請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78773完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳益群(Yi-Chun Wu) | |
| dc.contributor.author | Yi-Shan Li | en |
| dc.contributor.author | 李依珊 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:18:19Z | - |
| dc.date.available | 2025-08-19 | |
| dc.date.copyright | 2020-09-23 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-30 | |
| dc.identifier.citation | Al-Rashed, F., Ahmad, Z., Thomas, R., Melhem, M., Snider, A. J., Obeid, L. M., . . . Ahmad, R. (2020). Neutral sphingomyelinase 2 regulates inflammatory responses in monocytes/macrophages induced by TNF-α. bioRxiv, 2020.2005.2006.080382. doi:10.1101/2020.05.06.080382
Alecu, I., Bennett, S. A. L. (2019). Dysregulated Lipid Metabolism and Its Role in α-Synucleinopathy in Parkinson's Disease. Frontiers in neuroscience, 13, 328-328. doi:10.3389/fnins.2019.00328 Arana, L., Gangoiti, P., Ouro, A., Trueba, M., Gómez-Muñoz, A. (2010). Ceramide and ceramide 1-phosphate in health and disease. Lipids in health and disease, 9, 15-15. doi:10.1186/1476-511X-9-15 Basseri, S., Austin, R. C. (2012). Endoplasmic Reticulum Stress and Lipid Metabolism: Mechanisms and Therapeutic Potential. Biochemistry Research International, 2012, 841362. doi:10.1155/2012/841362 Berkhout, J., Teusink, B., Bruggeman, F. J. (2013). Gene network requirements for regulation of metabolic gene expression to a desired state. Scientific Reports, 3(1), 1417. doi:10.1038/srep01417 Bernardi, S., Marcuzzi, A., Piscianz, E., Tommasini, A., Fabris, B. (2018). The Complex Interplay between Lipids, Immune System and Interleukins in Cardio-Metabolic Diseases. International journal of molecular sciences, 19(12), 4058. doi:10.3390/ijms19124058 Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P., Ron, D. (2000). Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biology, 2(6), 326-332. doi:10.1038/35014014 Blaess, M., Deigner, H.-P. (2019). Derailed Ceramide Metabolism in Atopic Dermatitis (AD): A Causal Starting Point for a Personalized (Basic) Therapy. International journal of molecular sciences, 20(16), 3967. doi:10.3390/ijms20163967 Bolsoni-Lopes, A., Alonso-Vale, M. I. C. (2015). Lipolysis and lipases in white adipose tissue An update %J Archives of Endocrinology and Metabolism. 59, 335-342. Chaplin, D. D. (2010). Overview of the immune response. The Journal of allergy and clinical immunology, 125(2 Suppl 2), S3-S23. doi:10.1016/j.jaci.2009.12.980 Chatelut, M., Leruth, M., Harzer, K., Dagan, A., Marchesini, S., Gatt, S., . . . Levade, T. (1998). Natural ceramide is unable to escape the lysosome, in contrast to a fluorescent analogue. FEBS Lett, 426(1), 102-106. doi:10.1016/s0014-5793(98)00325-1 Chen, W., Lu, H., Yang, J., Xiang, H., Peng, H. (2016). Sphingosine 1-phosphate in metabolic syndrome (Review). Int J Mol Med, 38(4), 1030-1038. doi:10.3892/ijmm.2016.2731 Corazzari, M., Gagliardi, M., Fimia, G. M., Piacentini, M. (2017). Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate. Frontiers in oncology, 7, 78-78. doi:10.3389/fonc.2017.00078 Corcelle-Termeau, E., Vindeløv, S. D., Hämälistö, S., Mograbi, B., Keldsbo, A., Bräsen, J. H., . . . Jäättelä, M. (2016). Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure. Autophagy, 12(5), 833-849. doi:10.1080/15548627.2016.1159378 Cui, Z., Houweling, M., Chen, M. H., Record, M., Chap, H., Vance, D. E., Tercé, F. (1996). A genetic defect in phosphatidylcholine biosynthesis triggers apoptosis in Chinese hamster ovary cells. J Biol Chem, 271(25), 14668-14671. doi:10.1074/jbc.271.25.14668 Czubowicz, K., Jęśko, H., Wencel, P., Lukiw, W. J., Strosznajder, R. P. (2019). The Role of Ceramide and Sphingosine-1-Phosphate in Alzheimer's Disease and Other Neurodegenerative Disorders. Mol Neurobiol, 56(8), 5436-5455. doi:10.1007/s12035-018-1448-3 Fagone, P., Jackowski, S. (2013). Phosphatidylcholine and the CDP-choline cycle. Biochim Biophys Acta, 1831(3), 523-532. doi:10.1016/j.bbalip.2012.09.009 Feingold, K. R., Grunfeld, C. (2000). The Effect of Inflammation and Infection on Lipids and Lipoproteins. In K. R. Feingold, B. Anawalt, A. Boyce, G. Chrousos, K. Dungan, A. Grossman, J. M. Hershman, G. Kaltsas, C. Koch, P. Kopp, M. Korbonits, R. McLachlan, J. E. Morley, M. New, L. Perreault, J. Purnell, R. Rebar, F. Singer, D. L. Trence, A. Vinik, D. P. Wilson (Eds.), Endotext. South Dartmouth (MA): MDText.com, Inc. Copyright © 2000-2020, MDText.com, Inc. Fu, S., Watkins, S. M., Hotamisligil, G. S. (2012). The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab, 15(5), 623-634. doi:10.1016/j.cmet.2012.03.007 Fu, S., Yang, L., Li, P., Hofmann, O., Dicker, L., Hide, W., . . . Hotamisligil, G. (2011a). Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature, 473, 528-531. doi:10.1038/nature09968 Fu, S., Yang, L., Li, P., Hofmann, O., Dicker, L., Hide, W., . . . Hotamisligil, G. S. (2011b). Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature, 473(7348), 528-531. doi:10.1038/nature09968 Fulda, S., Gorman, A. M., Hori, O., Samali, A. (2010). Cellular Stress Responses: Cell Survival and Cell Death. International Journal of Cell Biology, 2010, 214074. doi:10.1155/2010/214074 Gangoiti, P., Granado, M. H., Wang, S. W., Kong, J. Y., Steinbrecher, U. P., Gómez-Muñoz, A. (2008). Ceramide 1-phosphate stimulates macrophage proliferation through activation of the PI3-kinase/PKB, JNK and ERK1/2 pathways. Cell Signal, 20(4), 726-736. doi:10.1016/j.cellsig.2007.12.008 Gault, C. R., Obeid, L. M., Hannun, Y. A. (2010). An overview of sphingolipid metabolism: from synthesis to breakdown. Advances in experimental medicine and biology, 688, 1-23. doi:10.1007/978-1-4419-6741-1_1 Goh, G. Y. S., Martelli, K. L., Parhar, K. S., Kwong, A. W. L., Wong, M. A., Mah, A., . . . Taubert, S. (2014). The conserved Mediator subunit MDT-15 is required for oxidative stress responses in Caenorhabditis elegans. 13(1), 70-79. doi:10.1111/acel.12154 Green, C. J., Hodson, L. (2014). The influence of dietary fat on liver fat accumulation. Nutrients, 6(11), 5018-5033. doi:10.3390/nu6115018 Guo, Y., Cordes, K. R., Farese, R. V., Walther, T. C. (2009). Lipid droplets at a glance. Journal of Cell Science, 122(6), 749. doi:10.1242/jcs.037630 Haider, A., Wei, Y. C., Lim, K., Barbosa, A. D., Liu, C. H., Weber, U., . . . Savage, D. B. (2018). PCYT1A Regulates Phosphatidylcholine Homeostasis from the Inner Nuclear Membrane in Response to Membrane Stored Curvature Elastic Stress. Dev Cell, 45(4), 481-495.e488. doi:10.1016/j.devcel.2018.04.012 Hanada, K., Kumagai, K., Tomishige, N., Kawano, M. (2007). CERT and intracellular trafficking of ceramide. Biochim Biophys Acta, 1771(6), 644-653. doi:10.1016/j.bbalip.2007.01.009 Harlapur, M., Shimbo, D. (2013). Lipid Metabolism. In M. D. Gellman J. R. Turner (Eds.), Encyclopedia of Behavioral Medicine (pp. 1166-1167). New York, NY: Springer New York. Hou, N. S., Gutschmidt, A., Choi, D. Y., Pather, K., Shi, X., Watts, J. L., . . . Taubert, S. (2014a). Activation of the endoplasmic reticulum unfolded protein response by lipid disequilibrium without disturbed proteostasis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 111(22), E2271-E2280. doi:10.1073/pnas.1318262111 Hou, N. S., Gutschmidt, A., Choi, D. Y., Pather, K., Shi, X., Watts, J. L., . . . Taubert, S. (2014b). Activation of the endoplasmic reticulum unfolded protein response by lipid disequilibrium without disturbed proteostasis in vivo. Proceedings of the National Academy of Sciences, 111(22), E2271. doi:10.1073/pnas.1318262111 Hou, N. S., Taubert, S. (2014). Membrane lipids and the endoplasmic reticulum unfolded protein response: An interesting relationship. Worm, 3(3), e962405-e962405. doi:10.4161/21624046.2014.962405 Howie, D., Ten Bokum, A., Necula, A. S., Cobbold, S. P., Waldmann, H. (2018). The Role of Lipid Metabolism in T Lymphocyte Differentiation and Survival. Frontiers in immunology, 8, 1949-1949. doi:10.3389/fimmu.2017.01949 Huang, G., Shi, L. Z., Chi, H. (2009). Regulation of JNK and p38 MAPK in the immune system: signal integration, propagation and termination. Cytokine, 48(3), 161-169. doi:10.1016/j.cyto.2009.08.002 Hubler, M. J., Kennedy, A. J. (2016). Role of lipids in the metabolism and activation of immune cells. The Journal of nutritional biochemistry, 34, 1-7. doi:10.1016/j.jnutbio.2015.11.002 Johannes, K., Cosima, R., Christian, P. M., Christiane, M. (2015). Secretory sphingomyelinase in health and disease. Biological Chemistry, 396(6-7), 707-736. doi:https://doi.org/10.1515/hsz-2015-0109 Karagiannis, F., Masouleh, S. K., Wunderling, K., Surendar, J., Schmitt, V., Kazakov, A., . . . Wilhelm, C. (2020). Lipid-Droplet Formation Drives Pathogenic Group 2 Innate Lymphoid Cells in Airway Inflammation. Immunity, 52(4), 620-634.e626. doi:10.1016/j.immuni.2020.03.003 Kawamori, T., Kaneshiro, T., Okumura, M., Maalouf, S., Uflacker, A., Bielawski, J., . . . Obeid, L. M. (2009). Role for sphingosine kinase 1 in colon carcinogenesis. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 23(2), 405-414. doi:10.1096/fj.08-117572 Kitatani, K., Idkowiak-Baldys, J., Hannun, Y. (2008). The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal, 20, 1010-1018. doi:10.1016/j.cellsig.2007.12.006 Krahmer, N., Guo, Y., Wilfling, F., Hilger, M., Lingrell, S., Heger, K., . . . Walther, T. C. (2011). Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab, 14(4), 504-515. doi:10.1016/j.cmet.2011.07.013 Leulier, F., MacNeil, L. T., Lee, W. J., Rawls, J. F., Cani, P. D., Schwarzer, M., . . . Simpson, S. J. (2017). Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health. Cell Metab, 25(3), 522-534. doi:10.1016/j.cmet.2017.02.001 MacNeil, L. T., Watson, E., Arda, H. E., Zhu, L. J., Walhout, A. J. (2013). Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell, 153(1), 240-252. doi:10.1016/j.cell.2013.02.049 MacNeil, L. T., Watson, E., Arda, H. E., Zhu, L. J., Walhout, A. J. M. (2013). Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell, 153(1), 240-252. doi:10.1016/j.cell.2013.02.049 Marsh, E. K., May, R. C. (2012). Caenorhabditis elegans, a model organism for investigating immunity. Applied and environmental microbiology, 78(7), 2075-2081. doi:10.1128/AEM.07486-11 Mechtcheriakova, D., Wlachos, A., Sobanov, J., Kopp, T., Reuschel, R., Bornancin, F., . . . Billich, A. (2007). Sphingosine 1-phosphate phosphatase 2 is induced during inflammatory responses. Cell Signal, 19(4), 748-760. doi:10.1016/j.cellsig.2006.09.004 Mitsutake, S., Date, T., Yokota, H., Sugiura, M., Kohama, T., Igarashi, Y. (2012). Ceramide kinase deficiency improves diet-induced obesity and insulin resistance. FEBS Lett, 586, 1300-1305. doi:10.1016/j.febslet.2012.03.032 Mizugishi, K., Yamashita, T., Olivera, A., Miller, G. F., Spiegel, S., Proia, R. L. (2005). Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol, 25(24), 11113-11121. doi:10.1128/mcb.25.24.11113-11121.2005 Newcomb, B., Rhein, C., Mileva, I., Ahmad, R., Clarke, C. J., Snider, J., . . . Hannun, Y. A. (2018). Identification of an acid sphingomyelinase ceramide kinase pathway in the regulation of the chemokine CCL5. J Lipid Res, 59(7), 1219-1229. doi:10.1194/jlr.M084202 Newton, J., Milstien, S., Spiegel, S. (2018). Niemann-Pick type C disease: The atypical sphingolipidosis. Advances in biological regulation, 70, 82-88. doi:10.1016/j.jbior.2018.08.001 Okada, K., Minamino, T., Tsukamoto, Y., Liao, Y., Tsukamoto, O., Takashima, S., . . . Kitakaze, M. (2004). Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation, 110(6), 705-712. doi:10.1161/01.Cir.0000137836.95625.D4 Olivera, A., Kohama, T., Edsall, L., Nava, V., Cuvillier, O., Poulton, S., Spiegel, S. (1999). Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. The Journal of cell biology, 147(3), 545-558. doi:10.1083/jcb.147.3.545 Olzmann, J. A., Carvalho, P. (2019). Dynamics and functions of lipid droplets. Nature Reviews Molecular Cell Biology, 20(3), 137-155. doi:10.1038/s41580-018-0085-z Osawa, Y., Seki, E., Kodama, Y., Suetsugu, A., Miura, K., Adachi, M., . . . Seishima, M. (2011). Acid sphingomyelinase regulates glucose and lipid metabolism in hepatocytes through AKT activation and AMP-activated protein kinase suppression. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 25(4), 1133-1144. doi:10.1096/fj.10-168351 Oyadomari, S., Harding, H. P., Zhang, Y., Oyadomari, M., Ron, D. (2008). Dephosphorylation of translation initiation factor 2alpha enhances glucose tolerance and attenuates hepatosteatosis in mice. Cell Metab, 7(6), 520-532. doi:10.1016/j.cmet.2008.04.011 Oyadomari, S., Mori, M. (2004). Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ, 11(4), 381-389. doi:10.1038/sj.cdd.4401373 Özcan, U., Cao, Q., Yilmaz, E., Lee, A.-H., Iwakoshi, N. N., Özdelen, E., . . . Hotamisligil, G. S. (2004). Endoplasmic Reticulum Stress Links Obesity, Insulin Action, and Type 2 Diabetes. 306(5695), 457-461. doi:10.1126/science.1103160 %J Science Paciotti, S., Albi, E., Parnetti, L., Beccari, T. (2020). Lysosomal Ceramide Metabolism Disorders: Implications in Parkinson's Disease. Journal of clinical medicine, 9(2), 594. doi:10.3390/jcm9020594 Pobre, K. F. R., Poet, G. J., Hendershot, L. M. (2019). The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: Getting by with a little help from ERdj friends. J Biol Chem, 294(6), 2098-2108. doi:10.1074/jbc.REV118.002804 Proia, R. L., Hla, T. (2015). Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest, 125(4), 1379-1387. doi:10.1172/jci76369 Pukkila-Worley, R., Ausubel, F. M. (2012). Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium. Current opinion in immunology, 24(1), 3-9. doi:10.1016/j.coi.2011.10.004 Raichur, S., Brunner, B., Bielohuby, M., Hansen, G., Pfenninger, A., Wang, B., . . . Tennagels, N. (2019). The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach. Mol Metab, 21, 36-50. doi:10.1016/j.molmet.2018.12.008 Sanson, M., Augé, N., Vindis, C., Muller, C., Bando, Y., Thiers, J.-C., . . . Nègre-Salvayre, A. (2009). Oxidized Low-Density Lipoproteins Trigger Endoplasmic Reticulum Stress in Vascular Cells. 104(3), 328-336. doi:doi:10.1161/CIRCRESAHA.108.183749 Schwarz, D. S., Blower, M. D. (2016). The endoplasmic reticulum: structure, function and response to cellular signaling. Cellular and molecular life sciences : CMLS, 73(1), 79-94. doi:10.1007/s00018-015-2052-6 So, J.-S. (2018). Roles of Endoplasmic Reticulum Stress in Immune Responses. Molecules and cells, 41(8), 705-716. doi:10.14348/molcells.2018.0241 Soukas, A. A., Carr, C. E., Ruvkun, G. (2013). Genetic regulation of Caenorhabditis elegans lysosome related organelle function. PLoS genetics, 9(10), e1003908. doi:10.1371/journal.pgen.1003908 Subramaniam, S., Fahy, E., Gupta, S., Sud, M., Byrnes, R. W., Cotter, D., . . . Maurya, M. R. (2011). Bioinformatics and systems biology of the lipidome. Chem Rev, 111(10), 6452-6490. doi:10.1021/cr200295k Sun, Y., Zhang, D., Liu, X., Li, X., Liu, F., Yu, Y., . . . Zhao, Y. (2018). Endoplasmic Reticulum Stress Affects Lipid Metabolism in Atherosclerosis Via CHOP Activation and Over-Expression of miR-33. Cellular Physiology and Biochemistry, 48(5), 1995-2010. doi:10.1159/000492522 Tang, Q.-Q. (2016). Lipid metabolism and diseases. Science Bulletin, 61(19), 1471-1472. doi:10.1007/s11434-016-1174-z Taubert, S., Van Gilst, M. R., Hansen, M., Yamamoto, K. R. (2006). A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes development, 20(9), 1137-1149. doi:10.1101/gad.1395406 Todd, D. J., Lee, A.-H., Glimcher, L. H. (2008). The endoplasmic reticulum stress response in immunity and autoimmunity. Nature Reviews Immunology, 8(9), 663-674. doi:10.1038/nri2359 van der Veen, J. N., Kennelly, J. P., Wan, S., Vance, J. E., Vance, D. E., Jacobs, R. L. (2017). The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta Biomembr, 1859(9 Pt B), 1558-1572. doi:10.1016/j.bbamem.2017.04.006 Walker, A. K., Jacobs, R. L., Watts, J. L., Rottiers, V., Jiang, K., Finnegan, D. M., . . . Näär, A. M. (2011). A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell, 147(4), 840-852. doi:10.1016/j.cell.2011.09.045 Watson, E., MacNeil, L. T., Arda, H. E., Zhu, L. J., Walhout, A. J. M. (2013). Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response. Cell, 153(1), 253-266. doi:10.1016/j.cell.2013.02.050 Watson, E., MacNeil, L. T., Ritter, A. D., Yilmaz, L. S., Rosebrock, A. P., Caudy, A. A., Walhout, A. J. M. (2014a). Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell, 156(4), 759-770. doi:10.1016/j.cell.2014.01.047 Watson, E., MacNeil, Lesley T., Ritter, Ashlyn D., Yilmaz, L. S., Rosebrock, Adam P., Caudy, Amy A., Walhout, Albertha J. M. (2014b). Interspecies Systems Biology Uncovers Metabolites Affecting C. elegans Gene Expression and Life History Traits. Cell, 156(4), 759-770. doi:https://doi.org/10.1016/j.cell.2014.01.047 Watts, J. L. (2009). Fat synthesis and adiposity regulation in Caenorhabditis elegans. Trends in Endocrinology Metabolism, 20(2), 58-65. doi:https://doi.org/10.1016/j.tem.2008.11.002 Watts, J. L., Ristow, M. (2017). Lipid and Carbohydrate Metabolism in lt;em gt;Caenorhabditis elegans lt;/em gt. Genetics, 207(2), 413. doi:10.1534/genetics.117.300106 Westrate, L. M., Lee, J. E., Prinz, W. A., Voeltz, G. K. (2015). Form follows function: the importance of endoplasmic reticulum shape. Annu Rev Biochem, 84, 791-811. doi:10.1146/annurev-biochem-072711-163501 Wijesinghe, D. S., Massiello, A., Subramanian, P., Szulc, Z., Bielawska, A., Chalfant, C. E. (2005). Substrate specificity of human ceramide kinase. J Lipid Res, 46(12), 2706-2716. doi:10.1194/jlr.M500313-JLR200 Wu, J., Chen, S., Liu, H., Zhang, Z., Ni, Z., Chen, J., . . . Fan, D. (2018). Tunicamycin specifically aggravates ER stress and overcomes chemoresistance in multidrug-resistant gastric cancer cells by inhibiting N-glycosylation. Journal of experimental clinical cancer research : CR, 37(1), 272-272. doi:10.1186/s13046-018-0935-8 Yamaji, T., Hanada, K. (2015). Sphingolipid Metabolism and Interorganellar Transport: Localization of Sphingolipid Enzymes and Lipid Transfer Proteins. 16(2), 101-122. doi:10.1111/tra.12239 Yoshida, H. (2007). ER stress and diseases. 274(3), 630-658. doi:10.1111/j.1742-4658.2007.05639.x Zeidan , Y. H., Jenkins , R. W., Hannun , Y. A. (2008). Remodeling of cellular cytoskeleton by the acid sphingomyelinase/ceramide pathway. Journal of Cell Biology, 181(2), 335-350. doi:10.1083/jcb.200705060 %J Journal of Cell Biology Zeng, L., Lu, M., Mori, K., Luo, S., Lee, A. S., Zhu, Y., Shyy, J. Y. J. (2004). ATF6 modulates SREBP2-mediated lipogenesis. The EMBO journal, 23(4), 950-958. doi:10.1038/sj.emboj.7600106 Zhang, J., Holdorf, A. D., Walhout, A. J. (2017). C. elegans and its bacterial diet as a model for systems-level understanding of host-microbiota interactions. Curr Opin Biotechnol, 46, 74-80. doi:10.1016/j.copbio.2017.01.008 Zhao, M., Pan, W., Shi, R.-Z., Bai, Y.-P., You, B.-Y., Zhang, K., . . . Zhang, G.-G. (2016). Acid Sphingomyelinase Mediates Oxidized-LDL Induced Apoptosis in Macrophage via Endoplasmic Reticulum Stress. Journal of atherosclerosis and thrombosis, 23(9), 1111-1125. doi:10.5551/jat.32383 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78773 | - |
| dc.description.abstract | 飲食調控生物體內的代謝並且影響其生理現象。不正常的飲食與代謝異常息息相關,如可能誘導細胞產生壓力,造成肥胖、糖尿病以及心血管疾病等代謝相關疾病。然而,飲食如何調控代謝並且引發細胞內壓力以及其防禦機制仍尚未明確。在先前實驗中我們證明了餵食不同細菌食物,會造成線蟲脂質含量改變及內質網壓力。而藉由分析脂肪染色及伴隨蛋白hsp-4螢光表現,我們發現了不同的細菌食物可能會藉由調控線蟲體內的磷脂膽鹼及鞘脂代謝途徑來降低脂質含量並誘導內質網壓力。我們證明了飲食造成的內質網壓力需要透過三種典型路徑來活化,並且可能會受脂質不平衡或是蛋白質平衡異常所影響。此外,我們的RNA定序分析結果,表明了不同飲食會影響免疫相關基因表現,而我們透過病原菌感染實驗來觀察線蟲存活率,發現了不同的飲食可以改變線蟲對外來病菌的防禦力。綜合上述結果,本研究證明了細菌食物與宿主間對於宿主的脂質代謝、內質網壓力以及免疫反應等系統性的代謝調控。 | zh_TW |
| dc.description.abstract | Diets provide nutrients and energy to regulate cellular metabolisms and influence physiological processes in organisms. Imbalanced diets are associated with metabolic disturbance. For example, lipid disequilibrium caused by imbalanced diets can induce intracellular stress and cause numerous metabolic disorders, including obesity, diabetes and cardiovascular diseases. Nevertheless, how diets modulate cellular metabolism, and trigger cellular stress and defense mechanisms remain elucidated. My former lab members found that different bacterial diets cause lipid composition alteration and induce ER stress in C. elegans when assayed using ORO staining and hsp-4p::gfp reporter, respectively. Here, my work shows that different bacterial diets cause lipid composition alteration and induce ER stress response in C. elegans through modulating host PC and sphingolipid metabolism. My work demonstrates that the diet-mediated ER stress requires three canonical signaling pathways and can be induced through lipid disequilibrium or disturbed proteostasis. Furthermore, using the RNA-sequencing analysis of C. elegans fed different bacterial diets and the pathogen infection assays, my work showed that bacterial diets regulate innate immunity by, at least in part, controlling the defense gene transcription. Taken together, my work shows that bacterial diets regulate host lipid metabolism, ER stress and immune response as systemic metabolic alteration. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:18:19Z (GMT). No. of bitstreams: 1 U0001-1908202022011800.pdf: 4482495 bytes, checksum: fe5ac77a9c5547aae38829c3095340b7 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Introduction - 1 - Diets and the health - 1 - Lipid metabolism - 2 - Phosphatidylcholine (PC) biosynthesis and degradation - 3 - Sphingolipid metabolism - 5 - Unfolded Protein Response (UPRER) pathway - 10 - Immune response - 13 - Caenorhabditis elegans is a powerful model organism to study dietary effects and the underlying mechanisms - 14 - Materials and Methods - 16 - Caenorhabditis elegans strains - 16 - Bacteria Mixture Assay - 17 - Vitamin B12 supplement on bacteria - 18 - DA1877 bacteria feeding assay - 18 - Worm synchronization - 18 - Oil Red O staining and quantification - 19 - Choline supplement assay - 19 - Western blotting - 20 - Tunicamycin sensitivity assay - 21 - Slow killing assay of Pseudomonas aeruginosa - 22 - Microscopy and quantification of lipid droplets and lysosome-related organelles - 22 - Statistics analysis - 24 - Results - 25 - PC plays a key role in DA1877-mediated lipid reduction through asm-3 - 25 - Sphingosine and C1P are potential metabolites to regulate lipid reduction on DA1877 - 27 - Metabolites involved in ceramide metabolism might induce ER stress in DA1877-fed worms - 29 - Excess PC might not be the cause for DA1877-induced ER stress - 32 - The nutrient vitamin B12 from bacteria DA1877 induces ER stress in the host worms - 34 - Different UPRER pathways are required to trigger ER stress in response to different diets - 35 - DA1877-fed worms are more sensitive to UPRER inducer, tunicamycin - 36 - Worms fed on DA1877 are more susceptible to P. aeruginosa infection - 38 - Discussion - 40 - The role of ASM-3 and C1P in diets-mediated lipid metabolism and ER stress - 40 - ASM-3 and TTM-5 play different roles in diets-mediated lipid metabolism and ER stress - 40 - The relationships between diets-mediated lipid metabolism and ER stress - 42 - DA1877-fed worms have more LROs compared to OP50-fed worms - 42 - MDT-15 differentially regulates ER stress, LROs and lipid content on different diets - 44 - Figures - 46 - Figure 1. PC affect the lipid content in DA1877-fed worms through asm-3 and pcyt-1 - 49 - Figure 2. The metabolite sphingosine and C1P from ceramide metabolism might decrease the lipid content in DA1877-fed worms - 53 - Figure 3. Sphingosine, S1P and C1P might induce DA1877-mediated ER stress - 56 - Figure 4. pcyt-1 and mdt-15 mutants show decreased transcriptional levels of hsp-4 on DA1877 - 59 - Figure 5. The nutrients/metabolites from DA1877 dominantly induce ER stress - 62 - Figure 6. Worms induce ER stress by the similar mechanisms on both diets except for atf-6-mediated sensory pathway on OP50 - 64 - Figure 7. DA1877-fed worms show higher sensitivity to tunicamycin - 67 - Figure 8. Worms fed on DA1877 show more resistance to P. aeruginosa infection on old plates consistently with DA1877-enrichment highlights of our RNA-seq analysis to immune response - 70 - Supplementary - 71 - Supplementary figure. 1 - 71 - Supplementary figure. 2 - 71 - Supplementary figure. 3 - 72 - Supplementary figure. 4 - 72 - Supplementary figure. 5 - 73 - Supplementary figure. 6 - 73 - Supplementary figure. 7 - 75 - Supplementary figure. 8 - 77 - Supplementary figure. 9 - 79 - Supplementary figure. 10 - 81 - Supplementary figure. 11 - 82 - Supplementary figure. 12 - 83 - Supplementary figure. 13 - 86 - Supplementary figure. 14 - 87 - Supplementary figure. 15 - 90 - References - 91 - | |
| dc.language.iso | en | |
| dc.subject | 飲食 | zh_TW |
| dc.subject | 秀麗隱桿線蟲 | zh_TW |
| dc.subject | 脂質 | zh_TW |
| dc.subject | 內質網壓力 | zh_TW |
| dc.subject | 免疫反應 | zh_TW |
| dc.subject | 磷脂膽鹼 | zh_TW |
| dc.subject | 鞘脂 | zh_TW |
| dc.subject | lipid | en |
| dc.subject | diets | en |
| dc.subject | sphingolipid | en |
| dc.subject | C. elegans | en |
| dc.subject | PC | en |
| dc.subject | immune response | en |
| dc.subject | ER stress | en |
| dc.title | 飲食對線蟲脂質代謝、內質網壓力與免疫反應的調控 | zh_TW |
| dc.title | Regulation of lipid metabolism, ER stress and immune responses via bacterial diets in C. elegans | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳昌熙(Chang-Shi Chen),廖秀娟(Hsiu-Chuan Liao) | |
| dc.subject.keyword | 秀麗隱桿線蟲,脂質,內質網壓力,免疫反應,磷脂膽鹼,鞘脂,飲食, | zh_TW |
| dc.subject.keyword | C. elegans,lipid,ER stress,immune response,PC,sphingolipid,diets, | en |
| dc.relation.page | 106 | |
| dc.identifier.doi | 10.6342/NTU202004107 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-31 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-19 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1908202022011800.pdf 未授權公開取用 | 4.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
