請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78802完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張雅君 | zh_TW |
| dc.contributor.advisor | Ya-Chun Chang | en |
| dc.contributor.author | 陳臻 | zh_TW |
| dc.contributor.author | Chen Chen | en |
| dc.date.accessioned | 2021-07-11T15:20:25Z | - |
| dc.date.available | 2024-03-05 | - |
| dc.date.copyright | 2019-03-12 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 毛青樺。(2008)。蟹爪蘭X病毒與紅龍果X病毒之分子特性與偵測。國立臺灣大學植物病理與微生物學研究所碩士論文。
毛青樺、呂有其、張雅君。(2008)。感染紅龍果之蟹爪蘭X 病毒之特性分析與田間調查。植物病理學會刊 17: 97-98。 王智立、林正忠。(2005)。紅龍果果腐及仙人掌莖腐病。植物病理學會刊14: 269-274。 王至正、陳哲仁、文紀鑾、李美娟、楊佐琦。(2013)。葡萄組織培養與去病毒技術。種苗科技專訊 84: 13-15。 余建美。(2016)。紅龍果產業發展概況。紅龍果整體產業價值鏈整合技術發表暨產業交流研討會特刊 131: 1-12。 李勇賜。(2010)。紅龍果X病毒之特性分析、感染性選殖株構築與抗血清製備。國立臺灣大學植物病理與微生物學研究所碩士論文。 李勝軒。(2017)。紅龍果病毒性病害之研究與健康種苗生產系統之研發。國立臺灣大學植物病理與微生物學研究所碩士論文。 林筑蘋、安寶貞、蔡志濃、徐子惠、張捷婷。(2014)。台灣新紀錄真菌Gilbertella persicaria引起之紅龍果濕腐病。植物病理學會刊 23: 109-124。 林瑞松。(1984)。仙人掌之繁殖與栽培技術。農業試驗所特刊第14號 109-116。 邱禮弘、徐敏記。(2012)。紅龍果。臺中區農業改良場特刊 112: 45-54。 倪蕙芳、楊宏仁、黃巧雯、林靜宜、林筑蘋、安寶貞、蔡志濃。(2015)。紅龍果莖潰瘍病病原特性及防治研究。台灣紅龍果生產技術改進研討會專刊 81-91。 張佑瑋。(2017)。兩種仙人掌X病毒感染性選殖株之研究與紅龍果原生質體系統之建立。國立臺灣大學植物病理與微生物學研究所碩士論文。 郭庭禕。(2015)。紅龍果potexviruses病毒快速檢測方法與磁性奈米粒子療法之開發及應用。國立臺灣大學植物病理與微生物學研究所碩士論文。 陳玟君。(2006)。台農13號鳳梨玻璃化法超低溫冷凍保存前處理流程之探討。國立中興大學生命科學研究所碩士論文。 陳殿義、顏志恒。(2015)。台灣地區紅龍果線蟲病害及防治策略。台灣新浮現之重要作物病害及其防治研討會專刊 137-144。 黃士晃。(2013)。優質紅龍果種苗繁殖生產技術。臺南區農業專訊 85: 1-5。 廖吉彥、張清安、顏昌瑞、陳昱初、鄧汀欽。(2003)。感染紅龍果之仙人掌病毒X之鑑定與分佈調查。植物病理學會刊 12(4): 225-234。 劉碧鵑。(2010)。台灣紅龍果的栽培。農業試驗所特刊 144:1-32。 劉碧鵑。(2014)。紅龍果。台灣熱帶果樹栽培品種專輯 115-128。 劉命如、洪建龍、劉瑞芬。(2004)。引起紅龍果斑駁病徵之Cactus Virus X的鑑定與免疫檢測。植物病理學會刊 13(1):27-34。 蔡志濃、林筑蘋、安寶貞、鄧汀欽、廖吉彥、倪蕙芳、楊宏仁。(2013)。紅龍果的重要病害及其防治(下)。農業試驗所技術服務 96: 4-7。 羅淑芳、游佩蓁、洪進雄、游佩蓁、洪進雄。(2012)。作物超低溫冷凍保存方法之原理及應用。農業試驗所技術服務 89: 21-25。 Bai, J., Chen, X., Lu, X., Guo, H., Xin, X., and Zhang, Z. (2012). Can cryopreservation eliminate the Potato Virus X (PVX) and Potato spindle tuber viroid (PSTVd)? Biosci. Methods. 3: 34-40. Ballarin-Denti, A. and Antoniotti, D. (1991). An experimental approach to pH measurement in the intercellular free space of higher plant tissues. Experientia. 47: 478-482. Bhaskara Reddy, M.V, Raghavan, G.S.V, Kushalappa, A.C., and Paulitz, T.C. (1998). Effect of microwave treatment on quality of wheat seeds infected with Fusarium graminearum. Journal of Agricultural Engineering Research 71: 113-117 Bhojwani, S.S., and Razdan, M.K. (1983). Plant tissue culture : theory and practice. Elsevier, Amsterdam. Brison, M., de Boucaud, M.-T., Pierronnet, A., and Dosba, F. (1997). Effect of cryopreservation on the sanitary state of a cv Prunus rootstock experimentally contaminated with Plum pox potyvirus. Plant Sci. 123: 189-196. Britton, N.L. and Rose, J.N. (1963). The Cactaceae; descriptions and illustrations of plants of the cactus family. Dover Publ., Inc., New York, USA. Brukhin, V. and Morozova, N. (2011). Plant growth and development-basic knowledge and current views. Math. Model. Nat. Phenom 6: 1-53. Cai, B.H., Zhang, J.Y., Qu, S.C., Gao, Z.H., Qiao, Y.S., Zhang, Z. and Zhu, F. (2008). Preliminary study on the elimination of mild yellow-edge virus from in vitro shoot tips of Meihou strawberry cultivar by vitrification-cryop-reservation treatment. J. Fruit Sci. 25: 872-876. Cavalcante, Í.H.L. and Martins, A.B.G. (2008). Effect of juvenility on cutting propagation of red pitaya. Fruits 63(5): 277-283. Chen, C.-C., Bates, R., and Carlson, J. (2015). Effect of environmental and cultural conditions on medium pH and explant growth performance of Douglas-fir (Pseudotsuga menziesii) shoot cultures. F1000Research 3: 298. Chiang, W.Y., Wu, M.H., Wu, K.L., Lin, M.H., Teng, H.H., Tsai, Y.F., Ko, C.C., Yang, E.C., Jiang, J.A., Barnett, L.R., and Chu, K.R. (2014). A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber. Rev. Sci. Instrum. 85: 084703. Choi, G., Kim, J.S., Choi, Y.M., and Lee, S.H. (1990). Identification and characterization of Cactus virus X from cacti in Korea. Res. Reports Rural Dev. Adm.-Crop Prot. (Korea R.). 32: 7-13. Chuang, M.F., Ni, H.F., Yang, H.R., Shu, S.L., Lai, S.Y., and Jiang, Y.L. (2012). First report of stem canker disease of pitaya (Hylocereus undatus and H. polyrhizus) caused by Neoscytalidium dimidiatum in Taiwan. Plant Dis. 96: 906-906. Clayton, P.W., Hubstenberger, J.F., and Phillips, G.C. (1990). Micropropagation of members of the Cactaceae subtribe Cactinae. J. Am. Soc. Hortic. Sci. 115(2): 337-343. da Silva, A.C., Sarturi, H.J., Dall’Oglio, E.L., Soares, M.A., de Sousa, P.T., de Vasconcelos, L.G., and Kuhnen, C.A. (2016). Microwave drying and disinfestation of Brazil nut seeds. Food Control 70: 119-129. Davies, M.E. and Dale, M.M. (1979). Factors affecting in vitro shoot regeneration on leaf discs of Solanum laciniatum AIT. Zeitschrift für Pflanzenphysiologie. 92(1): 51-60. de Klerk, G.-J., van der Krieken, W., and de Jong, J.C. (1999). Review the formation of adventitious roots: New concepts, new possibilities. In Vitro Cell. Dev. Biol.- Plant. 35: 189-199. Dhar, U. and Joshi, M. (2005). Efficient plant regeneration protocol through callus for Saussurea obvallata (DC.) Edgew. (Asteraceae): effect of explant type, age and plant growth regulators. Plant Cell Rep. 24(4): 195-200. Drew, R.A. and Azimi, M. (2002). Micropropagation of red pitaya (Hylocereous undatus). Acta Hortic. 575: 93-98. Ellis, D.D., Barczynska, H., McCown, B.H., and Nelson, N. (1991). A comparison of BA, zeatin and thidiazuron for adventitious bud formation from Picea glauca embryos and epicotyl explants. Plant Cell. Tissue Organ Cult. 27: 281-287. Engelmann, F. (2004). Plant cryopreservation: Progress and prospects. In Vitro Cell. Dev. Biol.- Plant. 40: 427-433. Faccioli, G. (2001). Control of potato viruses using meristem and stem-cuttings cultures, thermotherapy and chemothe- rapy. In: Virus and virus-like diseases of potato and pro- duction of seed-potatoes (Loebenstein G, Berger PH, Brunt AA, Lawson RH, eds). Kluwer Acad Publ. Dor- drecht (Netherlands), pp: 365-390. Fahy, G.M., MacFarlane, D.R., Angell, C.A., and Meryman, H.T. (1984). Vitrification as an approach to cryopreservation. Cryobiology 21: 407-426. Fan, Q.J., Zheng, S.C., Yan, F.X., Zhang, B.X., Qiao, G., and Wen, X.P. (2013). Efficient regeneration of dragon fruit (Hylocereus undatus) and an assessment of the genetic fidelity of in vitro-derived plants using ISSR markers. J. Hortic. Sci. Biotechnol. 88(5): 631-637. Friesen, A.P., Conner, R.L., Robinson, D.E., Barton, W.R., and Gillard, C.L. (2014). Effect of microwave radiation on dry bean seed infected with Xanthomonas axonopodis pv. phaseoli with and without the use of chemical seed treatment. Crop Prot. 65: 77-85. Frison, E.A. and Ng, S.Y. (1981). Elimination of sweet potato virus disease agents by meristem tip culture. Trop. Pest Manag. 27(4): 452-454. Gallard, A., Mallet, R., Chevalier, M., and Grapin, A. (2011). Limited elimination of two viruses by cryotherapy of pelargonium apices related to virus distribution. Cryo Letters 32: 111-122. George, E.F., Hall, M.A., and De Klerk, G.-J. (2008). Plant Propagation by Tissue Culture 3rd Edition. Springer, The Netherlands. Giri, L. and Chessin, M. (1975). Zygocactus Virus X. Phytopath. Z. 83: 40-48. Haberlandt, G. (1902). Culturversuche mit isolierten Pflanzenzellen. Sitzungsber. Akad. Wiss. Wien. Math. Nat. 111: 69-91. Helliot, B., Panis, B., Poumay, Y., Swennen, R., Lepoivre, P., Frison, E. (2002). Cryopreservation for the elimination of cucumber mosaic and banana streak viruses from banana (Musa spp.). Plant Cell Rep. 20: 1117-1122. Hollings, M. (1965). Disease control through virus-free stock. Annu. Rev. Phytopathol. 3: 367-396. Hua, Q., Chen, P., Liu, W., Ma, Y., Liang, R., Wang, L., Wang, Z., Hu, G., and Qin, Y. (2015). A protocol for rapid in vitro propagation of genetically diverse pitaya. Plant Cell Tissue Organ Cult. 120: 741-745. Ikediala, J.N., Tang, J., Neven, L.G., and Drake, S.R. (1999). Quarantine treatment of cherries using 915 MHz microwaves: temperature mapping, codling moth mortality and fruit quality. Postharvest Biol. Technol. 16: 127-137. Infante, R. (1997). Micropropagation of Mediocactus coccineus S.D. (Yellow Pitaya). Biotechnology in agriculture and forestry high-tech and micropropagation, vol 40 206-213. Infante, R. (1992). In vitro axillary shoot proliferation and somatic embryogenesis of yellow pitaya Mediocactus coccineus (Salm-Dyck). Plant Cell. Tissue Organ Cult. 31: 155-159. Jeon, S.M., Naing, A.H., Kim, H.-H., Chung, M.Y., Lim, K.B., and Kim, C.K. (2016). Elimination of Chrysanthemum stunt viroid and Chrysanthemum chlorotic mottle viroid from infected chrysanthemum by cryopreservation. Protoplasma 253: 1135-1144. Jiang, Y. L. and Yang, W.J. (2015). Development of integrated crop management systems for pitaya in Taiwan. Improving pitaya production and marketing 73-78. King, A.M.Q., Lefkowitz, E.J., Adams, M.J., and Carstens, E.B. (2011). Virus taxonomy: classification and nomenclature of viruses: Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier, San Diego. Koenig, R., Aust, H., Schiemann, J., Pleij, C.W.A., Loss, S., and Burgermeister, W. (2004). Molecular characterisation of potexviruses isolated from three different genera in the family Cactaceae. Arch. Virol. 149(5): 903–914. Krikorian, A.D. and Berquam, D.L. (2003). Plant cell and tissue cultures: the role of Haberlandt. Plant Tissue Culture 25-53. Kumar, S., Khan, M.S., Raj, S.K., and Sharma, A.K. (2009). Elimination of mixed infection of Cucumber mosaic virus and Tomato aspermy virus from Chrysanthemum morifolium Ramat. cv. Pooja by shoot meristem culture. Sci. Hortic.. 119: 108-112. Kuo, C.G., Shen, B.J., Shen, M.J., Green, S.K., and Lee, D.R. (1985). Virus-free sweet potato storage roots derived from meristem-tips and leaf-cuttings. Sci. Hortic. 26: 231-240. Leifert, C., Pryce, S., Lumsden, P.J., and Waites, W.M. (1992). Effect of medium acidity on growth and rooting of different plant species growing in vitro. Plant Cell Tiss. Org. Cult. 30: 171-179. Liou, M.R., Hung, C.L., and Liou, R.F. (2001). First report of Cactus virus X on Hylocereus undatus (Cactaceae) in Taiwan. Plant Dis. 85: 229-229. Mazumdar, P., Basu, A., Paul, A., Mahanta, C., and Sahoo, L. (2010). Age and orientation of the cotyledonary leaf explants determine the efficiency of de novo plant regeneration and Agrobacterium tumefaciens-mediated transformation in Jatropha curcas L. South African J. Bot. 76: 337-344. Mazur, P. (1984). Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247: 125-142. Messeguer, J. and Melé, E. (1987). In vitro propagation of adult material and seedlings of Corylus avellana. Acta Hortic. 212: 499-504. Miličič, D., Pleše, N., Bercks, R., Brand es, J., Casper, R., and Chessin, M. (1966). Vergleichende serologische und elektronenmikroskopische Untersuchungen an Isolaten des Kakteen-X-Virus. J. Phytopathol. 55: 211-217. Miller, C.O., Skoog, F., Okumura, F.S., Von Saltza, M.H., and Strong, F.M. (1956). Isolation, structure and synthesis of kinetin, a substance promoting cell division 1,2. J. Am. Chem. Soc. 78: 1375-1380. Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15(3): 473-497. Ozyigit, I.I., Kahraman, M.V., and Ercan, O. (2007). Relation between explant age, total phenols and regeneration response in tissue cultured cotton (Gossypium hirsutum L.). African J. Biotechnol. 6(1): 3-8. Panattoni, A., Luvisi, A., and Triolo, E. (2013). Review. Elimination of viruses in plants: twenty years of progress. Spanish J. Agric. Res. 11(1): 173-188 Panattoni, A. and Triolo, E. (2010). Susceptibility of grapevine viruses to thermotherapy on in vitro collection of Kober 5BB. Sci. Hortic. 125: 63-67. Paek, K.Y., Chandler, S.F., and Thorpe, T.A. (1987). In vitro propagation of Chinese cabbage from seedling shoot tips. J. Am. Soc. Hortic. Sci. 112:841-845. Pevalek-Kozlina, B. (1990). Influence of the container size on the rate of Prunus avium shoot multiplication. Acta Bot. Croat. 49(1):49-52. Popescu C.F., Visoiu E., Buciumeanu E., Teodorescu A., Gheorghe R.N., Tanasescu C., Ciocirlan C.N. (2010). From plant tissue culture to modern biotechnology at the Natio- nal Research and Development Institute for Biotech-nology in Horticulture Stefanesti: achievements and pros-pects. Romanian Biotechnol Lett 15(2): 78-87. Popescu, C.F., Buciumeanu, E., and Visoiu, E. (2003). Somatic embryogenesis a reliable method for Grapevine fleck virus-free regeneration. Proc 14th Meeting Int Council for the Study of Virus and Virus-like Diseases of the Grapevine. Bari (Italy), September 12-17. pp: 243 Prammanee, S., Thumjamras, S., Chiemsombat, P., and Pipattanawong, N. (2011). Efficient shoot regeneration from direct apical meristem tissue to produce virus-free purple passion fruit plants. Crop Prot. 30: 1425-1429. Previati A., Benelli C., Da Re. F., and Giannini, M. (2008). In vitro production of virus-free Chrysanthemum stock plants for cut flowers. Propagation of Ornamental Plants. 8(3): 167-169. Qin, J., Wang, Y., He, G., Chen, L., He, H., Cheng, X., Xu, K., and Zhang, D. (2017). High-efficiency micropropagation of dormant buds in spine base of red pitaya (Hylocereus polyrhizus) for industrial breeding. Int. J. Agric. Biol. 19(1): 193-198. Ramage, C.M. and Williams, R.R. (2002). Mineral nutrition and plant morphogenesis. In Vitro Cell. Dev. Biol.- Plant. 38: 116-124. Raviv, M., Becker, D., and Sahali, Y. (1986). The chemical identification of root promoters extracted from avocado tissues. Plant Growth Regul. 4: 371-374. Raviv, M., Reuveni, O., and Goldschmidt, E.E. (1987). The physiological basis for loss of rootability with age in avocado seedlings. Tree Physiol. 3: 115-122. Reinhoud, P.J., Schrijnemakers, E.W.M., Iren, F.V., and Kijne, J.W. (1995). Vitrification and a heat-shock treatment improve cryopreservation of tobacco cell suspensions compared to two-step freezing. Plant Cell. Tissue Organ Cult. 42: 261-267. Retheesh, S.T. and Bhat, A.I. (2010). Simultaneous elimination of Cucumber mosaic virus and Cymbidium mosaic virus infecting Vanilla planifolia through meristem culture. Crop Prot. 29: 1214-1217. Rubluo, A., Chávez, V., Martínez, A.P., and Martínez-Vázquez, O. (1993). Strategies for the recovery of endangered orchids and cacti through in-vitro culture. Biol. Conserv. 63: 163-169. Sakai, A. and Engelmann, F. (2007). Vitrification, encapsulation-vitrification and droplet-vitrification: a review. Cryo Letters 28: 151-172. Sastry, K.S. (2013). Plant virus transmission through vegetative propagules (Asexual Reproduction). In seed-borne plant virus diseases. Springer India 285-305. Shekafandeh, A. and Khosh-Khui, M. (2008). Effects of bud position and culture medium on shoot proliferation from nodal culture of two mature guava cultivars. Asian J. Plant Sci. 7(2): 177-182. Shin, J.H., Kang, D.K., and Sohn, J.K. (2013). Production of Yam mosaic virus (YMV)-free Dioscorea opposita plants by cryotherapy of shoot-tips. Cryo Letters. 34(2):149-157. Sidwell, R.W., Huffman, J.H., Khare, G.P., Allen, L.B., Witkowski, J.T., and Robins, R.K. (1972). Broad-spectrum antiviral activity of virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide. Science 177: 705-706. Standardi, A. and Micheli, M. (1988). Control of vitrification in proliferating shoots of M-26. Acta Hortic. 227: 425-427. Thomas, T.D. (2008). The role of activated charcoal in plant tissue culture. Biotechnol. Adv. 26: 618-631. Thorpe, T.A. (1990). The current status of plant tissue culture. Dev. Crop Sci. 19: 1-33. Valero, M., Ibañez, A., and Morte, A. (2003). Effects of high vineyard temperatures on the grapevine leafroll associated virus elimination from Vitis vinifera L. cv. Napoleon tissue cultures. Sci. Hortic.. 97: 289-296. Vasil, I.K. and Vasil, V. (1972). Totipotency and embryogenesis in plant cell and tissue cultures. In Vitro 8(3): 117-125. Vieira, R.L., da Silva, A.L., Zaffari, G.R., Steinmacher, D.A., de Freitas Fraga, H.P., and Guerra, M.P. (2015). Efficient elimination of virus complex from garlic (Allium sativum L.) by cryotherapy of shoot tips. Acta Physiol. Plant 37: 1-11. Vieitez, A.M. and Vieitez, M.L. (1980). Culture of chestnut shoots from buds in vitro. J. Hortic. Sci. 55(1): 83-84. Viñas, M., Fernández-Brenes, M., Azofeifa, A., and Jiménez, V.M. (2012). In vitro propagation of purple pitahaya (Hylocereus costaricensis [F.A.C. Weber] Britton & Rose) cv. Cebra. In Vitro Cell. Dev. Biol.- Plant. 48: 469-477. Wang, B., Wang, R.R., Cui, Z.H., Bi, W.L., Li, J.W., Li, B.Q., Ozudogru, E.A., Volk, G.M., and Wang, Q.C. (2014). Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication. Biotechnol. Adv. 32: 583-595. Wang, L.P., Hong, N., Wang, G.P., Xu, W.X., Michelutti, R., and Wang, A.M. (2010). Distribution of Apple stem grooving virus and Apple chlorotic leaf spot virus in infected in vitro pear shoots. Crop Prot. 29: 1447-1451. Wang, L.P., Wang, G.P., Hong, N., Tang, R.R., Deng, X.Y. (2006). Effect of thermotherapy on elimination of Apple stem grooving virus and Apple chlorotic leaf spot virus for in vitro-cultured pear shoot tips. Hortscience 41: 729-732. Wang, Q.C. and Valkonen, J.P.T. (2008a). Efficient elimination of sweetpotato little leaf phytoplasma from sweetpotato by cryotherapy of shoot tips. Plant Pathol. 57: 338-347. Wang, Q.C. and Valkonen, J.P.T. (2008b). Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy. J. Virol. Methods 154: 135-145. Wang, Q., Cuellar, W.J., Rajamaki, M.L., Hirata, Y., and Valkonen, J.P.T. (2008). Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Mol. Plant Pathol. 9: 237-250. Wang, Q., Mawassi, M., Li, P., Gafny, R., Sela, I., and Tanne, E. (2003). Elimination of Grapevine virus A (GVA) by cryopreservation of in vitro-grown shoot tips of Vitis vinifera L. Plant Sci. 165(2): 321-327. Wang, Q. and Valkonen, J.P.T. (2009). Cryotherapy of shoot tips: novel pathogen eradication method. Trends Plant Sci. 14(3): 119-122. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78802 | - |
| dc.description.abstract | 紅龍果 (pitaya) 屬於仙人掌科 (Cactaceae),臺灣主要栽培品種為三角柱屬 (Hylocereus) 的白肉 (H. undatus) 以及紅肉 (H. polyrhizus & H. costaricensis) 品系。由於紅龍果栽培管理容易、營養價值高以及新品種之育成,為臺灣近年來興起的果樹之一。目前已知感染紅龍果的病毒皆為Potexvirus屬:仙人掌X病毒 (Cactus virus X, CVX)、紅龍果X病毒 (Pitaya virus X, PiVX) 以及蟹爪蘭X病毒 (Zygocactus virus X, ZyVX)。本研究於2017至2018年檢測臺灣田間紅龍果枝條,發現所有樣本均受CVX感染,而PiVX與ZyVX的感染率分別為62.7%和55.2%,且複合感染的比例為82.1%,顯示紅龍果病毒已普遍存在於臺灣田間。為建立適合紅龍果白肉品種和紅肉品種富貴紅的組織培養系統,將田間罹病紅龍果枝條扦繁殖以獲得新生枝條,其莖段培養於3 mg/L 6-benzylaminopurine (BAP) 或玉米素 (zeatin) 搭配0.6 mg/L 1-naphthaleneacetic acid (NAA) 之MS培養基,2週後長出新芽,再經3週後新芽可長至2~5公分,成功建立大量繁殖無菌苗之技術。在莖頂組織培養去除病毒部分,將罹病無菌苗莖頂培養於含有1.5 mg/L BAP與0.15 mg/L NAA的培養基,其回復生長率為87.7~100%,且成功從受病毒單獨感染的材料中獲得紅龍果白肉品種無病毒苗;而複合感染的材料僅有部分病毒被去除,尚未能獲得紅肉品種無病毒苗。另外,本研究證實CVX與ZyVX之熱不活化溫度可達80~85°C,而PiVX為70~75°C。以24 GHz微波處理1.5秒後,紅龍果無菌苗可快速升溫至80~90°C,其莖頂組織回復培養後存活率為40%;由於24 GHz微波處理之植物組織可以在數秒內達到病毒熱不活化溫度以上,可望成為一種新穎的植物去病毒方法,目前已利用此方法獲得紅龍果白肉品種無病毒苗,但其去除病毒之效果仍待進一步提升。此外,本研究經改變試驗藥劑配方與處理時間,以及改良回復生長之培養條件,已建立適合紅龍果無菌苗的玻璃化法 (vitrification) 冷凍治療 (cryotherapy) 處理流程,回復生長率達23%,而去除病毒成功率仍待後續檢測。本研究期望能更進一步優化24 GHz微波處理及確認玻璃化法冷凍治療之去病毒效率,以獲得紅肉品種富貴紅無病毒苗,並期望利用所建立之紅龍果組織培養技術,應用於無病毒苗之大量繁殖,提供健康種苗供田間使用,並協助紅龍果病毒病害之研究。 | zh_TW |
| dc.description.abstract | Pitaya, also known as dragon fruit, is a climbing succulent plant in the family Cactaceae, and major cultivars in Taiwan are white-fleshed (Hylocereus undatus) and red-fleshed (H. polyrhizus & H. costaricensis) pitayas. Since pitaya is easy to grow and full of nutrition, and has new bred cultivars, it becomes important fruit crop in Taiwan in recent years. Three potexviruses, Cactus virus X (CVX), Pitaya virus X (PiVX), and Zygocactus virus X (ZyVX), have been reported to infect pitaya. During the period of 2017 and 2018, our field investigation results showed that all pitaya stem samples were infected by CVX, and the infection rates of PiVX and ZyVX were 62.7% and 55.2% respectively. Besides, the mixed infection rate of pitaya samples was 82.1%. This result indicated that pitaya viruses are widespread in Taiwan orchards. In this study, we aimed to establish a tissue culture system suitable for the white-fleshed and the red-fleshed ‘Fu Gui Hong’ pitayas. To achieve the goal, virus-infected new stems were obtained from cutting propagation, and pitaya stem segments were cultured on MS medium containing 3 mg/L 6-benzylaminopurine (BAP) or zeatin and 0.6 mg/L 1-naphthaleneacetic acid (NAA). Consequently, new shoots were successfully induced in 2 weeks and grew to 2~5 cm long after another 3 weeks, and thus the aseptic plantlets were later used for virus elimination experiments. In terms of virus elimination through shoot tip culture, virus-infected shoot tips were cultured on MS medium containing 1.5 mg/L BAP and 0.15 mg/L NAA, and the recovery rate of shoot tip was 87.7~100%. We successfully obtained virus-free white-fleshed pitayas from singly-infected plant materials but failed in mix-infected and red-fleshed ones. In addition, we determined the thermal inactivation point (TIP) of CVX and ZyVX to be 80~85°C and PiVX to be 70~75°C. By treating with 24 GHz microwave for 1.5 seconds, the temperature of aseptic pitaya plantlets increased up to 80~90°C, and the survival rate of the treated shoot tips was 40%. The rapid temperature elevation to reach the TIP of viruses under 24 GHz microwave treatment has the potential to become a new method for plant virus elimination. So far, we have obtained virus-free white-fleshed pitaya by 24 GHz microwave treatment but the successful rate was low. By modifying the reaction solutions, processing time and recovery condition, a vitrification cryotherapy method suitable for pitaya aseptic plantlets was successfully developed. The current recovery rate of cryotherapy-treated shoot tips was 23%, but the effect of virus elimination has not yet done. For further studies, the conditions in 24 GHz microwave treatment needs to be optimized and the virus elimination rate of vitrification cryotherapy has to be confirmed. All these information will be useful for obtaining virus-free red-fleshed pitaya ‘Fu Gui Hong’ efficiently. Moreover, our tissue culture method can be applied to mass propagation of virus-free pitaya plantlets which can be cultivated in the field and used for the basic studies of pitaya virus diseases. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:20:25Z (GMT). No. of bitstreams: 1 ntu-108-R05633004-1.pdf: 4118457 bytes, checksum: 8072410afa50ae16081a75b3e01fe4dc (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Abstract VI
壹、前言 1 一、紅龍果 1 二、紅龍果常見病害 2 三、紅龍果病毒病害之研究 3 四、植物組織培養與大量增殖 4 五、植物去除病毒方法 7 六、微波處理 11 七、研究目的 12 貳、材料與方法 13 一、組織培養試驗材料 13 二、表面消毒 14 三、紅龍果增殖系統與莖頂組織培養 14 四、莖頂組織培養方式去除病毒之試驗 19 五、微波處理搭配莖頂組織培養方式去除病毒之試驗 19 六、仙人掌X病毒、紅龍果X病毒以及蟹爪蘭X病毒之熱不活化溫度 (thermal inactivation point) 試驗 20 七、玻璃化法 (vitrification) 之冷凍治療 (cryotherapy) 搭配莖頂組織培養方式去除病毒之試驗 22 八、紅龍果病毒檢測方式 26 參、結果 28 一、田間紅龍果枝條病毒之檢測結果 28 二、田間紅龍果枝條扦插繁殖之結果 29 三、紅龍果白肉品種與紅肉品種富貴紅之組織培養以及增殖系統之建立 30 四、莖頂組織培養方式去除病毒之試驗結果 37 五、24 GHz 微波處理搭配莖頂組織培養方式去除病毒之試驗結果 38 六、玻璃化法 (Vitrification) 冷凍治療 (Cryotherapy) 搭配莖頂組織培養方式去除病毒之試驗結果 40 肆、討論 42 一、田間紅龍果枝條之病毒檢測 42 二、田間紅龍果枝條扦插繁殖 43 三、紅龍果白肉品種與紅肉品種富貴紅之組織培養以及增殖系統之建立 43 四、莖頂組織培養方式去除病毒之試驗 49 五、24 GHz微波處理搭配莖頂組織培養去除病毒之試驗 51 六、玻璃化 (Vitrification) 冷凍治療 (Cryotherapy) 搭配莖頂組織培養方式去除病毒之試驗 53 伍、參考文獻 56 陸、附表 66 柒、附圖 80 捌、附錄 107 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 紅龍果 | zh_TW |
| dc.subject | 紅龍果病毒病害 | zh_TW |
| dc.subject | 組織培養 | zh_TW |
| dc.subject | 去除病毒 | zh_TW |
| dc.subject | 莖頂組織培養 | zh_TW |
| dc.subject | 24 GHz微波 | zh_TW |
| dc.subject | 玻璃化法冷凍治療 | zh_TW |
| dc.subject | 24 GHz microwave | en |
| dc.subject | pitaya | en |
| dc.subject | pitaya virus disease | en |
| dc.subject | tissue culture | en |
| dc.subject | virus elimination | en |
| dc.subject | shoot tip culture | en |
| dc.subject | vitrification cryotherapy | en |
| dc.title | 紅龍果組織培養系統及去病毒技術之研發 | zh_TW |
| dc.title | Development of tissue culture system and virus elimination methods for pitaya | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王淑珍;楊佐琦 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Jen Wang;Tso-Chi Yang | en |
| dc.subject.keyword | 紅龍果,紅龍果病毒病害,組織培養,去除病毒,莖頂組織培養,24 GHz微波,玻璃化法冷凍治療, | zh_TW |
| dc.subject.keyword | pitaya,pitaya virus disease,tissue culture,virus elimination,shoot tip culture,24 GHz microwave,vitrification cryotherapy, | en |
| dc.relation.page | 111 | - |
| dc.identifier.doi | 10.6342/NTU201900626 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-03-07 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物病理與微生物學系 | - |
| dc.date.embargo-lift | 2029-03-07 | - |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 4.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
