Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7878
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘俊良(Chun-Liang Pan)
dc.contributor.authorChih-Ta Linen
dc.contributor.author林志達zh_TW
dc.date.accessioned2021-05-19T17:57:00Z-
dc.date.available2021-08-26
dc.date.available2021-05-19T17:57:00Z-
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-08-16
dc.identifier.citationBalch, W.E., Morimoto, R.I., Dillin, A., and Kelly, J.W. (2008). Adapting proteostasis for disease intervention. Science 319, 916-919.
Benedetti, C., Haynes, C.M., Yang, Y., Harding, H.P., and Ron, D. (2006). Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174, 229-239.
Breckenridge, D.G., Kang, B.H., Kokel, D., Mitani, S., Staehelin, L.A., and Xue, D. (2008). Caenorhabditis elegans drp-1 and fis-2 regulate distinct cell-death execution pathways downstream of ced-3 and independent of ced-9. Mol Cell 31, 586-597.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Burkewitz, K., Morantte, I., Weir, H.J., Yeo, R., Zhang, Y., Huynh, F.K., Ilkayeva, O.R., Hirschey, M.D., Grant, A.R., and Mair, W.B. (2015). Neuronal CRTC-1 governs systemic mitochondrial metabolism and lifespan via a catecholamine signal. Cell 160, 842-855.
Cartoni, R., Arnaud, E., Medard, J.J., Poirot, O., Courvoisier, D.S., Chrast, R., and Martinou, J.C. (2010). Expression of mitofusin 2(R94Q) in a transgenic mouse leads to Charcot-Marie-Tooth neuropathy type 2A. Brain 133, 1460-1469.
Chacinska, A., Koehler, C.M., Milenkovic, D., Lithgow, T., and Pfanner, N. (2009). Importing mitochondrial proteins: machineries and mechanisms. Cell 138, 628-644.
Chan, D.C. (2012). Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46, 265-287.
de Brito, O.M., and Scorrano, L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605-610.
Dillin, A., Hsu, A.L., Arantes-Oliveira, N., Lehrer-Graiwer, J., Hsin, H., Fraser, A.G., Kamath, R.S., Ahringer, J., and Kenyon, C. (2002). Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398-2401.
Durieux, J., Wolff, S., and Dillin, A. (2011). The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144, 79-91.
Ehrenberg, B., Montana, V., Wei, M.D., Wuskell, J.P., and Loew, L.M. (1988). Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys J 53, 785-794.
Ferri, K.F., and Kroemer, G. (2001). Organelle-specific initiation of cell death pathways. Nat Cell Biol 3, E255-263.
Filadi, R., Greotti, E., Turacchio, G., Luini, A., Pozzan, T., and Pizzo, P. (2015). Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proc Natl Acad Sci U S A 112, E2174-2181.
Haynes, C.M., Petrova, K., Benedetti, C., Yang, Y., and Ron, D. (2007). ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev Cell 13, 467-480.
Haynes, C.M., and Ron, D. (2010). The mitochondrial UPR - protecting organelle protein homeostasis. J Cell Sci 123, 3849-3855.
Haynes, C.M., Yang, Y., Blais, S.P., Neubert, T.A., and Ron, D. (2010). The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol Cell 37, 529-540.
Hill, K., Model, K., Ryan, M.T., Dietmeier, K., Martin, F., Wagner, R., and Pfanner, N. (1998). Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins [see comment]. Nature 395, 516-521.
Houtkooper, R.H., Mouchiroud, L., Ryu, D., Moullan, N., Katsyuba, E., Knott, G., Williams, R.W., and Auwerx, J. (2013). Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497, 451-457.
Hughes, A.L., and Gottschling, D.E. (2012). An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492, 261-265.
Ichishita, R., Tanaka, K., Sugiura, Y., Sayano, T., Mihara, K., and Oka, T. (2008). An RNAi screen for mitochondrial proteins required to maintain the morphology of the organelle in Caenorhabditis elegans. J Biochem 143, 449-454.
Jiang, H.C., Hsu, J.M., Yen, C.P., Chao, C.C., Chen, R.H., and Pan, C.L. (2015). Neural activity and CaMKII protect mitochondria from fragmentation in aging Caenorhabditis elegans neurons. Proc Natl Acad Sci U S A 112, 8768-8773.
Johnson, D., and Nehrke, K. (2010). Mitochondrial fragmentation leads to intracellular acidification in Caenorhabditis elegans and mammalian cells. Mol Biol Cell 21, 2191-2201.
Kamath, R.S., Martinez-Campos, M., Zipperlen, P., Fraser, A.G., and Ahringer, J. (2001). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2, RESEARCH0002.
Lee, S.S., Lee, R.Y., Fraser, A.G., Kamath, R.S., Ahringer, J., and Ruvkun, G. (2003). A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33, 40-48.
Lin, Y.F., Schulz, A.M., Pellegrino, M.W., Lu, Y., Shaham, S., and Haynes, C.M. (2016). Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature 533, 416-419.
Madison, J.M., Nurrish, S., and Kaplan, J.M. (2005). UNC-13 interaction with syntaxin is required for synaptic transmission. Curr Biol 15, 2236-2242.
Mello, C.C., Kramer, J.M., Stinchcomb, D., and Ambros, V. (1991). Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10, 3959-3970.
Merkwirth, C., Jovaisaite, V., Durieux, J., Matilainen, O., Jordan, S.D., Quiros, P.M., Steffen, K.K., Williams, E.G., Mouchiroud, L., Tronnes, S.U., et al. (2016). Two Conserved Histone Demethylases Regulate Mitochondrial Stress-Induced Longevity. Cell 165, 1209-1223.
Munoz, J.P., Ivanova, S., Sanchez-Wandelmer, J., Martinez-Cristobal, P., Noguera, E., Sancho, A., Diaz-Ramos, A., Hernandez-Alvarez, M.I., Sebastian, D., Mauvezin, C., et al. (2013). Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J 32, 2348-2361.
Nargund, A.M., Fiorese, C.J., Pellegrino, M.W., Deng, P., and Haynes, C.M. (2015). Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt). Mol Cell 58, 123-133.
Nargund, A.M., Pellegrino, M.W., Fiorese, C.J., Baker, B.M., and Haynes, C.M. (2012). Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337, 587-590.
Nolden, M., Ehses, S., Koppen, M., Bernacchia, A., Rugarli, E.I., and Langer, T. (2005). The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 123, 277-289.
Pan, C.L., Peng, C.Y., Chen, C.H., and McIntire, S. (2011). Genetic analysis of age-dependent defects of the Caenorhabditis elegans touch receptor neurons. Proc Natl Acad Sci U S A 108, 9274-9279.
Pellegrino, M.W., Nargund, A.M., Kirienko, N.V., Gillis, R., Fiorese, C.J., and Haynes, C.M. (2014). Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature 516, 414-417.
Prahlad, V., Cornelius, T., and Morimoto, R.I. (2008). Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 320, 811-814.
Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A., and Tyagi, S. (2008). Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5, 877-879.
Rizzuto, R., and Pozzan, T. (2006). Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86, 369-408.
Rolland, S.G., Lu, Y., David, C.N., and Conradt, B. (2009). The BCL-2-like protein CED-9 of C. elegans promotes FZO-1/Mfn1,2- and EAT-3/Opa1-dependent mitochondrial fusion. J Cell Biol 186, 525-540.
Rossor, A.M., Polke, J.M., Houlden, H., and Reilly, M.M. (2013). Clinical implications of genetic advances in Charcot-Marie-Tooth disease. Nat Rev Neurol 9, 562-571.
Roux, A.E., Langhans, K., Huynh, W., and Kenyon, C. (2016). Reversible Age-Related Phenotypes Induced during Larval Quiescence in C. elegans. Cell Metab 23, 1113-1126.
Scheckhuber, C.Q., Erjavec, N., Tinazli, A., Hamann, A., Nystrom, T., and Osiewacz, H.D. (2007). Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol 9, 99-105.
Schieber, M., and Chandel, N.S. (2014). TOR signaling couples oxygen sensing to lifespan in C. elegans. Cell Rep 9, 9-15.
Schneeberger, M., Dietrich, M.O., Sebastian, D., Imbernon, M., Castano, C., Garcia, A., Esteban, Y., Gonzalez-Franquesa, A., Rodriguez, I.C., Bortolozzi, A., et al. (2013). Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155, 172-187.
Speese, S., Petrie, M., Schuske, K., Ailion, M., Ann, K., Iwasaki, K., Jorgensen, E.M., and Martin, T.F. (2007). UNC-31 (CAPS) is required for dense-core vesicle but not synaptic vesicle exocytosis in Caenorhabditis elegans. J Neurosci 27, 6150-6162.
Tank, E.M., Rodgers, K.E., and Kenyon, C. (2011). Spontaneous age-related neurite branching in Caenorhabditis elegans. J Neurosci 31, 9279-9288.
Tatum, M.C., Ooi, F.K., Chikka, M.R., Chauve, L., Martinez-Velazquez, L.A., Steinbusch, H.W., Morimoto, R.I., and Prahlad, V. (2015). Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase. Curr Biol 25, 163-174.
Taylor, R.C., and Dillin, A. (2013). XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153, 1435-1447.
Toth, M.L., Melentijevic, I., Shah, L., Bhatia, A., Lu, K., Talwar, A., Naji, H., Ibanez-Ventoso, C., Ghose, P., Jevince, A., et al. (2012). Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system. J Neurosci 32, 8778-8790.
Verhoeven, K., Claeys, K.G., Zuchner, S., Schroder, J.M., Weis, J., Ceuterick, C., Jordanova, A., Nelis, E., De Vriendt, E., Van Hul, M., et al. (2006). MFN2 mutation distribution and genotype/phenotype correlation in Charcot-Marie-Tooth type 2. Brain 129, 2093-2102.
Walter, P., and Ron, D. (2011). The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081-1086.
Yasuda, K., Ishii, T., Suda, H., Akatsuka, A., Hartman, P.S., Goto, S., Miyazawa, M., and Ishii, N. (2006). Age-related changes of mitochondrial structure and function in Caenorhabditis elegans. Mech Ageing Dev 127, 763-770.
Yoneda, T., Benedetti, C., Urano, F., Clark, S.G., Harding, H.P., and Ron, D. (2004). Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 117, 4055-4066.
Young, L., Leonhard, K., Tatsuta, T., Trowsdale, J., and Langer, T. (2001). Role of the ABC transporter Mdl1 in peptide export from mitochondria. Science 291, 2135-2138.
Zuchner, S., Mersiyanova, I.V., Muglia, M., Bissar-Tadmouri, N., Rochelle, J., Dadali, E.L., Zappia, M., Nelis, E., Patitucci, A., Senderek, J., et al. (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36, 449-451.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7878-
dc.description.abstract逆境或外在壓力導致生物體內蛋白構型異常時,細胞會透過專一性的訊號傳遞機制,進行各不同胞器獨特的生理反應,藉以去除構型異常的失能蛋白或將蛋白的構型恢復正常,這些統稱為胞器內未摺疊蛋白反應 (UPR),其中包含了細胞質的熱休克反應(HSR)和內質網(UPRER)和粒線體的未摺疊蛋白反應(UPRmt)。生物體的老化會造成蛋白恆定態的失衡或粒線體功能異常,除伴隨著細胞生理功能的下降,也可能引起異常的未摺疊蛋白反應。前人在秀麗桿狀線蟲Caenorhabditis elegans當中發現,神經細胞內粒線體的呼吸狀態會影響線蟲全身性的粒線體蛋白平衡,但是神經細胞內與不同細胞間訊息傳遞的分子機制尚不清楚。本篇研究發現線蟲中調控粒線體融合的蛋白FZO-1/Mitofusin可以影響粒線體未折疊蛋白反應。fzo-1基因的突變引發多形性的性狀,包含生長遲緩、生殖能力下降、神經老化加速和粒線體未摺疊蛋白反應的異常上升。我們發現在神經細胞內專一表現FZO-1,除可以改善神經內粒線體型態的缺失和神經元細胞的過度老化外,亦可以有效改善fzo-1突變所引發的全身性粒線體未摺疊蛋白反應的異常上升,及減緩fzo-1突變所引發的生長遲緩。在腸道內專一表現FZO-1則可改善粒線體未摺疊蛋白反應在腸細胞內的異常上升。本篇研究發現神經細胞內粒線體型態的調控可以影響全身粒線體蛋白的平衡,有助於了解神經細胞內粒線體如何透過訊號傳遞來調控全身粒線體蛋白的平衡和生物體老化過程中蛋白質的恆定性。zh_TW
dc.description.abstractCompartment-specific stress responses, including cytosolic heat shock response (HSR), the endoplasmic reticulum unfolded protein response (UPRER), and the mitochondrial unfolded protein response (UPRmt), protect animals against proteotoxic stress. Age-dependent decline in cellular functions and organismal physiology is associated with dysregulated protein homeostasis and mitochondrial function. Systemic proteostasis in the nematode Caenorhabditis elegans could be regulated by mitochondrial respiration in the neurons, but the molecular mechanisms of such intercellular control of protein homeostasis remains unclear. Here we report that the C. elegans mitochondrial fusion protein FZO-1/Mitofusin controlled UPRmt in a cell non-autonomous manner. Mutations of fzo-1 caused pleiotropic phenotypes, including slow development, reduced fecundity, accelerated neuronal aging, and maladapted UPRmt. Neuronal mitochondrial defects and aging signs of the neurites were rescued by neuron-autonomous FZO-1 functions. The maladapted UPRmt in the intestine was moderately rescued by intestinal FZO-1 expression. Unexpectedly, aberrant intestinal UPRmt of the fzo-1 mutants was significantly ameliorated by neuronal FZO-1. Neuronal FZO-1 also partially rescued the slow development of the fzo-1 mutant. We are now exploring neuron-derived signals that potentially mediate such non-autonomous effects on systemic mitochondrial proteostasis. Progress in this proposal could further our understanding of how mitochondria-mediated, neuron-derived signals control systemic protein homeostasis and cellular aging at the organismal level.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:57:00Z (GMT). No. of bitstreams: 1
ntu-105-R03448012-1.pdf: 7904516 bytes, checksum: 1289400a353504a172d17d49c5558181 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 #
ACKNOWLEDGEMENT i
中文摘要 iii
ABSTRACT iv
CONTENTS v
Chapter 1 INTRODUCTION 1
1.1 FZO-1/Mitofusins and Mitochondrial Dynamics 2
1.2 Regulation of Mitochondrial Proteome Homeostasis: the UPRmt 3
1.3 Cell Non-Autonomous UPRmt Regulation 5
1.4 Current Study: Neuronal Mitochondrial Dynamics and Systemic UPRmt Regulation 6
Chapter 2 MATERIALS and METHODS 9
2.1 C. elegans Strains and Genetics 9
2.2 Brood Size and Development Test 10
2.3 Feeding RNA Interference 10
2.4 Single Molecule RNA Fluorescence in situ Hybridization (smFISH) 11
2.5 Quantification of Heat Shock Responses of GFP-Based Stress Reporters 11
2.6 Fluorescence Microscopy and Quantification of Fluorescence Signal 12
2.7 Oxygen Consumption Assay 12
2.8 Mitochondrial Morphology 12
Chapter 3 RESULTS 15
3.1 Mutations of fzo-1/Mitofusin Caused Pleiotropic Defects in C. elegans 15
3.2 Mitochondrial and Neuronal Defects in the fzo-1 Mutant 16
3.3 The fzo-1 Mutation Specifically Induced Aberrant Mitochondrial Unfolded Protein Response 17
3.4 Mutations of fzo-1 Triggered Maladapted UPRmt Consistently throughout Development 19
3.5 Mitochondrial Fragmentation Triggered Systemic UPRmt 20
3.6 fzo-1 Functions Autonomously and Non-autonomously to Regulate Systemic UPRmt 21
3.7 Loss of Neuronal fzo-1 Triggers Systemic UPRmt Via Neurotransmitters and Neuropeptides 23
Chapter 4 DISCUSSION 25
4.1 Communication of Neurons with Distal Tissues in the Regulation of Stress Responses 26
4.2 The Physiological Significance of UPRmt 27
Chapter 5 FIGURES 29
Figure 1. Characterization of the fzo-1 mutant. 30
Figure 2. Pleiotropic defects in the fzo-1 mutant. 32
Figure 3. Mitochondria in the touch neurons were fragmented in the fzo-1 mutant. 34
Figure 4. Mitochondrial morphology is regulated by FZO-1. 36
Figure 5. Mitochondria in the intestine were fragmented in the fzo-1 mutant. 38
Figure 6. The fzo-1 mutant showed robust UPRmt induction in early adulthood. 40
Figure 7. The fzo-1 mutant showed intact UPRER activation. 42
Figure 8. The fzo-1 mutant showed intact HSR activation. 44
Figure 9. fzo-1 knockdown induced maladapted UPRmt. 46
Figure 10. hsp-6 transcripts were increaseded in somatic tissues of the fzo-1 mutant. 48
Figure 11. The fzo-1 mutant showed increased hsp-60 expression. 50
Figure 12. Maladapted UPRmt in the fzo-1 mutant requires canonical UPRmt genes. 52
Figure 13. UPRmt is constitutively activated throughout embryogenesis and larval development in the fzo-1 mutant. 54
Figure 14. UPRmt activation persisted during aging in the fzo-1 mutant. 56
Figure 15. fzo-1 mutation may induce maladapted UPRmt in part through respiratory inhibition. 58
Figure 16. Mitochondrial dynamics influenced respiration. 60
Figure 17. Mitochondrial dynamics controlled UPRmt activation. 62
Figure 18. Intestine-specific fzo-1 knockdown triggered UPRmt. 64
Figure 19. Muscle-specific fzo-1 knockdown did not induce UPRmt. 66
Figure 20. Intestine-specific cco-1 knockdown triggered UPRmt induction. 68
Figure 21. Muscle-specific cco-1 knockdown failed to induce UPRmt. 70
Figure 22. Neuron-specific fzo-1 knockdown triggered UPRmt. 72
Figure 23. Tissue-specific fzo-1 expression and the rescue of UPRmt. 74
Figure 24. Intestinal mitochondrial fragmentation were partially rescued by tissue-specific FZO-1 expression. 76
Figure 25. Models of autonomous and non-autonomous UPRmt control by FZO-1. 78
Figure 26. cco-1 knockdown induced UPRmt in the unc-13 and unc-31 mutants. 80
Figure 27. Cell non-autonomous induction of UPRmt requires both neurotransmitters and neuropeptides. 82
Figure 28. Model of systemic UPRmt regulation by fzo-1 in the neurons. 84
Chapter 6 REFERENCE 87
dc.language.isoen
dc.title線蟲神經系統調控粒線體壓力反應的分子機制zh_TW
dc.titleNeural Regulation of Mitochondrial Stress Response in Caenorhabditis elegansen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許翱麟(Ao-Lin Hsu),吳益群(Yi-Chun Wu)
dc.subject.keyword線蟲,粒線體,粒線體融合蛋白FZO-1/Mitofusin,未摺疊蛋白反應,神經訊號,zh_TW
dc.subject.keywordC. elegans,Mitochondria,FZO-1/Mitofusin,Unfolded protein response,Neuronal signal,en
dc.relation.page95
dc.identifier.doi10.6342/NTU201602858
dc.rights.note同意授權(全球公開)
dc.date.accepted2016-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf7.72 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved