Czechowski T, Udvardi MK, Pieterse CM, Ton J (2009) Priming of plant innate immunity by rhizobacteria and beta-aminobutyric acid: differences and similarities in regulation. New Phytologist 183: 419–431. Varma A, Verma S, Sudha, Sahay N, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Applied and Environmental Microbiology 65: 2741–2744. Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn Mycologia B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a New Root-Colonizing Fungus. Mycologia 90: 896–903. Vierheilig H, Schweiger P, Brundrett M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiologia Plantarum 125: 393–404. Vos IA, Verhage A, Schuurink RC, Watt LG, Pieterse CMJ, Van Wees SCM (2013) Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid. Frontiers in Plant Science 4: 539. Wakuta S, Suzuki E, Saburi W, Matsuura H, Nabeta K, Imai R, Matsui H (2011) OsJAR1 and OsJAR2 are jasmonyl-l-isoleucine synthases involved in wound- and pathogen-induced jasmonic acid signalling. Biochemical and Biophysical Research Communications 409: 634–639. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences 102: 13386–13391. Wang Q, Li J, Hu L, Zhang T, Zhang G, Lou Y (2013) OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice. Plant Cell Reports 32: 1075–1084. Wang W, Cai J, Wang P, Tian S, Qin G (2017) Post-transcriptional regulation of fruit ripening and disease resistance in tomato by the vacuolar protease SlVPE3. Genome Biol 18: 47. Wang X, Hu L, Zhou G, Cheng J, Lou Y (2011) Salicylic acid and ethylene signaling pathways are involved in production of rice trypsin proteinase inhibitors induced by the leaf folder Cnaphalocrocis medinalis (Guenée). Chinese Science Bulletin 56: 2351–2358. Xiao Y, Chen Y, Charnikhova T, Mulder PP, Heijmans J, Hoogenboom A, Agalou A, Michel C, Morel JB, Dreni L, Kater MM, Bouwmeester H, Wang M, Zhu Z, Ouwerkerk PB (2014) OsJAR1 is required for JA-regulated floret opening and anther dehiscence in rice. Plant Molecular Biology 86: 19–33. Xu X, Chen C, Fan B, Chen Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18: 1310–1326. Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. Journal of Biological Chemistry 285: 26532–26544. Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S (2005) Solution structure of an Arabidopsis WRKY DNA binding domain. Plant Cell 17: 944–956. Ye M, Luo SM, Xie JF, Li YF, Xu T, Liu Y, Song YY, Zhu-Salzman K, Zeng RS (2012) Silencing COI1 in rice increases susceptibility to chewing insects and impairs inducible defense. PLoS ONE 7:e36214. Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiology 143: 866–875. Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64: 555–559. Zhuang H, Hildebrand DF, Barth MM (1995) Senescence of broccoli buds is related to changes in lipid peroxidation. Journal of Agricultural and Food Chemistry 43: 2858-2591. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78813 | - |
| dc.description.abstract | 印度梨型孢菌(Piriformospora indica, P. indica)為可促進植物根系發育及增進生長勢之根部共生真菌。以水稻品種臺中在來一號 (Oryza sativa L. cv. Taichung Native 1, TCN1) 為材料,我們研究室先前的實驗結果顯示經P. indica共生後,水稻受瘤野螟幼蟲侵咬所造成的危害程度明顯下降,且部分茉莉酸 (jasmonic acid, JA) 生合成酵素基因之表現及胰蛋白酶抑制劑 (trypsin inhibitor, TI) 活性較未經P. indica共生的植株高。本研究主要探討JA是否為P. indica增強水稻TI活性之重要訊息因子。LC-MS分析得知P. indica共生增強瘤野螟幼蟲侵食誘導JA生合成之效應,並以水稻osjar1突變體進行試驗,結果發現降低JA生合成將會減低TI活性,且原本P. indica共生後所提升之抗蟲優勢減弱; 再外加乙醯水楊酸以抑制JA生合成,結果顯示在P. indica共生的植株,原本受瘤野螟刺激而TI活性增加的現象則不顯著。故以上兩試驗之結果均顯示JA訊息參與P. indica誘導TI活性上升之調控機制。另外,P. indica共生亦會調控受瘤野螟幼蟲侵食植株中類黃酮含量與抗氧化酵素活性。在植株生長勢部分P. indica促使水稻葉鞘變寬且鮮重增加,並促進木質素累積,推測其可增強水稻物理性防禦機制。綜合以上結果,P. indica可透由提升抗氧化能力、增加抗蟲相關二次代謝物表現,並經由JA途徑調控TI活性,以提升抗瘤野螟幼蟲侵食之效能。 | zh_TW |
| dc.description.abstract | Piriformospora indica (P. indica) is a symbiotic root endophyte that promotes plant root development and increases growth potential. The research in our lab focused on studying the effect of P. indica on rice (Oryza sativa L. cv. Taichung native 1, TCN1) tolerance against rice leaffolder (Cnaphalocrocis medinalis Guenée) and the related P. indica induced herbivore defense mechanisms. Previous data showed the leaf injury conducted by leaffolder larvae in P. indica-colonized rice was lower than that in non-colonized plants. Several jasmonate-related gene expressions and trypsin inhibitor (TI) activities in leaf tissues of P. indica-colonized plants were higher than those were in non-colonized plants under leaffolder-infestated conditions. Therefore, it was suggested that P. indica enhance rice leaffolder tolerance of rice plants may be mediated JA-related signaling pathway. In this study, rice leaffolder-activated TI activity in P. indica-inoculated osjar1 mutant plants was decreased. Moreover, the enhance of TI activity in rice plants treated with aspirin, an inhibitor of jasmonate synthesis, was also declined. Taken together, P. indica enhances TI activities of rice plants was mediated by JA signaling pathway. Furthermore, antioxidant mechanisms were involved in P. indica-enhanced insect tolerance of rice. The amount of defense-related metabolites of P. indica - colonized seedlings were also increased. In summary, P. indica activated antioxidant mechanisms, defensive metabolite accumulation and JA-induced TI activity to increase herbivory insect tolerance of rice seedlings. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:21:14Z (GMT). No. of bitstreams: 1 ntu-108-R05621104-1.pdf: 3524255 bytes, checksum: 48534d7bb89655c5083fcafb018ef50f (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 i 摘要 ii Abstract iii 圖表結果目錄 vii 附表目錄 ix 縮寫字對照 x 1. 前言 1 1.1. 根部益生真菌與植物互利共生之關係 1 1.2. 印度梨形孢真菌 2 1.3. 印度梨形孢真菌對植物生長之影響 2 1.4. 印度梨形孢真菌提升植物抗非生物性及生物性逆境之能力 3 1.5. 瘤野螟對水稻之影響 4 1.6. 植物荷爾蒙對生物性逆境之防禦機制 4 1.7. 植物對抗咬食型昆蟲產生之胰蛋白酶抑制劑 5 1.8. 植物面對咬食型昆蟲之二次代謝物相關防禦機制 6 1.9. 植物面對咬食型昆蟲之抗氧化逆境防禦機制 6 1.10. 本論文之研究目標 7 2. 材料與方法 8 2.1. 試驗材料及培養方法 8 2.2. 植株處理 9 2.3. 水稻生長分析 10 2.4. 基因表現分析 11 2.5. 胰蛋白酶抑制因子蛋白活性分析 12 2.6. 啟動子調控序列分析 13 2.7. 荷爾蒙茉莉酸、水楊酸含量LC-MS/MS分析 13 2.8. 二次代謝物質含量分析 14 2.9. 木質素染色表現分析 15 2.10. 丙二醛含量分析 15 2.11. 抗氧化酵素活性測定 16 3. 結果 18 3.1. 印度梨型胞真菌共生增強瘤野螟幼蟲侵食後誘導茉莉酸生合成之效應 18 3.2. 抑制茉莉酸生合成降低瘤野螟幼蟲侵食誘導胰蛋白抑制劑活性增強之效應 18 3.3. 印度梨型胞真菌共生增強瘤野螟幼蟲侵食誘導胰蛋白酶抑制劑基因表現 21 3.4. 印度梨型胞真菌共生調控受瘤野螟幼蟲侵食植株中二次代謝物含量 22 3.5. 印度梨形孢真菌對於水稻在蟲害逆境下抗氧化能力之影響 22 3.6. 印度梨形孢真菌共生下水稻木質素與葉鞘組織生長情況 23 4. 討論 25 4.1. 茉莉酸參與印度梨型胞真菌共生增強瘤野螟侵食誘導之胰蛋白酶抑制劑活性之調控機制 25 4.2. 印度梨型胞真菌共生將調控受瘤野螟幼蟲侵食植株中的類黃酮含量 28 4.3. 印度梨形孢真菌提升水稻在蟲害逆境下之抗氧化能力 29 4.4. 印度梨形孢真菌增強水稻木質素之累積與促進葉鞘組織發育生長 30 4.5. 結語與未來展望 30 參考文獻 32 圖表結果 44 附表 64 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 茉莉酸 | zh_TW |
| dc.subject | 瘤野螟 | zh_TW |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 胰蛋白?抑制劑 | zh_TW |
| dc.subject | 印度梨形孢真菌 | zh_TW |
| dc.subject | Piriformospora indica | en |
| dc.subject | rice | en |
| dc.subject | rice leaffolder | en |
| dc.subject | jasmonate | en |
| dc.subject | trypsin inhibitor | en |
| dc.title | 茉莉酸參與印度梨形孢真菌增強水稻瘤野螟耐受性的研究 | zh_TW |
| dc.title | Involvement of jasmonates in the Piriformospora indica – enhanced tolerance of rice to leaffolder (Cnaphalocrocis medinalis) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張孟基;葉開溫;鄭秋萍;詹明才 | zh_TW |
| dc.contributor.oralexamcommittee | Men-Chi Chang;Kai-Wun Yeh;Chiu-Ping Cheng;Ming-Tsair Chan | en |
| dc.subject.keyword | 水稻,印度梨形孢真菌,瘤野螟,茉莉酸,胰蛋白?抑制劑, | zh_TW |
| dc.subject.keyword | rice,Piriformospora indica,rice leaffolder,jasmonate,trypsin inhibitor, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU201900564 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-02-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農藝學系 | - |
| dc.date.embargo-lift | 2024-02-15 | - |
| Appears in Collections: | 農藝學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-107-1.pdf Restricted Access | 3.44 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
