請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78791
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 顧記華(Jih-Hwa Guh) | |
dc.contributor.author | Ya-Ching Chang | en |
dc.contributor.author | 張雅晴 | zh_TW |
dc.date.accessioned | 2021-07-11T15:19:36Z | - |
dc.date.available | 2024-08-28 | |
dc.date.copyright | 2019-08-28 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-06-21 | |
dc.identifier.citation | 1.World Health Organization. Fact sheets-Cancer. 2018. https://www.who.int/news-room/fact-sheets/detail/cancer.
2.American Cancer Society. Lung Cancer. https://www.cancer.org/cancer/lung-cancer.html. 3.Ministry of Health and Welfare. Annual report of death statistics. 2017. https://dep.mohw.gov.tw/DOS/np-1776-113.html. 4.American Cancer Society. Non-Small Cell Lung Cancer. https://www.cancer.org/cancer/non-small-cell-lung-cancer.html. 5.National Cancer Institute. Non-Small Cell Lung Cancer Treatment (PDQ®) - Health Professional Version. . https://www.cancer.gov/types/lung/hp/non-small-cell-lung-treatment-pdq. 6.European Society For Medical Oncology. Non-Small Cell Lung Cancer: A Guide for Patients. 2017. https://www.esmo.org/Patients/Patient-Guides/Non-Small-Cell-Lung-Cancer. 7.Takahashi, T., M.M. Nau, I. Chiba, M.J. Birrer, R.K. Rosenberg, M. Vinocour, M. Levitt, H. Pass, A.F. Gazdar, and J.D. Minna. p53: a frequent target for genetic abnormalities in lung cancer. Science 1989, 246(4929), 491-4. 8.Blanco, R., R. Iwakawa, M. Tang, T. Kohno, B. Angulo, R. Pio, L.M. Montuenga, J.D. Minna, J. Yokota, and M. Sanchez-Cespedes. A gene-alteration profile of human lung cancer cell lines. Hum Mutat 2009, 30(8), 1199-206. 9.Faller, B.A., and T.N. Pandit. Safety and efficacy of vinorelbine in the treatment of non-small cell lung cancer. Clin Med Insights Oncol 2011, 5, 131-44. 10.Le Chevalier, T., D. Brisgand, J.Y. Douillard, J.L. Pujol, V. Alberola, A. Monnier, A. Riviere, P. Lianes, P. Chomy, S. Cigolari, and et al. Randomized study of vinorelbine and cisplatin versus vindesine and cisplatin versus vinorelbine alone in advanced non-small-cell lung cancer: results of a European multicenter trial including 612 patients. J Clin Oncol 1994, 12(2), 360-7. 11.Gregory, R.K., and I.E. Smith. Vinorelbine--a clinical review. Br J Cancer 2000, 82(12), 1907-13. 12.Goldstein, I., T.F. Lue, H. Padma-Nathan, R.C. Rosen, W.D. Steers, and P.A. Wicker. Oral sildenafil in the treatment of erectile dysfunction. Sildenafil Study Group. N Engl J Med 1998, 338(20), 1397-404. 13.Galie, N., H.A. Ghofrani, A. Torbicki, R.J. Barst, L.J. Rubin, D. Badesch, T. Fleming, T. Parpia, G. Burgess, A. Branzi, F. Grimminger, M. Kurzyna, and G. Simonneau. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 2005, 353(20), 2148-57. 14.Ghofrani, H.A., I.H. Osterloh, and F. Grimminger. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov 2006, 5(8), 689-702. 15.Li, Q., and Y. Shu. Pharmacological modulation of cytotoxicity and cellular uptake of anti-cancer drugs by PDE5 inhibitors in lung cancer cells. Pharm Res 2014, 31(1), 86-96. 16.Chen, J.J., Y.L. Sun, A.K. Tiwari, Z.J. Xiao, K. Sodani, D.H. Yang, S.G. Vispute, W.Q. Jiang, S.D. Chen, and Z.S. Chen. PDE5 inhibitors, sildenafil and vardenafil, reverse multidrug resistance by inhibiting the efflux function of multidrug resistance protein 7 (ATP-binding Cassette C10) transporter. Cancer Sci 2012, 103(8), 1531-7. 17.Shi, Z., A.K. Tiwari, S. Shukla, R.W. Robey, S. Singh, I.W. Kim, S.E. Bates, X. Peng, I. Abraham, S.V. Ambudkar, T.T. Talele, L.W. Fu, and Z.S. Chen. Sildenafil reverses ABCB1- and ABCG2-mediated chemotherapeutic drug resistance. Cancer Res 2011, 71(8), 3029-41. 18.Roberts, J.L., L. Booth, A. Conley, N. Cruickshanks, M. Malkin, R.C. Kukreja, S. Grant, A. Poklepovic, and P. Dent. PDE5 inhibitors enhance the lethality of standard of care chemotherapy in pediatric CNS tumor cells. Cancer Biol Ther 2014, 15(6), 758-67. 19.Booth, L., J.L. Roberts, N. Cruickshanks, A. Conley, D.E. Durrant, A. Das, P.B. Fisher, R.C. Kukreja, S. Grant, A. Poklepovic, and P. Dent. Phosphodiesterase 5 inhibitors enhance chemotherapy killing in gastrointestinal/genitourinary cancer cells. Mol Pharmacol 2014, 85(3), 408-19. 20.Das, A., D. Durrant, C. Mitchell, E. Mayton, N.N. Hoke, F.N. Salloum, M.A. Park, I. Qureshi, R. Lee, P. Dent, and R.C. Kukreja. Sildenafil increases chemotherapeutic efficacy of doxorubicin in prostate cancer and ameliorates cardiac dysfunction. Proc Natl Acad Sci U S A 2010, 107(42), 18202-7. 21.Chang, J.F., J.L. Hsu, Y.H. Sheng, W.J. Leu, C.C. Yu, S.H. Chan, M.L. Chan, L.C. Hsu, S.P. Liu, and J.H. Guh. Phosphodiesterase type 5 (PDE5) inhibitors sensitize topoisomerase II inhibitors in killing prostate cancer through PDE5-independent impairment of HR and NHEJ DNA repair systems. Front Oncol 2018, 8, 681. 22.Pfizer Inc. Viagra (sildenafil citrate) Tablets, for Oral Use. Full Prescribing Information. 2017. http://labeling.pfizer.com/ShowLabeling.aspx?format=PDF&id=652. 23.Ichim, G., and S.W. Tait. A fate worse than death: apoptosis as an oncogenic process. Nat Rev Cancer 2016, 16(8), 539-48. 24.Elmore, S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007, 35(4), 495-516. 25.Tait, S.W., and D.R. Green. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 2010, 11(9), 621-32. 26.Hengartner, M.O. The biochemistry of apoptosis. Nature 2000, 407(6805), 770-6. 27.Youle, R.J., and A. Strasser. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008, 9(1), 47-59. 28.Czabotar, P.E., G. Lessene, A. Strasser, and J.M. Adams. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 2014, 15(1), 49-63. 29.Singh, R., A. Letai, and K. Sarosiek. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 2019, 20(3), 175-193. 30.Kelly, P.N., and A. Strasser. The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ 2011, 18(9), 1414-24. 31.Schafer, K.A. The cell cycle: a review. Vet Pathol 1998, 35(6), 461-78. 32.Lim, S., and P. Kaldis. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 2013, 140(15), 3079-93. 33.Satyanarayana, A., and P. Kaldis. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 2009, 28(33), 2925-39. 34.Vermeulen, K., D.R. Van Bockstaele, and Z.N. Berneman. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 2003, 36(3), 131-49. 35.Otto, T., and P. Sicinski. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 2017, 17(2), 93-115. 36.Jordan, M.A., and L. Wilson. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004, 4(4), 253-65. 37.Dumontet, C., and M.A. Jordan. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 2010, 9(10), 790-803. 38.Mukhtar, E., V.M. Adhami, and H. Mukhtar. Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 2014, 13(2), 275-84. 39.Shi, Z., A.K. Tiwari, A.S. Patel, L.W. Fu, and Z.S. Chen. Roles of sildenafil in enhancing drug sensitivity in cancer. Cancer Res 2011, 71(11), 3735-8. 40.Keats, T., R.J. Rosengren, and J.C. Ashton. The rationale for repurposing sildenafil for lung cancer treatment. Anticancer Agents Med Chem 2018, 18(3), 367-374. 41.Domvri, K., K. Zarogoulidis, N. Zogas, P. Zarogoulidis, S. Petanidis, K. Porpodis, E. Kioseoglou, and W. Hohenforst-Schmidt. Potential synergistic effect of phosphodiesterase inhibitors with chemotherapy in lung cancer. J Cancer 2017, 8(18), 3648-3656. 42.Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 2010, 70(2), 440-6. 43.Ngan, V.K., K. Bellman, B.T. Hill, L. Wilson, and M.A. Jordan. Mechanism of mitotic block and inhibition of cell proliferation by the semisynthetic Vinca alkaloids vinorelbine and its newer derivative vinflunine. Mol Pharmacol 2001, 60(1), 225-32. 44.Li, H., L. Sun, H. Li, X. Lv, H. Semukunzi, R. Li, J. Yu, S. Yuan, and S. Lin. DT-13 synergistically enhanced vinorelbine-mediated mitotic arrest through inhibition of FOXM1-BICD2 axis in non-small-cell lung cancer cells. Cell Death Dis 2017, 8(5), e2810. 45.Lindqvist, A., V. Rodriguez-Bravo, and R.H. Medema. The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J Cell Biol 2009, 185(2), 193-202. 46.Gong, D., and J.E. Ferrell, Jr. The roles of cyclin A2, B1, and B2 in early and late mitotic events. Mol Biol Cell 2010, 21(18), 3149-61. 47.Tapia, C., H. Kutzner, T. Mentzel, S. Savic, D. Baumhoer, and K. Glatz. Two mitosis-specific antibodies, MPM-2 and phospho-histone H3 (Ser28), allow rapid and precise determination of mitotic activity. Am J Surg Pathol 2006, 30(1), 83-9. 48.Liu, J.J., G.Y. Chen, M. Wang, Z.Y. Yang, and X. Hong. Effects of vinorelbine on apoptosis and expression of telomerase activity in human lung adenocarcinoma cells in vitro. Zhonghua Zhong Liu Za Zhi 2010, 32(10), 743-7. 49.Sen, S., H. Sharma, and N. Singh. Curcumin enhances Vinorelbine mediated apoptosis in NSCLC cells by the mitochondrial pathway. Biochem Biophys Res Commun 2005, 331(4), 1245-52. 50.Du, L., C.S. Lyle, and T.C. Chambers. Characterization of vinblastine-induced Bcl-xL and Bcl-2 phosphorylation: evidence for a novel protein kinase and a coordinated phosphorylation/dephosphorylation cycle associated with apoptosis induction. Oncogene 2005, 24(1), 107-17. 51.Basu, A., and S. Haldar. Identification of a novel Bcl-xL phosphorylation site regulating the sensitivity of taxol- or 2-methoxyestradiol-induced apoptosis. FEBS Lett 2003, 538(1-3), 41-7. 52.Chu, R., D.T. Terrano, and T.C. Chambers. Cdk1/cyclin B plays a key role in mitotic arrest-induced apoptosis by phosphorylation of Mcl-1, promoting its degradation and freeing Bak from sequestration. Biochem Pharmacol 2012, 83(2), 199-206. 53.Shitashige, M., M. Toi, T. Yano, M. Shibata, Y. Matsuo, and F. Shibasaki. Dissociation of Bax from a Bcl-2/Bax heterodimer triggered by phosphorylation of serine 70 of Bcl-2. J Biochem 2001, 130(6), 741-8. 54.Terrano, D.T., M. Upreti, and T.C. Chambers. Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol Cell Biol 2010, 30(3), 640-56. 55.Fan, M., M. Goodwin, T. Vu, C. Brantley-Finley, W.A. Gaarde, and T.C. Chambers. Vinblastine-induced phosphorylation of Bcl-2 and Bcl-XL is mediated by JNK and occurs in parallel with inactivation of the Raf-1/MEK/ERK cascade. J Biol Chem 2000, 275(39), 29980-5. 56.Eichhorn, J.M., N. Sakurikar, S.E. Alford, R. Chu, and T.C. Chambers. Critical role of anti-apoptotic Bcl-2 protein phosphorylation in mitotic death. Cell Death Dis 2013, 4, e834. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78791 | - |
dc.description.abstract | 肺癌不但是全球最常被診斷出的惡性腫瘤類型,更是造成癌症致死率高居不下的主要原因之一,而大多數肺癌患者都屬於非小細胞肺癌(non-small cell lung cancer, NSCLC)。因此,開發能被應用於治療非小細胞肺癌的治療策略極為重要。化學治療是臨床上最常用的療法之一,即便目前有多種化療藥物,但是晚期非小細胞肺癌患者的五年生存率仍低於10%。此外,化學治療劑的毒性和副作用限制了化學藥品的使用。因此,合併化學治療是一種可以降低化學治療藥物的劑量及毒性並同時增加其抗癌活性的潛力療法。從我們合作團隊合成的一系列新化合物進行篩選後,我們發現化合物DRH-9對於PDE5抑制活性降低許多,並且在與臨床上用於轉移性非小細胞肺癌患者的一線化學藥物溫諾平(vinorelbine)合併使用時,擁有很高的增敏活性。有趣的是,DRH-9本身不具有強烈細胞毒性,因此,並不會影響細胞存活,卻在sulforhodamine B試驗中顯著地增強溫諾平對非小細胞肺癌細胞株NCI-H460的抗癌作用,大幅將抑制百分之五十癌細胞生長所需的藥物濃度(GI50)從5.16±0.31 nM降低至2.41±0.11 nM。而以流式細胞儀分析的CFSE染色試驗和集落形成試驗結果均反映DRH-9和溫諾平合併療法對癌細胞增殖的強烈抑制作用。此外,細胞週期分佈試驗和細胞死亡酵素免疫分析試驗的結果皆顯示DRH-9顯著地加強溫諾平誘導的細胞凋亡。雖然DRH-9與微管蛋白並無直接相互作用關係,但DRH-9增強溫諾平使微管不穩定的效果,並促進異常紡錘體之有絲分裂細胞生成。除此之外,DRH-9和溫諾平的合併療法顯著地增加停滯於有絲分裂期的細胞族群以及相關蛋白質的表現量,包括細胞週期蛋白B1 (cyclin B1)、有絲分裂相關蛋白磷酸化以及Bcl-2磷酸化。也因而進一步活化下游的內源性細胞凋亡途徑,並最終導致更多的癌細胞走向凋亡。總結來說,此研究數據顯示DRH-9極具有潛力成為是一種有低PDE5抑制活性,並且對治療非小細胞肺癌之溫諾平誘導的抗癌作用具有高增敏能力的化學增敏劑。 | zh_TW |
dc.description.abstract | Carcinoma of lung is the most frequently diagnosed malignancy and the leading cause of cancer mortality worldwide, and most patients are categorized as non-small cell lung cancer (NSCLC). Chemotherapy, one of the most commonly used therapies, has shown good clinical outcome, but the 5-year survival rate of late-stage patients is still lower than 10%. Besides, the cytotoxicity and side effects have limited extensive use of chemotherapeutic agents. Therefore, combination therapy can be a potential approach to reduce the doses and toxicity of chemotherapeutic drugs while sensitizing anticancer activities. Among a number of new compounds synthesized by our colleagues, DRH-9 showed lower PDE5 inhibition and the highest sensitizing activities when combined with vinorelbine, a chemotherapeutic drug for metastatic NSCLC patients. Interestingly, DRH-9 alone did not affect cell survival, but profoundly potentiated vinorelbine-induced anticancer effects in sulforhodamine B assay with decreasing GI50 from 5.16±0.31 nM to 2.41±0.11 nM against NSCLC cell line NCI-H460. The synergistic effect was further substantiated by using both colony formation assay and flow cytometric analysis of CFSE staining. Moreover, the results of cell cycle distribution analysis detected by flow cytometry and apoptosis assay detected using a cell death ELISA kit showed that DRH-9 dramatically sensitized vinorelbine-induced apoptotic cell death. Although DRH-9 did not directly interact with tubulins, it amplified vinorelbine’s effect on microtubule destabilization and exaggerated the formation of mitotic cells with abnormal spindles. Furthermore, the combinatory treatment of DRH-9 and vinorelbine significantly increased the cell populations arrested in mitotic phase and the expression levels of related proteins, including cyclin B1, mitosis-related protein phosphorylation and Bcl-2 phosphorylation, which activated downstream intrinsic apoptotic pathways and eventually led to much more apoptotic cells. In conclusion, the data suggest that DRH-9 is a potential chemosensitizer displaying low PDE5 inhibiting activity but high sensitization capability on vinorelbine-induced anticancer effect against NSCLC. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:19:36Z (GMT). No. of bitstreams: 1 ntu-108-R06423014-1.pdf: 3128009 bytes, checksum: 6982aaa07c62cf51fbbf41e45aca9270 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii List of Abbreviations v Contents vii List of Figures ix List of Tables x Aim of the Study 1 Chapter 1: Introduction 2 1.1 Lung cancer 2 1.2 Non-small cell lung cancer (NSCLC) 2 1.3 Vinorelbine 6 1.4 Sildenafil 6 1.5 Apoptosis 8 1.6 Bcl-2 family proteins 9 1.7 Cell cycle 10 1.8 Microtubule and Tubulin 11 Chapter 2: Materials and Methods 12 2.1 Materials 12 2.2 Methods 13 Chapter 3: Results 19 3.1 Effect of DRH derivatives on cell growth in NCI-H460 cells. 19 3.2 Effect of combinatory treatment between vinorelbine and DRH derivatives on cell growth in NCI-H460 cells. 19 3.3 Effect of DRH derivatives on the inhibition of PDE5A. 19 3.4 Effect of DRH-9 or sildenafil on vinorelbine-mediated inhibition of cell proliferation in NCI-H460 cells. 20 3.5 Effect of DRH-9 or sildenafil combined with vinorelbine on cell cycle progression in NCI-H460 cells. 21 3.6 Effect of DRH-9 or sildenafil combined with vinorelbine on cell apoptosis and apoptosis-related proteins in NCI-H460 cells. 21 3.7 Effect of DRH-9 or sildenafil combined with vinorelbine on short-term cell cycle progression in NCI-H460 cells. 22 3.8 Effect of DRH-9 combined with vinorelbine on tubulin polymerization in NCI-H460 cells. 23 Chapter 4: Discussion 25 Chapter 5: Conclusion 29 Appendices 30 Figures and Tables 37 References 55 | |
dc.language.iso | en | |
dc.title | 探討小分子化合物DRH-9增強化療藥物Vinorelbine在人類非小細胞肺癌之抗癌機轉研究 | zh_TW |
dc.title | Study of Anticancer Sensitization by Small Molecule DRH-9 on Vinorelbine-Induced Apoptosis in Human Non-Small Cell Lung Cancer | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許麗卿(Lih-Ching Hsu),黃聰龍(Tsong-Long Hwang),蕭哲志(George Hsiao) | |
dc.subject.keyword | 溫諾平,化學增敏劑,非小細胞肺癌,細胞週期停滯,細胞凋亡, | zh_TW |
dc.subject.keyword | vinorelbine,chemosensitizer,non-small cell lung cancer,cell cycle arrest,apoptosis, | en |
dc.relation.page | 58 | |
dc.identifier.doi | 10.6342/NTU201900935 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-06-21 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
dc.date.embargo-lift | 2024-08-28 | - |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-R06423014-1.pdf 目前未授權公開取用 | 3.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。