Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78788
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林祥泰(Shiang-Tai Lin)
dc.contributor.authorChun-Kai Changen
dc.contributor.author張峻愷zh_TW
dc.date.accessioned2021-07-11T15:19:23Z-
dc.date.available2021-07-05
dc.date.copyright2019-07-05
dc.date.issued2019
dc.date.submitted2019-06-28
dc.identifier.citation1. Abrams, D.S. and J.M. Prausnitz, Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. 1975. 21(1): p. 116-128.
2. Renon, H. and J.M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures. AIChE Journal, 1968. 14(1): p. 135-144.
3. Klamt, A., Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. Journal of physical chemistry, 1995. 99(7): p. 2224-2235.
4. Lin, S.-T. and S.I. Sandler, A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model. Industrial & Engineering Chemistry Research, 2002. 41(5): p. 899-913.
5. Hadj-Kali, M.K., H.F. Hizaddin, I. Wazeer, L. El Blidi, S. Mulyono, and M.A. Hashim, Liquid-liquid separation of azeotropic mixtures of ethanol/alkanes using deep eutectic solvents: COSMO-RS prediction and experimental validation. Fluid Phase Equilibria, 2017. 448: p. 105-115.
6. Fingerhut, R., W.L. Chen, A. Schedemann, W. Cordes, J. Rarey, C.M. Hsieh, J. Vrabec, and S.T. Lin, Comprehensive Assessment of COSMO-SAC Models for Predictions of Fluid-Phase Equilibria. Industrial & Engineering Chemistry Research, 2017. 56(35): p. 9868-9884.
7. Ding, H., W.J. Ke, D. Zhao, L.L. Wang, Y.J. Gao, and S.J. Liu, Isobaric vapor-liquid equilibrium for binary system of methyl caprate plus methyl laurate at 2, 4 and 6 kPa. Journal of Chemical Thermodynamics, 2018. 116: p. 241-247.
8. Klamt, A. and G. Schuurmann, COSMO - A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. Journal of the Chemical Society-Perkin Transactions 2, 1993(5): p. 799-805.
9. Liang, Y.Z., R.C. Xiong, S.I. Sandler, and D.M. Di Toro, Quantum Chemically Estimated Abraham Solute Parameters Using Multiple Solvent-Water Partition Coefficients and Molecular Polarizability. Environmental Science & Technology, 2017. 51(17): p. 9887-9898.
10. Islam, M.R. and C.C. Chen, COSMO-SAC Sigma Profile Generation with Conceptual Segment Concept. Industrial & Engineering Chemistry Research, 2015. 54(16): p. 4441-4454.
11. Lin, S.T., L.H. Wang, W.L. Chen, P.K. Lai, and C.M. Hsieh, Prediction of miscibility gaps in water/ether mixtures using COSMO-SAC model. Fluid Phase Equilibria, 2011. 310(1-2): p. 19-24.
12. Chen, W.-L. and S.-T. Lin, Explicit consideration of spatial hydrogen bonding direction for activity coefficient prediction based on implicit solvation calculations. Physical chemistry chemical physics, 2017. 19(31): p. 20367-20376.
13. Islam, M.R., Y.F. Hao, M. Wang, and C.C. Chen, Prediction of Asphaltene Precipitation in Organic Solvents via COSMO-SAC. Energy & Fuels, 2017. 31(9): p. 8985-8996.
14. Shu, C.-C. and S.-T. Lin, Prediction of Drug Solubility in Mixed Solvent Systems Using the COSMO-SAC Activity Coefficient Model. Industrial & Engineering Chemistry Research, 2011. 50(1): p. 142-147.
15. Chen, C.-S. and S.-T. Lin, Prediction of pH Effect on the Octanol–Water Partition Coefficient of Ionizable Pharmaceuticals. Industrial & Engineering Chemistry Research, 2016. 55(34): p. 9284-9294.
16. Gerlach, T., S. Muller, and I. Smirnova, Development of a COSMO-RS based model for the calculation of phase equilibria in electrolyte systems. Aiche Journal, 2018. 64(1): p. 272-285.
17. Hsieh, M.T. and S.T. Lin, A Predictive Model for the Excess Gibbs Free Energy of Fully Dissociated Electrolyte Solutions. Aiche Journal, 2011. 57(4): p. 1061-1074.
18. Wang, S., Y.H. Song, and C.C. Chen, Extension of COSMO-SAC Solvation Model for Electrolytes. Industrial & Engineering Chemistry Research, 2011. 50(1): p. 176-187.
19. Lee, B.S. and S.T. Lin, A priori prediction of the octanol-water partition coefficient (K-ow) of ionic liquids. Fluid Phase Equilibria, 2014. 363: p. 233-238.
20. Zhou, Y.P., D.M. Xu, L.Z. Zhang, Y.X. Ma, X.L. Ma, J. Gao, and Y.L. Wang, Separation of thioglycolic acid from its aqueous solution by ionic liquids: Ionic liquids selection by the COSMO-SAC model and liquid-liquid phase equilibrium. Journal of Chemical Thermodynamics, 2018. 118: p. 263-273.
21. Lee, B.S. and S.T. Lin, Prediction and screening of solubility of pharmaceuticals in single- and mixed-ionic liquids using COSMO-SAC model. Aiche Journal, 2017. 63(7): p. 3096-3104.
22. Jaschik, M., D. Piech, K. Warmuzinski, and J. Jaschik, Prediction of Gas Solubulity if Ionic Liquids Using The COSMO-SAC Model. Chemical and Process Engineering-Inzynieria Chemiczna I Procesowa, 2017. 38(1): p. 19-30.
23. Lee, B.S. and S.T. Lin, Screening of ionic liquids for CO2 capture using the COSMO-SAC model. Chemical Engineering Science, 2015. 121: p. 157-168.
24. Yang, L., X.C. Xu, C.J. Peng, H.L. Liu, and Y. Hu, Prediction of Vapor-Liquid Equilibrium for Polymer Solutions Based on the COSMO-SAC Model. Aiche Journal, 2010. 56(10): p. 2687-2698.
25. Kuo, Y.C., C.C. Hsu, and S.T. Lin, Prediction of Phase Behaviors of Polymer-Solvent Mixtures from the COSMO-SAC Activity Coefficient Model. Industrial & Engineering Chemistry Research, 2013. 52(37): p. 13505-13515.
26. Wang, L.H. and S.T. Lin, A predictive method for the solubility of drug in supercritical carbon dioxide. Journal of Supercritical Fluids, 2014. 85: p. 81-88.
27. Hsieh, C.-M., S.I. Sandler, and S.-T. Lin, Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions. Fluid Phase Equilibria, 2010. 297(1): p. 90-97.
28. Wang, L.-H., C.-M. Hsieh, and S.-T. Lin, Improved Prediction of Vapor Pressure for Pure Liquids and Solids from the PR+COSMOSAC Equation of State. Industrial & Engineering Chemistry Research, 2015. 54(41): p. 10115-10125.
29. Klamt, A., V. Jonas, T. Burger, and J.C.W. Lohrenz, Refinement and parametrization of COSMO-RS. Journal of Physical Chemistry A, 1998. 102(26): p. 5074-5085.
30. Petrucci, R.H.W.S., Harwood; F. G., Herring (2002). , General Chemistry: Principles and Modern Applications 8ed. 2002: Prentice-Hall.
31. Clauss, A., S. Nelsen, M. Ayoub, J. Moore, C. Landis, and F. Weinhold, Rabbit-ears hybrids, VSEPR sterics, and other orbital anachronisms. Chemistry education research and practice in Europe, 2014. 15(4): p. 417-434.
32. Bader, R.F.W. and P.v.R. Schleyer, Encyclopedia of Computational Chemistry. 1990.
33. Becke, A.D. and K.E. Edgecombe, A simple measure of electron localization in atomic and molecular systems. Journal of chemical physics, 1990. 92(9): p. 5397-5403.
34. Kumar, A., S. Gadre, N. Mohan, and C. Suresh, Lone Pairs: An Electrostatic Viewpoint. The journal of physical chemistry. A, 2014. 118(2): p. 526-532.
35. Kulkarni, S.A., Electron correlation effects on the topography of molecular electrostatic potentials. Chemical Physics Letters, 1996. 254(3-4): p. 268-273.
36. Gadre, S.R., S.A. Kulkarni, and I.H. Shrivastava, Molecular Electrostatic Potentials - A Topographical Study. Journal of Chemical Physics, 1992. 96(7): p. 5253-5260.
37. Politzer, P., J. Murray, and Z. Peralta Inga, Molecular surface electrostatic potentials in relation to noncovalent interactions in biological systems. International Journal of Quantum Chemistry, 2001. 85(6): p. 676-684.
38. Politzer, P. and J.S. Murray, The fundamental nature and role of the electrostatic potential in atoms and molecules. Theoretical Chemistry Accounts, 2002. 108(3): p. 134-142.
39. Suresh, C.H., P. Alexander, K.P. Vijayalakshmi, P.K. Sajith, and S.R. Gadre, Use of molecular electrostatic potential for quantitative assessment of inductive effect. Physical Chemistry Chemical Physics, 2008. 10(43): p. 6492-6499.
40. Mohan, N., C.H. Suresh, A. Kumar, and S.R. Gadre, Molecular electrostatics for probing lone pair-[small pi] interactions. Physical Chemistry Chemical Physics, 2013. 15(42): p. 18401-18409.
41. Calvar, N., E. Gomez, A. Dominguez, and E.A. Macedo, Determination and modelling of osmotic coefficients and vapour pressures of binary systems 1-and 2-propanol with C(n)MimNTf(2) ionic liquids (n=2, 3, and 4) at T=323.15 K. Journal of Chemical Thermodynamics, 2011. 43(8): p. 1256-1262.
42. Huie, M.M., R.A. DiLeo, A.C. Marschilok, K.J. Takeuchi, and E.S. Takeuchi, Ionic Liquid Hybrid Electrolytes for Lithium-Ion Batteries: A Key Role of the Separator–Electrolyte Interface in Battery Electrochemistry. ACS Applied Materials & Interfaces, 2015. 7(22): p. 11724-11731.
43. Mallakpour, S., Z.J.J.o.P. Rafiee, and t. Environment, Ionic Liquids as Environmentally Friendly Solvents in Macromolecules Chemistry and Technology, Part I. 2011. 19(2): p. 447-484.
44. Meli, L., J. Miao, J.S. Dordick, and R.J. Linhardt, Electrospinning from room temperature ionic liquids for biopolymer fiber formation. Green Chemistry, 2010. 12(11): p. 1883-1892.
45. Mochizuki, Y. and K. Sugawara, Removal of Organic Sulfur from Hydrocarbon Resources Using Ionic Liquids. Energy & Fuels, 2008. 22(5): p. 3303-3307.
46. Pereiro, A.B., J.M.M. Araújo, J.M.S.S. Esperança, I.M. Marrucho, and L.P.N. Rebelo, Ionic liquids in separations of azeotropic systems – A review. The Journal of Chemical Thermodynamics, 2012. 46: p. 2-28.
47. Keskin, S., D. Kayrak-Talay, U. Akman, and Ö. Hortaçsu, A review of ionic liquids towards supercritical fluid applications. The Journal of Supercritical Fluids, 2007. 43(1): p. 150-180.
48. Plechkova, N.V. and K.R. Seddon, Applications of ionic liquids in the chemical industry. Chemical Society Reviews, 2008. 37(1): p. 123-150.
49. Rogers, R.D. and K.R. Seddon, Ionic Liquids--Solvents of the Future? Science, 2003. 302(5646): p. 792.
50. Hou, Y. and R.E. Baltus, Experimental Measurement of the Solubility and Diffusivity of CO2 in Room-Temperature Ionic Liquids Using a Transient Thin-Liquid-Film Method. Industrial & Engineering Chemistry Research, 2007. 46(24): p. 8166-8175.
51. Aschenbrenner, O., S. Supasitmongkol, M. Taylor, and P. Styring, Measurement of vapour pressures of ionic liquids and other low vapour pressure solvents. Green Chemistry, 2009. 11(8): p. 1217-1221.
52. Fredenslund, A., R.L. Jones, and J.M. Prausnitz, Group-contribution estimation of activity coefficients in nonideal liquid mixtures. 1975. 21(6): p. 1086-1099.
53. Lee, B.-S. and S.-T. Lin, Prediction of phase behaviors of ionic liquids over a wide range of conditions. Fluid Phase Equilibria, 2013. 356: p. 309-320.
54. Lee, B.S. and S.T. Lin, A Priori Prediction of Dissociation Phenomena and Phase Behaviors of Ionic Liquids. Industrial & Engineering Chemistry Research, 2015. 54(36): p. 9005-9012.
55. Chang, C.-K., W.-L. Chen, D.T. Wu, and S.-T. Lin, Improved Directional Hydrogen Bonding Interactions for the Prediction of Activity Coefficients with COSMO-SAC. Industrial & Engineering Chemistry Research, 2018. 57(32): p. 11229-11238.
56. Lin, S.T., C.M. Hsieh, and M.T. Lee, Solvation and chemical engineering thermodynamics. Journal of the Chinese Institute of Chemical Engineers, 2007. 38(5-6): p. 467-476.
57. Staverman, A.J., The Entropy of High Polymer Solutions - Generation of Formulae. Recueil Des Travaux Chimiques Des Pays-Bas-Journal of the Royal Netherlands Chemical Society, 1950. 69(2): p. 163-174.
58. Lin, S.T., J. Chang, S. Wang, W.A. Goddard, and S.I. Sandler, Prediction of vapor pressures and enthalpies of vaporization using a COSMO solvation model. Journal of Physical Chemistry A, 2004. 108(36): p. 7429-7439.
59. Pitzer, K.S. and J.M. Simonson, Thermodynamics of multicomponent, miscible, ionic systems: theory and equations. Journal of Physical Chemistry, 1986. 90(13): p. 3005-3009.
60. Pitzer, K.S., Electrolytes. From dilute solutions to fused salts. Journal of the American Chemical Society, 1980. 102(9): p. 2902-2906.
61. Pitzer, K.S. and J.M. Simonson, Ion pairing in a system continuously miscible from the fused salt to dilute solution. Journal of the American Chemical Society, 1984. 106(7): p. 1973-1977.
62. Barthel, J., H.-J. Gores, G. Schmeer, and R. Wachter. Non-aqueous electrolyte solutions in chemistry and modern technology. 1983. Berlin, Heidelberg: Springer Berlin Heidelberg.
63. Barthel, J., H. Krienke, and W. Kunz, Physical chemistry of electrolyte solutions : modern aspects. 1998, Darmstadt; [New York]: Steinkopf ; Springer.
64. Lee, B.-S. and S.-T. Lin, A Priori Prediction of Dissociation Phenomena and Phase Behaviors of Ionic Liquids. Industrial and Engineering Chemistry Research, 2015. 54(36): p. 9005-9012.
65. Chen, C.-C. and Y. Song, Generalized electrolyte-NRTL model for mixed-solvent electrolyte systems. AIChE Journal, 2004. 50(8): p. 1928-1941.
66. van Bochove, G.H., G.J.P. Krooshof, and T.W. de Loos, Modelling of liquid–liquid equilibria of mixed solvent electrolyte systems using the extended electrolyte NRTL. Fluid Phase Equilibria, 2000. 171(1): p. 45-58.
67. Singh, T. and A. Kumar, Static Dielectric Constant of Room Temperature Ionic Liquids: Internal Pressure and Cohesive Energy Density Approach. The Journal of Physical Chemistry B, 2008. 112(41): p. 12968-12972.
68. Nordness, O., L.D. Simoni, M.A. Stadtherr, and J.F. Brennecke, Characterization of Aqueous 1-Ethyl-3-Methylimidazolium Ionic Liquids for Calculation of Ion Dissociation. The Journal of Physical Chemistry B, 2019. 123(6): p. 1348-1358.
69. te Velde, G., F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders, and T. Ziegler, Chemistry with ADF. J. Comput. Chem., 2001. 22(9): p. 931-967.
70. Fonseca Guerra, C., J.G. Snijders, G. te Velde, and E.J. Baerends, Towards an order-N DFT method. Theoretical Chemistry Accounts, 1998. 99(6): p. 391-403.
71. Baerends, E.J., T. Ziegler, A.J. Atkins, J. Autschbach, D. Bashford, O. Baseggio, A. Bérces, F.M. Bickelhaupt, C. Bo, P.M. Boerritger, L. Cavallo, C. Daul, D.P. Chong, D.V. Chulhai, L. Deng, R.M. Dickson, J.M. Dieterich, D.E. Ellis, M. van Faassen, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A. Goez, A.W. Götz, S. Gusarov, F.E. Harris, P. van den Hoek, Z. Hu, C.R. Jacob, H. Jacobsen, L. Jensen, L. Joubert, J.W. Kaminski, G. van Kessel, C. König, F. Kootstra, A. Kovalenko, M. Krykunov, E. van Lenthe, D.A. McCormack, A. Michalak, M. Mitoraj, S.M. Morton, J. Neugebauer, V.P. Nicu, L. Noodleman, V.P. Osinga, S. Patchkovskii, M. Pavanello, C.A. Peeples, P.H.T. Philipsen, D. Post, C.C. Pye, H. Ramanantoanina, P. Ramos, W. Ravenek, J.I. Rodríguez, P. Ros, R. Rüger, P.R.T. Schipper, D. Schlüns, H. van Schoot, G. Schreckenbach, J.S. Seldenthuis, M. Seth, J.G. Snijders, M. Sol`a, S. M., M. Swart, D. Swerhone, G. te Velde, V. Tognetti, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. van Wezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo, and A.L. Yakovlev. ADF2017, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, https://www.scm.com.
72. Pye, C.C. and T. Ziegler, An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package. Theoretical Chemistry Accounts, 1999. 101(6): p. 396-408.
73. Mullins, E., Y.A. Liu, A. Ghaderi, and S.D. Fast, Sigma Profile Database for Predicting Solid Solubility in Pure and Mixed Solvent Mixtures for Organic Pharmacological Compounds with COSMO-Based Thermodynamic Methods. Industrial & Engineering Chemistry Research, 2008. 47(5): p. 1707-1725.
74. Mullins, E., R. Oldland, Y.A. Liu, S. Wang, S.I. Sandler, C.-C. Chen, M. Zwolak, and K.C. Seavey, Sigma-Profile Database for Using COSMO-Based Thermodynamic Methods. Industrial & Engineering Chemistry Research, 2006. 45(12): p. 4389-4415.
75. Phillips, K.L., S.I. Sandler, R.W. Greene, and D.M. Di Toro, Quantum Mechanical Predictions of the Henry’s Law Constants and Their Temperature Dependence for the 209 Polychlorinated Biphenyl Congeners. Environmental Science & Technology, 2008. 42(22): p. 8412-8418.
76. Dechema Chemistry Data Series. 1982: Deutsche Gesellschaft für Chemisches Aparatewesen.
77. Rankin, D.W.H., CRC handbook of chemistry and physics, 89th edition, edited by David R. Lide. Crystallography Reviews, 2009. 15(3): p. 223-224.
78. Calvar, N., E. Gómez, Á. Domínguez, and E.A. Macedo, Vapour pressures, osmotic and activity coefficients for binary mixtures containing (1-ethylpyridinium ethylsulfate+several alcohols) at T=323.15K. The Journal of Chemical Thermodynamics, 2010. 42(5): p. 625-630.
79. Shekaari, H. and S.S. Mousavi, Osmotic Coefficients and Refractive Indices of Aqueous Solutions of Ionic Liquids Containing 1-Butyl-3-methylimidazolium Halide at T = (298.15 to 328.15) K. Journal of Chemical & Engineering Data, 2009. 54(3): p. 823-829.
80. Gómez, E., N. Calvar, Á. Domínguez, and E.A. Macedo, Measurement and modeling of osmotic coefficients of binary mixtures (alcohol+1,3-dimethylpyridinium methylsulfate) at T=323.15K. Journal of Chemical Thermodynamics, 2011. 43(6): p. 908-913.
81. González, B., N. Calvar, Á. Domínguez, and E.A. Macedo, Osmotic coefficients of aqueous solutions of four ionic liquids at T=(313.15 and 333.15) K. The Journal of Chemical Thermodynamics, 2008. 40(9): p. 1346-1351.
82. Freire, M.G., C.M.S.S. Neves, P.J. Carvalho, R.L. Gardas, A.M. Fernandes, I.M. Marrucho, L.M.N.B.F. Santos, and J.A.P. Coutinho, Mutual Solubilities of Water and Hydrophobic Ionic Liquids. The Journal of Physical Chemistry B, 2007. 111(45): p. 13082-13089.
83. Domańska, U., Solubilities and thermophysical properties of ionic liquids, in Pure and Applied Chemistry. 2005. p. 543.
84. Simoni, L.D., Predictive Modeling of Fluid Phase Equilibria for Systems Containing Ionic Liquids, in Chemical Engineering. 2009, University of Notre Dame: United States of America.
85. Katayanagi, H., K. Nishikawa, H. Shimozaki, K. Miki, P. Westh, and Y. Koga, Mixing Schemes in Ionic Liquid−H2O Systems:  A Thermodynamic Study. The Journal of Physical Chemistry B, 2004. 108(50): p. 19451-19457.
86. Kato, R. and J. Gmehling, Measurement and correlation of vapor–liquid equilibria of binary systems containing the ionic liquids [EMIM][(CF3SO2)2N], [BMIM][(CF3SO2)2N], [MMIM][(CH3)2PO4] and oxygenated organic compounds respectively water. Fluid Phase Equilibria, 2005. 231(1): p. 38-43.
87. Anthony, J.L., E.J. Maginn, and J.F. Brennecke, Solution Thermodynamics of Imidazolium-Based Ionic Liquids and Water. The Journal of Physical Chemistry B, 2001. 105(44): p. 10942-10949.
88. Heintz, A., D. Klasen, J.K. Lehmann, and C. Wertz, Excess Molar Volumes and Liquid–Liquid Equilibria of the Ionic Liquid 1-Methyl-3Octyl-Imidazolium Tetrafluoroborate Mixed with Butan-1-ol and Pentan-1-ol. Journal of Solution Chemistry, 2005. 34(10): p. 1135-1144.
89. Pereiro, A.B. and A. Rodríguez, Experimental Liquid−Liquid Equilibria of 1-Alkyl-3-methylimidazolium Hexafluorophosphate with 1-Alcohols. Journal of Chemical & Engineering Data, 2007. 52(4): p. 1408-1412.
90. Gómez, E., N. Calvar, Á. Domínguez, and E.A. Macedo, Measurement and modeling of osmotic coefficients of binary mixtures (alcohol+1,3-dimethylpyridinium methylsulfate) at T=323.15K. The Journal of Chemical Thermodynamics, 2011. 43(6): p. 908-913.
91. Jiqin, Z., C. Jian, L. Chengyue, and F. Weiyang, Study on the separation of 1-hexene and trans-3-hexene using ionic liquids. Fluid Phase Equilibria, 2006. 247(1): p. 102-106.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78788-
dc.description.abstract本作共分為兩部分,第一部份修正COSMO-SAC活性係數模型的氫鍵作用力描述。近期(2017)有文獻指出,如將氫鍵的方向性考慮至COSMO-SAC模型當中,則在耦合系統之熱力學性質的預測上會有顯著的進步。將氫鍵方向性納入考量的方法之一為透過價殼層電子對互斥理論(Valence Shell Electron Pair Repulsion Theory, VSEPR),推測孤電子對(Lone pair, LP)的位置,進而得到孤電子對與質子形成氫鍵的方向。然而,這種基於分子構型以推得孤電子對的方法在一些分子上會有所侷限,例如:氫氟酸(HF)以及二甲基亞碸(DMSO)。在這兩個分子中,即無法透過其分子內部的鍵結關係得到孤電子對之位置。為了將氫鍵的方向性有效地引入至所有種類之系統,本論文利用分子電位分布(Molecular Electrostatic Potential Map, MESP)尋找分子局部電位的低點,並將該局部低點視為孤電子對的位置。以此方法決定氫鍵的方向後,除了不須再依靠分子結構取得氫鍵的方向之外,所有中性分子系統在無限稀釋下的活性係數、汽液相平衡、液液相平衡、辛醇-水分配係數等熱力學性質的預測上亦有所進步(中性分子之汽液相平衡預測準確度取得約5-7%之進步)。本作第二部份則將第一部分所提及的新方法用在離子液體系統中,並且搭配新提出之符合熱力學一致關係式模型,也在稀薄離子液體的系統中取得了顯著的進步(滲透係數之預測準確度改善約10%),成功將氫鍵作用力的方向性更廣泛的應用至離子液體等帶電系統中。zh_TW
dc.description.abstractA new approach for determining directional hydrogen bonding interactions in the COSMO-SAC model is proposed for both neutral and charged species. In a recent work, Chen and Lin showed that the consideration of directional hydrogen bonding in the COSMO-SAC model significantly improves the description of solvation properties of associating fluids. In their method, the direction of a hydrogen bond was determined based on the VSEPR theory; however, this geometric approach does not reflect the local electronic environment of the lone pairs and cannot be applied to certain molecules such as DMSO and HF. In this work, we adopt a new scheme that determines the hydrogen bond acceptors of a molecule based on the minima in the molecular electrostatic potential (MESP). The hydrogen bonding directions thus determined result in improvements (about 5-7% for VLE) in the prediction of the COSMO-SAC model for a variety of thermodynamic properties and phase equilibria of neutral species, such as vapor-liquid equilibrium (VLE), liquid-liquid equilibrium (LLE), infinite dilution activity coefficient (IDAC), octanol-water partition coefficient (Kow). We also apply this new approach on charged species, such as ionic liquids (ILs), and apply with a new proposed extended PDH model. The improvement on IL-diluted region (about 10% for osmotic coefficient) is also reported.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:19:23Z (GMT). No. of bitstreams: 1
ntu-108-R06524063-1.pdf: 3131240 bytes, checksum: 18b2d89251a0bf41e1a2c9b356bb7a1c (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
Table of Contents iv
List of Figures vii
List of Tables xii
Chapter 1. Introduction 1
1.1 The Perspectives of Liquid Models in Chemical Engineering 1
1.2 The Challenge and Evolution of the Description of Hydrogen Bonding Interactions in the COSMO-SAC Model 3
1.3 An Extension – From Neutral Species to Ionic Liquids 5
Chapter 2. Theory 7
2.1 The COSMO-SAC Model 7
2.2 Treatments on HB Interactions 9
2.3 The Pitzer-Debye-Hückel Model 17
2.4 A Thermodynamically Consistent Extended PDH Model for Ionic Liquid Systems 18
2.5 Partial Dissociation of Ions with Consideration of Chemical Reaction 22
Chapter 3. Computational Details 23
3.1 Information of Quantum Chemical Calculations 23
3.2 Three Schemes for Degree of Dissociation of ILs 26
3.3 Combination of COSMO Files for Ion Pairs 27
Chapter 4. Improved Directional Hydrogen Bonding Interactions for the COSMO-SAC Model for Prediction of Activity Coefficients 28
4.1 Comparison of Thermodynamic Properties from COSMO-SAC (DHB) Using MESP versus VSEPR 28
4.2 Comparison of Hydrogen Bond Surfaces in the COMSO-SAC (DHB)/VSEPR and COSMO-SAC (DHB)/MESP 37
4.3 Summary 43
Chapter 5. Improved Prediction of Phase Behaviors of Ionic Liquids with Consideration of Directional Hydrogen Bonding Interactions 44
5.1 IDAC of a Neutral Solvent in ILs 44
5.2 Osmotic Coefficient of Neutral Solvent-ILs Binary Mixtures 46
5.3 LLE of Neutral Solvent-ILs Binary Mixtures 48
5.4 Degree of Dissociation of Partially Dissociated ILs 51
5.5 VLE of Neutral Solvent-ILs Binary Mixtures 53
5.6 Summary 57
Chapter 6. Conclusion and Future Prospects 64
Appendix A. Undetermined Lone Pair Positions by VSEPR 67
A.1 Three Types Undermined Lone Pair Positions by VSEPR 67
A.2 Lone Pairs for Halothanes Determined by VSEPR 68
Appendix B. Examination Thermodynamic Consistency by Chemical Potential from Gibbs Free Energy of Mixing 69
B.1 Chemical Potential from Gibbs Free Energy of Mixing 69
B.2 Thermodynamic Inconsistency of the Original PDH Model Using Averaged Solvent Properties from All Species 72
Appendix C. Comparison of Original PDH Model, PDH Model with Averaged Solvent Properties, and Extended PDH Model 74
C.1 Three Treatments of Solvent Properties in the PDH Model 74
C.2 Derivation of Thermodynamically Consistent Extended PDH Model 76
C.3 Thermodynamic Properties from Different Treatments on Solvent Properties in the PDH Model 77
Appendix D. Details of Activity Coefficients Calculations from the Extended Pitzer-Debye-Hückel Model 89
D.1 Determination of Molecular Weights, Densities, and Radii for ILs 89
D.2 Examples of Activity Coefficients Calculations from the Extended Pitzer-Debye-Hückel Model 96
Appendix E. Detail results for Thermodynamic Properties of Demonstrated Examples of Neutral Solvent-IL Binary Systems 98
E.1 Details for IDAC and Osmotic Coefficients Results 98
E.2 Details for LLE and VLE Results 102
Reference 109
dc.language.isoen
dc.titleCOSMO-SAC模型氫鍵描述之修正及其在離子液體之應用zh_TW
dc.titleModification of Hydrogen Bonding Interactions for COSMO-SAC Model and Its Applications in Ionic Liquidsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳台偉(David Tai-Wei Wu),謝介銘(Chieh-Ming Hsieh)
dc.subject.keyword感應電荷,COSMO-SAC,COSMO-SAC (DHB),分子電位分布,氫鍵,離子液體,活性係數,相行為,分配係數,滲透係數,zh_TW
dc.subject.keywordscreening charge,COSMO-SAC,COSMO-SAC (DHB),molecular electrostatic potential,hydrogen bond,ionic liquid,activity coefficient,phase behavior,partition coefficient,osmotic coefficient,en
dc.relation.page116
dc.identifier.doi10.6342/NTU201901084
dc.rights.note有償授權
dc.date.accepted2019-07-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-R06524063-1.pdf
  目前未授權公開取用
3.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved