請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78789完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊燿州 | zh_TW |
| dc.contributor.advisor | Yao-Joe Yang | en |
| dc.contributor.author | 譚馥 | zh_TW |
| dc.contributor.author | Fu Tan | en |
| dc.date.accessioned | 2021-07-11T15:19:28Z | - |
| dc.date.available | 2024-06-25 | - |
| dc.date.copyright | 2019-07-01 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] M. Ward and J. A. Langton, “Blood pressure measurement,” Continuing Education in Anaesthesia Critical Care & Pain, vol. 7, no. 7, pp. 122-126, 2007.
[2] W. A. Littler and B.Komsuoglu, “Which is the most accurate method of measuring blood pressure?” American heart journal, vol. 117, no. 3, pp. 723-728, 1989. [3] E. F. Reichman, Emergency medicine procedures, New York: McGraw-Hill, 2013, ch. 57. [4] L. Y. Chen, B. C. Tee, A. L. Chortos, G. Schwartz, V. Tse, D. J. Lipomi, H. P. Wong, M. V. McConnell, and Z. Bao, “Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care,” Nature communications, vol. 5, no. 5028, pp.1-10, 2014. [5] J. Park, J. K. Kim, S. J. Patil, J. K. Park, and D. W. Lee, “A wireless pressure sensor integrated with a biodegradable polymer stent for biomedical applications,” Sensors, vol. 16, no. 6, pp.809-818, 2016. [6] X. Chen, B. Assadsangabi, D. Brox, Y. Hsiang, and K. Takahata, “A pressure-sensing smart stent compatible with angioplasty procedure and its in vivo testing,” in proceeding of IEEE Internation Conference on Micro Electro Mechanical Systems(MEMS), Las Vegas, NV, Jan 22-26, 2017, pp. 133-136. [7] N. J. Cleven, J. A. Muitjes, H. Fassbender, U. Urban, M. Gortz, H, Vogt, M. Grafe, T. Gottsche, T. Penzkofer, T. Schmitzrode, and W. Mokwa, “A novel A novel fully implantable wireless sensor system for monitoring hypertension patients” IEEE Transactions on Biomedical Engineering, vol. 59, no. 11, pp. 3124-3130, 2012. [8] L. Peter, N. Noury, and M. Cerny, “A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?” Innovation and Research in Biomedical Engineering, vol. 35, no. 5, pp. 271-282. 2014. [9] Y. L. Shevchenko and J. E. Tsitlik, “90th Anniversary of the development by Nikolai S. Korotkoff of the auscultatory method of measuring blood pressure,” Circulation, vol. 94, no. 2, pp. 116-118, 1996. [10] T. G. Pickering, J. E. Hall, L. J. Appel, B. E. Falkner, J. H. Graves, and E. J. Roccella, “Subcommittee of professional and public education of the american heart association council on high blood pressure research. recommendations for blood pressure measurement in humans and experimental animals: Part 1: blood pressure measurement in humans: a statement for professionals,” Hypertension, vol. 45, no. 1, pp. 142-161. 2005. [11] L. A. Geddes, M. Voelz, C. Combs, D. Reiner, and C. F. Babbs, “Characterization of the oscillometric method for measuring indirect blood pressure,” Annals of Biomedical Engineering, vol. 10, no. 6, pp. 271-280, 1982. [12] E. Balestrieri and S. Rapuano, “Instruments and methods for calibration of oscillometric blood pressure measurement devices,” IEEE Transactions on instrumentation and measurement, vol. 59, no. 9, pp. 2391-2404, 2010. [13] J. Penaz, “Photoelectric measurement of blood pressure, volume and flow in the finger,” in proceeding of Digest of the 10th international conference on medical and biological engineering, Dresden, Germany, Aug. 13-17, 1973. [14] L. A. Geddes, M. Voelz, S. James, and D. Reiner, “Pulse arrival time as a method of obtaining systolic and diastolic blood pressure indirectly,” Medical and Biological Engineering and Computing, vol. 19, no. 5, pp. 671-672, 1981. [15] G. L. Pressman and P. M. Newgard, “A transducer for the continuous external measurement of arterial blood pressure,” IEEE Transactions on Bio-medical Electronics, vol. 10, no. 2, pp. 73-81, 1963. [16] T. Sato, M. Nishinaga, A. Kawamoto, T. Ozawa, and H. Takatsuji, “Accuracy of a continuous blood pressure monitor based on arterial tonometry,” Hypertension, vol. 21, no.6, pp. 866-874, 1993. [17] W. Hu, X. Niu, R. Zhao, and Q. Pei, “Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane,” Applied Physics Letters, vol. 102, no. 8, pp. 38-42, 2013. [18] K. F. Lei, K. F. Lee, and M. Y. Lee, “A flexible PDMS capacitive tactile sensor with adjustable measurement range for plantar pressure measurement,” Microsystem technologies, vol. 20, no. 7, pp. 1351-1358, 2014. [19] C. M. Boutry, A. Nguyen, Q. O. Lawal, A. Chortos, S. Rondeau, and Z. Bao, “A sensitive and biodegradable pressure sensor array for cardiovascular monitoring,” Advanced Materials, vol. 27, no. 43, pp. 6954-6961, 2015. [20] B. Zhuo, S. Chen, M. Zhao, and X. Guo, “High sensitivity flexible capacitive pressure sensor using polydimethylsiloxane elastomer dielectric layer micro-structured by 3-D printed mold,” IEEE Electron Devices Society, vol. 5, no. 3, pp. 219-223, 2017. [21] W. Cheng, J. Wang, Z. Ma, K. Yan, Y. Wang, H. Wang, S. Li, Y. Li, L. Pan, and Y. Shi, “Flexible pressure sensor with high sensitivity and low hysteresis based on a hierarchically microstructured electrode,” IEEE Electron Device Letters, vol. 39, no. 2, pp. 288-291, 2018. [22] S. Gong, W. Schwalb, Y, Wang, Y, Chen, Y, Tang, J, Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nature communications, vol. 5, no. 3132, 2014. [23] J. T. Muth, D. M. Vogt, R. L. Truby, Y. Menguc, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Advanced Materials, vol. 26, no. 36, pp. 6307-6312, 2014. [24] H. Meia, R. Wanga, J. Fenga, Y, Xia, and T. Zhang, “A flexible pressure-sensitive array based on soft substrate,” Sensors and Actuators A: Physical, vol. 222, no. 80-86, 2015. [25] Z. Zhan, R. Lin, V. T. Tran, J. An, Y. Wei, H. Du, T. Tran, and W. Lu, “Paper/Carbon Nanotube-Based Wearable Pressure Sensor for Physiological Signal Acquisition and Soft Robotic Skin,” ACS Applied Materials and Interfaces, vol. 9. no. 43, pp. 37921-37928, 2017. [26] Y. Ai, T. H. Hsu, D. C. Wu, L. Lee, J.-H. Chen, Y.-Z. Chen, S.-C. Wu, C. Wu, Z. M. Wang, and Y.-L. Chueh, “An ultrasensitive flexible pressure sensor for multimodal wearable electronic skins based on large-scale polystyrene ball@ reduced graphene-oxide core–shell nanoparticles,” Journal of Materials Chemistry C, vol. 6, no. 20, pp. 5514-5520, 2018. [27] H. Chang, S. Kim, S. Jin, S.-W. Lee, G.-T. Yang, K.-Y. Lee, and H. Yi, “Ultrasensitive and Highly Stable Resistive Pressure Sensors with Biomaterial-Incorporated Interfacial Layers for Wearable Health-Monitoring and Human-Machine Interfaces,” ACS Applied Materials and Interfaces, vol. 10, no.1, pp. 1067-1076, 2018. [28] Y. Zang, F. Zhang, C. Di, and D. Zhu, “Advances of flexible pressure sensors toward artificial intelligence and health care applications,” Materials Horizons, vol. 2, no. 2, pp. 140-156, 2015. [29] C. Pang, G.-Y. Lee, T. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh, “A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibers,” Nature Materials, vol. 11, no. 9, pp. 795-801, 2012. [30] H. Li, K. Wu, Z. Xu, Z. Wang, Y. Meng, and L. Li, “Ultrahigh sensitivity piezoresistive pressure sensors for detection of tiny pressure,” ACS Applied Materials and Interfaces, vol. 10, no. 24, pp. 20826-20834, 2018. [31] J. Park, Y. Lee, J. Hong, M. Ha, Y.-D. Jung, H. Lim, S. Y. Kim, and H. Ko, “Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins,” ACS Nano, vol. 8, no. 5, pp. 4689-4697, 2014. [32] J. Park, J. Kim, J. Hong, H. Lee, Y. Lee, S. Cho, S.-W. Kim, J. J. Kim, S. Y. Kim, and H. Ko, “Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins,” NPG Asia Materials, vol. 10, pp. 167-176, 2018. [33] Z. Wang, L. Zhang, J. Liu, H. Jiang, and C. Li, “Flexible hemispheric microarrays of highly pressure-sensitive sensors based on breath figure method,” Nanoscale, vol. 10, no. 22, pp. 10691-10698, 2018. [34] Y. Zhang and Z. Feng, “A SVM method for continuous blood pressure estimation from a PPG signal,” in proceeding of 9th International Conference on Machine Learning and Computing, Singapore, Feb. 24-26, 2017, pp. 128-132. [35] Z. Xu, J. Liu, X. Chen, Y. Wang, and Z. Zhao, “Continuous blood pressure estimation based on multiple parameters form electrocardiogram and photoplethysmogram by back-propagation neural network,” Computers in Industry, vol. 89, pp. 50-59, 2017. [36] M. Kachuee, M. M. Kiani, H. Mohammadzade, M. Shabany, “Cuffless blood pressure estimation algorithms for continuous health-care monitoring,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 4, pp. 859-869, 2017. [37] World Health Statistic 2017, World Health Organization, Geneva, Switzerland, 2017. [38] J. D. Bundy, C. Li, P. Stuchlik, X. Bu, T. N. Kelly, K. T. Mills, H. He, J. Chen, P. K. Whelton, and J. He, “Systolic blood pressure reduction and risk of cardiovascular disease and mortality,” JAMA Cardiology, vol. 2, no. 7, pp. 775-781, 2017. [39] G. L. Pressman, and P. M. Newgard. "A transducer for the continuous external measurement of arterial blood pressure." IEEE Transactions on Bio-Medical Electronics, pp.73-81, 1963. [40] G. M. Drzewiecki, J. Melbin, and A. Noordergraaf, “Arterial tonometry: review and analysis,” J. Biomechanics, vol. 16, no. 2, pp.141-152, 1983. [41] K. Matthys and P. Verdonck, “Development and modelling of arterial applanation tonometry: A review,” Technology and health care, vol. 10, pp. 65-76, 2002. [42] J.-J. Wang, S.-H. Liu, C.-I. Chern, and J.-H. Hsieh, “Development of an arterial applanation tonometer for detecting arterial blood pressure and volume,” Biomedical Engineering: Applications, Basis and Communications, vol. 16, no. 6, pp. 322-330, 2004. [43] T. Sato, M. Nishinaga, A. Kawamoto, T. Ozama, and H. Takatsuji, “Accuracy of Continuous Blood Pressure Monitor Based on Arterial Tonometry,” Hypertension, vol. 21, no. 6, pp. 866-874, 1993. [44] Y. Su, Y. Zhang, Y. Jin, Y. Yao, R. Zhang, Y. Jiang, and L. Xu, “The feasibility for dicrotic augmentation index to replace tidal augmentation index,” in proceeding of IEEE Information and Automation, Hailar, China, July 28-30, 2014, pp. 943-948. [45] M. Elgendi, “On the analysis of fingertip photoplethysmogram signals,” Current Cardiology Reviews, vol. 8, no. 1, pp. 14-25, 2012. [46] X. Liao, Q. Liao, X. Yan, Q. Liang, H. Si, M. Li, H. Wu, S. Cao, and Y. Zhang, “Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor,” Advanced Functional Materials, vol. 25, no. 16, pp. 2395-2401, 2015. [47] N. Luo, X. Dai, C. Li, Z. Zhou, L. Lu, C. C. Y. Poon, S.-C. Chen, Y. Zhang, and N. Zhao, “Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement,” Advanced Functional Materials, vol. 26, no. 8, pp. 1178-1187, 2016. [48] X. Liao, Q. Liao, Z. Zhang, X. Yan, Q. Liang, Q. Wang, M. Li, and Y. Zhang, “A highly stretchable ZnO@ fiber‐based multifunctional nanosensor for Strain/Temperature/UV Detection,” Advanced Functional Materials, vol. 26, no. 18, pp. 3074-3081, 2016. [49] H. Y. Y. Nyein, W. Gao, Z. Shahpar, S. Emaminejad, S. Challa, K. Chen, H. M. Fahad, L.-C. Tai, R. W. Davis, and A. Javey, “A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH,” ACS Nano, vol. 10, no. 7, pp. 7216-7224, 2016. [50] Y. Joo, J. Yoon, J. Ha, T. Kim, S. Lee, B. Lee, C. Pang, and Y. Hong, “Highly sensitive and bendable capacitive pressure sensor and its application to 1 V operation pressure‐sensitive transistor,” Advanced Electronic Materials, vol. 3, no. 4, 2017. [51] E. Roh, B.-U. Hwang, D. Kim, B.-Y. Kim, and N.-E. Lee, “Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers,” ACS Nano, vol. 9, no. 6, pp. 6252-6261, 2015. [52] Z. Lou, S. Chen, L. Wang, K. Jiang, and G. Shen, “An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring,” Nano Energy, vol. 23, pp. 7-14, 2016. [53] Q. Wang, M. Jian, C. Wang, and Y. Zhang, “Carbonized silk nanofiber membrane for transparent and sensitive electronic skin,” Advanced Functional Materials, vol. 27, no. 9, 2017. [54] Y. Wei, S. Chen, X. Dong, Y. Lin, and L. Liu, “Flexible piezoresistive sensors based on dynamic bridging effect of silver nanowires toward graphene,” Carbon, vol. 113, pp. 395-403, 2017. [55] L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, and Z. Bao, “An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film,” Nature communications, vol. 5, no. 3002, 2014. [56] H. Tian, Y. Shu, X.-F. Wang, M. A. Mohammad, Z. Bie, Q.-Y. Xie, C. Li, W.-T. Mi, Y. Yi, and T.-L. Ren, “A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range,” Scientific reports, vol.5, no. 8603, 2015. [57] Y. Zang, F. Zhang, C. Di, and D. Zhu, “Advances of flexible pressure sensors toward artificial intelligence and health care applications,” Materials Horizons, vol. 2, no. 2, pp. 140-156, 2015. [58] S.-H. Shin, S. Ji, S. Choi, K.-H. Pyo, B. W. An, J. Park, J. Kim, J.-Y. Kim, K.-S. Lee, S.-Y. Kwon, J. Heo, B.-G. Park, and J.-U. Park, “Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges,” Nature communications, vol. 8, no. 14950, 2017. [59] S. Lee, A. Reuveny, J. Reeder, S. Lee, H. Jin, Q. Liu, T. Yokota, T. Sekitani, T, Isoyama, Y. Abe, Z. Suo, and T. Someya, “A transparent bending-insensitive pressure sensor,” Nature nanotechnology, vol. 11, no. 5, pp. 472-478, 2016. [60] N. N. Jason, M. D. Ho, and W. Cheng, “Resistive electronic skin,” Journal of Materials Chemistry C, vol. 5, no. 24, pp. 5845-5866, 2017. [61] S. Gong and W. Cheng, “One‐Dimensional Nanomaterials for Soft Electronics,” Advanced Electronic Materials, vol. 3, no. 3, 2017. [62] T. Q. Trung and N.-E. Lee, “Flexible and stretchable physical sensor integrated platforms for wearable human‐activity monitoringand personal healthcare,” Advanced materials, vol. 28, no. 22, pp. 4338-4372, 2016. [63] M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang, C. Wang, H. Xie, M. Zhang, and Y. Zhang, “Flexible and highly sensitive pressure sensors based on bionic hierarchical structures,” Advanced Functional Materials, vol. 27, no. 9, 2017. [64] S. Yao, A. Myers, A. Malhotra, F. Lin, A. Bozhurt, J. F. Muth, and Y. Zhu, “A wearable hydration sensor with conformal nanowire electrodes,” Advanced healthcare materials, vol. 6, no. 6, 2017. [65] Z. Zhan, L. Liu, W. Wang, Z. Cao, A. Martinelli, E. Wang, Y. Cao, J. Chen, A. Yurgens, and J. Sun, “Ultrahigh surface‐enhanced Raman scattering of graphene from Au/Graphene/Au sandwiched structures with subnanometer gap,” Advanced Optical Materials, vol. 4, no. 12, pp. 2021-2027, 2016. [66] Y. Ai, Z. Lou, S. Chen, D. Chen, Z. M. Wang, K. Jiang, and G. Shen, “All rGO-on-PVDF-nanofibers based self-powered electronic skins,” Nano Energy, vol. 35, pp. 121-127, 2017. [67] G. R. Ruschau, S. Yoshikawa, and R. E. Newnham, “Resistivities of conductive composites,” Journal of applied physics, vol. 72, no.3, pp. 953-959, 1992. [68] H. Munstedt and Z. Stary, “Is electrical percolation in carbon-filled polymers reflected by rheological properties?” Polymer, vol. 98, pp. 51-60, 2016. [69] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” in proceeding of Royal Society of London A: mathematical, physical and engineering sciences, vol. 454, no. 1971, pp. 903-995, 1988. [70] C. E. Heil and D. F. Walnut, “Continuous and discrete wavelet transforms,” SIAM review, vol. 31, no. 4, pp. 628-666, 1989. [71] F. Asadi, M. J. Mollakazemi, I. Uzelac, and S. A. A. Moosavian, “A novel method for arterial blood pressure pulse detection based on a new coupling strategy and discrete wavelet transform,” in proceeding of IEEE Computing in Cardiology Conference(CinC), Nice, France, Sept. 6-9, 2015, pp. 1081-1084. [72] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of machine learning research, vol. 12. pp. 2825-2830, 2011. [73] S. M. Anvari, M. Yazdchi, A. Kayvanpour, S. Mohammad, H. Nayebpour, T. Koivisto, and M. J. Tadi, “Design and implementation of a non-invasive and cuff-less arterial blood pressure monitoring system,” Computing, vol. 44, no. 1, 2017. [74] J. Xu, J. Jiang, H. Zhou, and Z. Yan, “A novel blood pressure estimation method combing pulse wave transit time model and neural network model,” in proceeding of IEEE Engineering in Medicine and Biology Society, Seogwipo, South Korea, July 11-15, 2017, pp. 2130-2133. [75] M. Kachuee, M. M. Kiani, H. Mohammadzade, M. Shabany, “Cuffless blood pressure estimation algorithms for continuous health-care monitoring,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 4, pp. 859-869, 2017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78789 | - |
| dc.description.abstract | 本研究開發了一應用於連續脈波量測之感測系統並提出了一血壓預測之演算法。感測系統包含一3 x 1 壓力感測陣列以及一拉力感測器。壓力感測陣列用於連續脈波訊號之量測,而拉力感測器是用於量測將壓力感測器固定於使用者手腕之綁帶鬆緊值。此拉力感測器主要的功能為確保使用者於舒適的量測狀態下取得最佳的脈波訊號。壓力感測陣列與拉力感測器皆以高分子基材做為感測元件,此高分子材料由奈米碳管與PDMS均勻混和並以尼龍濾膜作為模具轉印出具有微結構之導電高分子。藉由將3 x 1壓力感測陣列放置於橈動脈附近,可以有效率地確保1至2個感測單元精準地位於橈動脈上。透過實驗證明壓力感測陣列可清楚且準確地量測到連續脈波訊號,脈波訊號基線飄移與高頻雜訊也可透過訊號處理解決。本研究使用之訊號處理方法包含希爾伯特-黃轉換與離散小波轉換。基於動脈張力量測法,血壓可由脈波訊號推估而得。本研究以理論模型為基礎與機器學習兩種方式將量測得之脈波訊號進行血壓的推導。從推導結果可知,本研究使用之兩種推導血壓之方式可順利完成脈波與血壓之推估。 | zh_TW |
| dc.description.abstract | This work presents a portable sensing system for continuous blood pressure monitoring as well as the algorithm for estimating blood pressure. The system consists of a 3×1 tactile sensing array and a tension sensor. The tactile sensing array is used for measuring blood pulse wave signals. The tension sensor is employed for measuring the tension in the strap, which is used for fixing the tactile sensing array on the wrist of a patient. The primary function of the tension sensor is to ensure the operation conditions are optimal for acquisition of signals as well as physical comfort of users. Polymer-based sensing pressure elements, which are the key material for the tactile sensing array and the tension sensor, was patterned with microdome structures by using a nylon membrane filter as the mold. By arranging the pressure sensing elements in a 3×1 linear array, the effort to align the device during measurement can be significantly reduced, because one or two of the sensing elements would be located at the suitable position for effective detection of blood pulse wave signals. Experimental results show that continuous blood pulse wave signal can be tracked by the proposed sensing array. The drift and the high frequency noise can be successfully eliminate by applying Hilbert Huang Transform (HHT) and Discrete Wavelet Transform (DWT). Blood pressure values were also estimated by using the tonometric model-based model and the machine learning algorithm. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:19:28Z (GMT). No. of bitstreams: 1 ntu-107-R05522708-1.pdf: 7190003 bytes, checksum: 20438b9a699777a644af8abf92491187 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要................................................................I
Abstract...........................................................III 目錄................................................................V 圖目錄.............................................................IX 表目錄............................................................XIV 符號說明...........................................................XV 第 1 章 緒論......................................................1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 侵入式血壓量測 2 1.2.2 非侵入式血壓量測 5 1.2.3 壓力感測器 12 1.2.4 具有微結構之壓力感測器 23 1.2.5 機器學習推導血壓 28 1.3 研究動機與目的 32 1.4 論文架構 33 第 2 章 研究理論基礎 35 2.1 本章介紹 35 2.2 動脈張力法(Tonometry method)理論模型 35 2.3 脈波波形分析 39 2.3.1 脈波的產生 39 2.3.2 脈波之特徵點與相關生理參數 40 2.4 壓力感測器選用 42 2.4.1 導電高分子 43 2.5 脈波訊號處理 47 2.5.1 希爾伯特-黃轉換(Hilbert-Huang Transform, HHT) 47 2.5.2 小波轉換(Wavelet Transform) 51 2.6 機器學習(Machine Learning) 53 第 3 章 元件設計與元件製程 55 3.1 元件設計 55 3.1.1 壓力感測陣列設計 55 3.1.2 拉力感測器設計 56 3.1.3 軟性電極 57 3.2 工作原理 57 3.3 使用者情境 58 3.4 製作流程 59 3.4.1 導電高分子之製備 60 3.4.2 模具製作 61 3.4.3 光罩設計 62 3.4.4 微影製程 63 3.4.5 導電高分子之填充與結構轉印 67 3.5 元件製程結果 68 3.5.1 SU-8 光阻框架與導電高分子 68 3.5.2 電子顯微鏡(SEM)圖 69 3.6 元件之組裝與封裝 70 3.7 實體元件圖 71 3.8 電路設計與製作 72 第 4 章 量測結果與討論 75 4.1 電阻變化率量測 75 4.1.1 壓力 vs 電阻量測架設 75 4.1.2 量測結果與討論 76 4.1.3 拉力 vs 電阻量測架設 77 4.1.4 量測結果與討論 77 4.2 電路板量測 78 4.3 脈波訊號量測 79 4.3.1 脈波量測架設 79 4.3.2 脈波量測訊號處理與結果 80 4.4 以理論基礎推導血壓 89 4.4.1 理論推導 89 4.4.2 有限元素法模擬 90 4.4.3 同預壓下,血壓與電壓振幅比較 93 4.4.4 理論推導血壓結果 95 4.5 以機器學習推導血壓 97 4.5.1 資料蒐集整理與特徵點提取 97 4.5.2 機器學習推導血壓結果 98 第五章 結論與未來展望 103 5.1 結論 103 5.2 未來展望 104 參考文獻 107 附錄 A 117 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 奈米碳管 | zh_TW |
| dc.subject | 聚二甲基矽氧烷(PDMS) | zh_TW |
| dc.subject | 導電高分子 | zh_TW |
| dc.subject | 尼龍濾膜 | zh_TW |
| dc.subject | 壓力感測陣列 | zh_TW |
| dc.subject | 拉力感測器 | zh_TW |
| dc.subject | 動脈張力量測法 | zh_TW |
| dc.subject | 連續脈波量測 | zh_TW |
| dc.subject | 血壓推算演算法 | zh_TW |
| dc.subject | tactile sensor | en |
| dc.subject | conductive polymer | en |
| dc.subject | blood pressure estimation algorithm | en |
| dc.subject | continuous blood pulse wave measurement | en |
| dc.subject | tonometric method | en |
| dc.subject | nylon membrane filter | en |
| dc.subject | Carbon nanotubes | en |
| dc.subject | polydimethylsiloxane (PDMS) | en |
| dc.title | 應用於連續血壓量測之脈波感測系統與血壓預測之演算法 | zh_TW |
| dc.title | A Continuous Blood Pulse Wave Monitoring System and Blood Pressure Estimation Algorithm | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳國聲;蘇裕軒 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Shen Chen;Yu-Hsuan Su | en |
| dc.subject.keyword | 奈米碳管,聚二甲基矽氧烷(PDMS),導電高分子,尼龍濾膜,壓力感測陣列,拉力感測器,動脈張力量測法,連續脈波量測,血壓推算演算法, | zh_TW |
| dc.subject.keyword | Carbon nanotubes,polydimethylsiloxane (PDMS),conductive polymer,nylon membrane filter,tactile sensor,tonometric method,continuous blood pulse wave measurement,blood pressure estimation algorithm, | en |
| dc.relation.page | 119 | - |
| dc.identifier.doi | 10.6342/NTU201802308 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-06-25 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2024-07-01 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 7.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
