請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78762完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳益群(Yi-Chun Wu) | |
| dc.contributor.author | Yu-Shiuan Lin | en |
| dc.contributor.author | 林雨萱 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:17:34Z | - |
| dc.date.available | 2025-08-31 | |
| dc.date.copyright | 2020-09-23 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-31 | |
| dc.identifier.citation | Arden, K. C. (2007). FoxOs in tumor suppression and stem cell maintenance. Cell, 128(2), 235-237. doi:10.1016/j.cell.2007.01.009 Bandyopadhyay, U., Kaushik, S., Varticovski, L., Cuervo, A. M. (2008). The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol, 28(18), 5747-5763. doi:10.1128/mcb.02070-07 Barbieri, M., Bonafè, M., Franceschi, C., Paolisso, G. (2003). Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab, 285(5), E1064-1071. doi:10.1152/ajpendo.00296.2003 Barth, S., Glick, D., Macleod, K. F. (2010). Autophagy: assays and artifacts. Journal of Pathology, 221(2), 117-124. doi:10.1002/path.2694 Berdichevsky, A., Viswanathan, M., Horvitz, H. R., Guarente, L. (2006). C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell, 125(6), 1165-1177. doi:10.1016/j.cell.2006.04.036 Bonafè, M., Barbieri, M., Marchegiani, F., Olivieri, F., Ragno, E., Giampieri, C., . . . Paolisso, G. (2003). Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab, 88(7), 3299-3304. doi:10.1210/jc.2002-021810 Bonomini, F., Rodella, L. F., Rezzani, R. (2015). Metabolic syndrome, aging and involvement of oxidative stress. Aging and disease, 6(2), 109-120. doi:10.14336/AD.2014.0305 Braun, A., Treede, I., Gotthardt, D., Tietje, A., Zahn, A., Ruhwald, R., . . . Ehehalt, R. (2009). Alterations of phospholipid concentration and species composition of the intestinal mucus barrier in ulcerative colitis: A clue to pathogenesis. Inflammatory Bowel Diseases, 15(11), 1705-1720. doi:10.1002/ibd.20993 Dansen, T. B., Burgering, B. M. (2008). Unravelling the tumor-suppressive functions of FOXO proteins. Trends Cell Biol, 18(9), 421-429. doi:10.1016/j.tcb.2008.07.004 De Duve, C., Wattiaux, R. (1966). Functions of lysosomes. Annu Rev Physiol, 28, 435-492. doi:10.1146/annurev.ph.28.030166.002251 DeSchryver-Kecskemeti, K., Eliakim, R., Carroll, S., Stenson, W. F., Moxley, M. A., Alpers, D. H. (1989). Intestinal surfactant-like material. A novel secretory product of the rat enterocyte. The Journal of Clinical Investigation, 84(4), 1355-1361. doi:10.1172/JCI114306 Duret, L., Guex, N., Peitsch, M. C., Bairoch, A. (1998). New insulin-like proteins with atypical disulfide bond pattern characterized in Caenorhabditis elegans by comparative sequence analysis and homology modeling. Genome Res, 8(4), 348-353. doi:10.1101/gr.8.4.348 Díaz-Troya, S., Pérez-Pérez, M. E., Florencio, F. J., Crespo, J. L. (2008). The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy, 4(7), 851-865. doi:10.4161/auto.6555 Ehehalt, R., Wagenblast, J., Erben, G., Lehmann, W. D., Hinz, U., Merle, U., Stremmel, W. (2004). Phosphatidylcholine and lysophosphatidylcholine in intestinal mucus of ulcerative colitis patients. A quantitative approach by nanoelectrospray‐tandem mass spectrometry. Scandinavian Journal of Gastroenterology, 39(8), 737-742. doi:10.1080/00365520410006233 Fares, H., Grant, B. (2002). Deciphering Endocytosis in Caenorhabditis elegans. Traffic, 3(1), 11-19. doi:10.1034/j.1600-0854.2002.30103.x Ferlinz, K., Hurwitz, R., Moczall, H., Lansmann, S., Schuchman, E. H., Sandhoff, K. (1997). Functional characterization of the N-glycosylation sites of human acid sphingomyelinase by site-directed mutagenesis. Eur J Biochem, 243(1-2), 511-517. doi:10.1111/j.1432-1033.1997.511_1a.x Ferlinz, K., Hurwitz, R., Vielhaber, G., Suzuki, K., Sandhoff, K. (1994). Occurrence of two molecular forms of human acid sphingomyelinase. Biochemical Journal, 301(3), 855-862. doi:10.1042/bj3010855 Foo, J. N., Liany, H., Bei, J. X., Yu, X. Q., Liu, J., Au, W. L., . . . Tan, E. K. (2013). Rare lysosomal enzyme gene SMPD1 variant (p.R591C) associates with Parkinson's disease. Neurobiol Aging, 34(12), 2890.e2813-2895. doi:10.1016/j.neurobiolaging.2013.06.010 Gan-Or, Z., Ozelius, L. J., Bar-Shira, A., Saunders-Pullman, R., Mirelman, A., Kornreich, R., . . . Orr-Urtreger, A. (2013). The p.L302P mutation in the lysosomal enzyme gene SMPD1 is a risk factor for Parkinson disease. Neurology, 80(17), 1606-1610. doi:10.1212/WNL.0b013e31828f180e Glick, D., Barth, S., Macleod, K. F. (2010). Autophagy: cellular and molecular mechanisms. The Journal of pathology, 221(1), 3-12. doi:10.1002/path.2697 Gorelik, A., Illes, K., Heinz, L. X., Superti-Furga, G., Nagar, B. (2016). Crystal structure of mammalian acid sphingomyelinase. Nature Communications, 7(1), 12196. doi:10.1038/ncomms12196 Gross, D. N., van den Heuvel, A. P., Birnbaum, M. J. (2008). The role of FoxO in the regulation of metabolism. Oncogene, 27(16), 2320-2336. doi:10.1038/onc.2008.25 Gutierrez, M. G., Munafó, D. B., Berón, W., Colombo, M. I. (2004). Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci, 117(Pt 13), 2687-2697. doi:10.1242/jcs.01114 Haimovitz-Friedman, A., Cordon-Cardo, C., Bayoumy, S., Garzotto, M., McLoughlin, M., Gallily, R., . . . Kolesnick, R. (1997). Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med, 186(11), 1831-1841. doi:10.1084/jem.186.11.1831 Hayashi-Nishino, M., Fujita, N., Noda, T., Yamaguchi, A., Yoshimori, T., Yamamoto, A. (2009). A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol, 11(12), 1433-1437. doi:10.1038/ncb1991 Henderson, S. T., Johnson, T. E. (2001). daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol, 11(24), 1975-1980. doi:10.1016/s0960-9822(01)00594-2 Henkes, L. E., Sullivan, B. T., Lynch, M. P., Kolesnick, R., Arsenault, D., Puder, M., . . . Rueda, B. R. (2008). Acid sphingomyelinase involvement in tumor necrosis factor alpha-regulated vascular and steroid disruption during luteolysis in vivo. Proc Natl Acad Sci U S A, 105(22), 7670-7675. doi:10.1073/pnas.0712260105 Hursting, S. D., Berger, N. A. (2010). Energy balance, host-related factors, and cancer progression. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 28(26), 4058-4065. doi:10.1200/JCO.2010.27.9935 Jenkins, R. W., Canals, D., Idkowiak-Baldys, J., Simbari, F., Roddy, P., Perry, D. M., . . . Hannun, Y. A. (2010). Regulated secretion of acid sphingomyelinase: implications for selectivity of ceramide formation. J Biol Chem, 285(46), 35706-35718. doi:10.1074/jbc.M110.125609 Jenkins, R. W., Idkowiak-Baldys, J., Simbari, F., Canals, D., Roddy, P., Riner, C. D., . . . Hannun, Y. A. (2011). A novel mechanism of lysosomal acid sphingomyelinase maturation: requirement for carboxyl-terminal proteolytic processing. The Journal of biological chemistry, 286(5), 3777-3788. doi:10.1074/jbc.M110.155234 Johnson, T. E. (2003). Advantages and disadvantages of Caenorhabditis elegans for aging research. Experimental Gerontology, 38(11), 1329-1332. doi:https://doi.org/10.1016/j.exger.2003.10.020 Kaizuka, T., Morishita, H., Hama, Y., Tsukamoto, S., Matsui, T., Toyota, Y., . . . Mizushima, N. (2016). An Autophagic Flux Probe that Releases an Internal Control. Mol Cell, 64(4), 835-849. doi:10.1016/j.molcel.2016.09.037 Kamei, Y., Miura, S., Suzuki, M., Kai, Y., Mizukami, J., Taniguchi, T., . . . Ezaki, O. (2004). Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem, 279(39), 41114-41123. doi:10.1074/jbc.M400674200 Kanki, T., Wang, K., Cao, Y., Baba, M., Klionsky, D. J. (2009). Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell, 17(1), 98-109. doi:10.1016/j.devcel.2009.06.014 Kanno, K., Wu, M. K., Agate, D. S., Fanelli, B. J., Wagle, N., Scapa, E. F., . . . Cohen, D. E. (2007). Interacting proteins dictate function of the minimal START domain phosphatidylcholine transfer protein/StarD2. J Biol Chem, 282(42), 30728-30736. doi:10.1074/jbc.M703745200 Kenneth, S. (2011). Signalling by insulin and IGF receptors: supporting acts and new players. Journal of Molecular Endocrinology, 47(1), R1-R10. doi:10.1530/JME-11-0022 Kim, S.-H., Kim, B.-K., Park, S., Park, S.-K. (2019). Phosphatidylcholine Extends Lifespan via DAF-16 and Reduces Amyloid-Beta-Induced Toxicity in <i>Caenorhabditis elegans</i>. Oxidative Medicine and Cellular Longevity, 2019, 2860642. doi:10.1155/2019/2860642 Kim, Y., Sun, H. (2012). ASM-3 Acid Sphingomyelinase Functions as a Positive Regulator of the DAF-2/AGE-1 Signaling Pathway and Serves as a Novel Anti-Aging Target. PloS One, 7(9), e45890. doi:10.1371/journal.pone.0045890 Kimura, K. D., Tissenbaum, H. A., Liu, Y., Ruvkun, G. (1997). daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science, 277(5328), 942-946. doi:10.1126/science.277.5328.942 Kissová, I., Deffieu, M., Manon, S., Camougrand, N. (2004). Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem, 279(37), 39068-39074. doi:10.1074/jbc.M406960200 Kornhuber, J., Rhein, C., Müller, C. P., Mühle, C. (2015). Secretory sphingomyelinase in health and disease. Biol Chem, 396(6-7), 707-736. doi:10.1515/hsz-2015-0109 Kundu, M., Lindsten, T., Yang, C. Y., Wu, J., Zhao, F., Zhang, J., . . . Thompson, C. B. (2008). Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood, 112(4), 1493-1502. doi:10.1182/blood-2008-02-137398 Lauby-Secretan, B., Scoccianti, C., Loomis, D., Grosse, Y., Bianchini, F., Straif, K. (2016). Body Fatness and Cancer--Viewpoint of the IARC Working Group. N Engl J Med, 375(8), 794-798. doi:10.1056/NEJMsr1606602 Lee, R. Y., Hench, J., Ruvkun, G. (2001). Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr Biol, 11(24), 1950-1957. doi:10.1016/s0960-9822(01)00595-4 Li, J., Tewari, M., Vidal, M., Lee, S. S. (2007). The 14-3-3 protein FTT-2 regulates DAF-16 in Caenorhabditis elegans. Dev Biol, 301(1), 82-91. doi:10.1016/j.ydbio.2006.10.013 Li, W.-w., Li, J., Bao, J.-k. (2012). Microautophagy: lesser-known self-eating. Cellular and Molecular Life Sciences, 69(7), 1125-1136. doi:10.1007/s00018-011-0865-5 Lichtenberger, L. M. (1995). The Hydrophobic Barrier Properties of Gastrointestinal Mucus. Annual Review of Physiology, 57(1), 565-583. doi:10.1146/annurev.ph.57.030195.003025 Lin, K., Dorman, J. B., Rodan, A., Kenyon, C. (1997). daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science, 278(5341), 1319-1322. doi:10.1126/science.278.5341.1319 Lin, K., Hsin, H., Libina, N., Kenyon, C. (2001). Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet, 28(2), 139-145. doi:10.1038/88850 Lin, T., Genestier, L., Pinkoski, M. J., Castro, A., Nicholas, S., Mogil, R., . . . Green, D. R. (2000). Role of acidic sphingomyelinase in Fas/CD95-mediated cell death. J Biol Chem, 275(12), 8657-8663. doi:10.1074/jbc.275.12.8657 Lin, X., Hengartner, M. O., Kolesnick, R. (1998). Caenorhabditis elegans contains two distinct acid sphingomyelinases. J Biol Chem, 273(23), 14374-14379. doi:10.1074/jbc.273.23.14374 Llacuna, L., Marí, M., Garcia-Ruiz, C., Fernandez-Checa, J. C., Morales, A. (2006). Critical role of acidic sphingomyelinase in murine hepatic ischemia-reperfusion injury. Hepatology, 44(3), 561-572. doi:10.1002/hep.21285 Longatti, A., Tooze, S. A. (2009). Vesicular trafficking and autophagosome formation. Cell Death Differentiation, 16(7), 956-965. doi:10.1038/cdd.2009.39 Longo, V. D., Finch, C. E. (2003). Evolutionary medicine: from dwarf model systems to healthy centenarians? Science, 299(5611), 1342-1346. doi:10.1126/science.1077991 Marcucci, H., Paoletti, L., Jackowski, S., Banchio, C. (2010). Phosphatidylcholine biosynthesis during neuronal differentiation and its role in cell fate determination. J Biol Chem, 285(33), 25382-25393. doi:10.1074/jbc.M110.139477 Matsumoto, M., Han, S., Kitamura, T., Accili, D. (2006). Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Invest, 116(9), 2464-2472. doi:10.1172/jci27047 Morris, J. Z., Tissenbaum, H. A., Ruvkun, G. (1996). A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature, 382(6591), 536-539. doi:10.1038/382536a0 Mozaffarian, D. (2016). Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation, 133(2), 187-225. doi:10.1161/circulationaha.115.018585 Mukhopadhyay, A., Oh, S. W., Tissenbaum, H. A. (2006). Worming pathways to and from DAF-16/FOXO. Exp Gerontol, 41(10), 928-934. doi:10.1016/j.exger.2006.05.020 Murphy, C. T., Lee, S.-J., Kenyon, C. (2007). Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of lt;em gt;Caenorhabditis elegans lt;/em gt. Proceedings of the National Academy of Sciences, 104(48), 19046. doi:10.1073/pnas.0709613104 Murphy, C. T., McCarroll, S. A., Bargmann, C. I., Fraser, A., Kamath, R. S., Ahringer, J., . . . Kenyon, C. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature, 424(6946), 277-283. doi:10.1038/nature01789 Murphy, C. T., McCarroll, S. A., Bargmann, C. I., Fraser, A., Kamath, R. S., Ahringer, J., . . . Kenyon, C. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature, 424(6946), 277-283. doi:10.1038/nature01789 Nakae, J., Kido, Y., Accili, D. (2001). Distinct and overlapping functions of insulin and IGF-I receptors. Endocrine Reviews, 22, 818-835. Nakatogawa, H., Suzuki, K., Kamada, Y., Ohsumi, Y. (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol, 10(7), 458-467. doi:10.1038/nrm2708 Narasimhan, S. D., Yen, K., Tissenbaum, H. A. (2009). Converging pathways in lifespan regulation. Current Biology, 19, R657-R666. Ogg, S., Paradis, S., Gottlieb, S., Patterson, G. I., Lee, L., Tissenbaum, H. A., Ruvkun, G. (1997). The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature, 389(6654), 994-999. doi:10.1038/40194 Oh, S. W., Mukhopadhyay, A., Dixit, B. L., Raha, T., Green, M. R., Tissenbaum, H. A. (2006). Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nat Genet, 38(2), 251-257. doi:10.1038/ng1723 Paris, F., Fuks, Z., Kang, A., Capodieci, P., Juan, G., Ehleiter, D., . . . Kolesnick, R. (2001). Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science, 293(5528), 293-297. doi:10.1126/science.1060191 Pierce, S. B., Costa, M., Wisotzkey, R., Devadhar, S., Homburger, S. A., Buchman, A. R., . . . Ruvkun, G. (2001). Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev, 15(6), 672-686. doi:10.1101/gad.867301 Ponting, C. P. (1994). Acid sphingomyelinase possesses a domain homologous to its activator proteins: saposins B and D. Protein Sci, 3(2), 359-361. doi:10.1002/pro.5560030219 Rand, J. B. (2007). Acetylcholine. WormBook, 1-21. doi:10.1895/wormbook.1.131.1 Rebillard, A., Rioux-Leclercq, N., Muller, C., Bellaud, P., Jouan, F., Meurette, O., . . . Dimanche-Boitrel, M. T. (2008). Acid sphingomyelinase deficiency protects from cisplatin-induced gastrointestinal damage. Oncogene, 27(51), 6590-6595. doi:10.1038/onc.2008.257 Renehan, A. G., Roberts, D. L., Dive, C. (2008). Obesity and cancer: pathophysiological and biological mechanisms. Arch Physiol Biochem, 114(1), 71-83. doi:10.1080/13813450801954303 Rout, A. K., Strub, M. P., Piszczek, G., Tjandra, N. (2014). Structure of transmembrane domain of lysosome-associated membrane protein type 2a (LAMP-2A) reveals key features for substrate specificity in chaperone-mediated autophagy. J Biol Chem, 289(51), 35111-35123. doi:10.1074/jbc.M114.609446 Sahu, R., Kaushik, S., Clement, C. C., Cannizzo, E. S., Scharf, B., Follenzi, A., . . . Santambrogio, L. (2011). Microautophagy of cytosolic proteins by late endosomes. Dev Cell, 20(1), 131-139. doi:10.1016/j.devcel.2010.12.003 Schuchman, E. H., Wasserstein, M. P. (2015). Types A and B Niemann-Pick disease. Best Pract Res Clin Endocrinol Metab, 29(2), 237-247. doi:10.1016/j.beem.2014.10.002 Smith, E. L., Schuchman, E. H. (2008). The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. Faseb j, 22(10), 3419-3431. doi:10.1096/fj.08-108043 Spatola, M., Wider, C. (2014). Genetics of Parkinson's disease: the yield. Parkinsonism Relat Disord, 20 Suppl 1, S35-38. doi:10.1016/s1353-8020(13)70011-7 Stremmel, W., Merle, U., Zahn, A., Autschbach, F., Hinz, U., Ehehalt, R. (2005). Retarded release phosphatidylcholine benefits patients with chronic active ulcerative colitis. Gut, 54(7), 966. doi:10.1136/gut.2004.052316 Suzuki, K., Ohsumi, Y. (2007). Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett, 581(11), 2156-2161. doi:10.1016/j.febslet.2007.01.096 Takikita, S., Myerowitz, R., Zaal, K., Raben, N., Plotz, P. H. (2009). Murine muscle cell models for Pompe disease and their use in studying therapeutic approaches. Molecular Genetics and Metabolism, 96(4), 208-217. doi:https://doi.org/10.1016/j.ymgme.2008.12.012 Tissenbaum, H. A., Guarente, L. (2002). Model organisms as a guide to mammalian aging. Dev Cell, 2(1), 9-19. doi:10.1016/s1534-5807(01)00098-3 Tissenbaum, H. A., Ruvkun, G. (1998). An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics, 148(2), 703-717. Van Der Heide, L. P., Hoekman, M. F., Smidt, M. P. (2004). The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J, 380(Pt 2), 297-309. doi:10.1042/bj20040167 Vance, J. E., Adeli, K. (2008). CHAPTER 18 - Assembly and secretion of triacylglycerol-rich lipoproteins. In D. E. Vance J. E. Vance (Eds.), Biochemistry of Lipids, Lipoproteins and Membranes (Fifth Edition) (pp. 507-531). San Diego: Elsevier. Vanfleteren, J. R., De Vreese, A. (1995). The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. The FASEB Journal, 9(13), 1355-1361. doi:10.1096/fasebj.9.13.7557026 Walkey, C. J., Yu, L., Agellon, L. B., Vance, D. E. (1998). Biochemical and evolutionary significance of phospholipid methylation. J Biol Chem, 273(42), 27043-27046. doi:10.1074/jbc.273.42.27043 Wurtman, R. J., Cansev, M., Sakamoto, T., Ulus, I. (2010). Nutritional modifiers of aging brain function: use of uridine and other phosphatide precursors to increase formation of brain synapses. Nutr Rev, 68 Suppl 2(Suppl 2), S88-101. doi:10.1111/j.1753-4887.2010.00344.x Xie, Z., Klionsky, D. J. (2007). Autophagosome formation: core machinery and adaptations. Nature Cell Biology, 9(10), 1102-1109. doi:10.1038/ncb1007-1102 Yanowitz, J., Fire, A. (2005). Cyclin D involvement demarcates a late transition in C. elegans embryogenesis. Developmental Biology, 279(1), 244-251. doi:https://doi.org/10.1016/j.ydbio.2004.12.022 Yousefi, S., Perozzo, R., Schmid, I., Ziemiecki, A., Schaffner, T., Scapozza, L., . . . Simon, H. U. (2006). Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol, 8(10), 1124-1132. doi:10.1038/ncb1482 Zampieri, S., Filocamo, M., Pianta, A., Lualdi, S., Gort, L., Coll, M. J., . . . Dardis, A. (2016). SMPD1 Mutation Update: Database and Comprehensive Analysis of Published and Novel Variants. Hum Mutat, 37(2), 139-147. doi:10.1002/humu.22923 Zhang, Y., Xu, J., Puscau, C., Kim, Y., Wang, X., Alam, H., Hu, P. J. (2008). Caenorhabditis elegans EAK-3 inhibits dauer arrest via nonautonomous regulation of nuclear DAF-16/FoxO activity. Developmental Biology, 315(2), 290-302. doi:https://doi.org/10.1016/j.ydbio.2007.12.032 Zhou, Y.-F., Metcalf, M. C., Garman, S. C., Edmunds, T., Qiu, H., Wei, R. R. (2016). Human acid sphingomyelinase structures provide insight to molecular basis of Niemann–Pick disease. Nature Communications, 7(1), 13082. doi:10.1038/ncomms13082 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78762 | - |
| dc.description.abstract | 飲食深深的影響生物體的代謝平衡,而代謝平衡調節許多生理功能且與許多疾病成因有關,然而至今飲食如何調節生物的生理反應仍有待釐清,本研究利用秀麗桿線蟲作為模式生物去剖析飲食所致的代謝分子機制,其中包括脂質磷脂醯膽鹼(Phosphatidylcholine)的含量以及鞘脂(sphingolipid)穩定平衡的影響,另外,利用高通量核糖核酸測序(RNA-seq)分析線蟲在飲食影響下基因表現的調控,而發現一個調控鞘脂代謝基因具有飲食差異性的基因表現,因此我們創造此基因轉殖的線蟲去探討其對於飲食的反應,經過實驗測試後我們發現許多的轉錄因子參與這個基因的表現,其中特別是胰島素訊號路徑扮演一個重要的角色,他可能是透過調節DAF-16 入核去影響的基因表現,進而調控脂肪含量。再者,本研究發現該基因可以自我調節基因表現,其原因是透過影響磷脂醯膽鹼和鞘脂質相關代謝物而正回饋自己的基因表現,且其回饋反應可能是透過胰島素受體訊號路徑,簡而言之,飲食可以透過調節基因的表現去影響生物的代謝平衡,其代謝物又能影響飲食所調節的生理機制。 | zh_TW |
| dc.description.abstract | Diets profoundly influence organismal metabolism homeostasis, which affect numerous physiological processes and associate with various diseases. To date, how the diets regulate host physiological responses still remain elucidated. Here, we utilize Caenorhabditis elegans as a model organism to dissect the underlying molecular mechanisms about how diets impact on organismal metabolism homeostasis, including PC level and sphingolipid metabolism to affect lipid content. By analysis of RNA-seq data, we found a gene involved in sphingolipid metabolism is differentially expressed and generated transgenic worms to determine its impact on diets-mediated responses. After examination, we found several transcription factors participate in the regulation of this gene expression in response to different diets. Specifically, DAF-2/IIS signaling pathway plays an important role via inhibiting the nuclear localization of the Foxo transcription factor DAF-16 to regulate this gene expression and further affect lipid content level in animals. Moreover, we found that this gene could self-regulate its expression, possibly by feedback to DAF-2/IIS signaling. Altogether, diets could regulate organismal genes expression to influence host metabolism homeostasis and these metabolites alterations also contribute to diets-mediated responses. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:17:34Z (GMT). No. of bitstreams: 1 U0001-1908202022221200.pdf: 4283438 bytes, checksum: 3403e2c63828a3aa8bdd7ae2cd7cf57d (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 iii Abstract iv Introduction 1 Diet has great impact on physiology in organisms. 1 Phosphatidylcholine (PC) 2 Acid sphingomyelinase (ASMase, ASM, SMPD1) 3 DAF-16/FOXO and Insulin/insulin-like growth factor (IGF) signaling (IIS) pathway 6 Autophagy 9 C. elegans is the powerful model to investigate the diet-mediated regulations 13 Material and method 14 Caenorhabditis elegans strains and culture 14 Caenorhabditis elegans synchronization 16 Oil-Red-O (ORO) staining 16 Western blotting 17 Construction and microinjection 18 fos-1 double-stranded RNA processing and microinjection 18 Microscopy visualization 19 Result 20 DA1877 promotes the transcriptional expression of asm-3 involved in PC synthesis pathway 20 Transcription factor daf-16 functions as a repressor of asm-3 on DA1877 diet via its nuclear translocation regulation 21 DA1877-mediated upregulation of asm-3 requires IIS pathway 23 ins-7 functions in DAF-16/IIS signaling pathway to regulate DA1877-mediated asm-3 expression 25 PC homeostasis influences asm-3 expression on DA1877 diet 26 asm-3 contributes to DA1877-mediated lipid reduction 27 Discussion 29 C. elegans ASM-3 may be secreted and its C-terminus is not cleaved 29 asm-3 did not function in DA1877-diet induced neuroplasticity 30 DA1877 dominantly results in autophagosome-lysosome fusion defect not via asm-3 or affecting PC synthesis 31 Figures 33 Figure 1. DA1877-fed worms show higher PC level and higher asm-3 expression level. 34 Figure 2. The transcription factors of asm-3 play the different roles in diet-mediated asm-3 regulation. 41 Figure 3. DA1877 diet regulated asm-3 expression via IIS pathway and influence DAF-16 nuclear translocation. 45 Figure 4. ins-7 and daf-16 play the similar roles in the regulation of asm-3 expression in DA1877 diet 48 Figure 5. PC-associated metabolites influence expression of asm-3 in DA1877 diet. 50 Figure 6. asm-3 and pcyt-1 are in the same pathway to affect lipid content in DA1877 diet. 53 Figure 7. Model 54 Supplemantary figures 55 Figure 1S. The location of ASM-3 in C. elegans and its structure analysis. 57 Figure 2S. asm-3 had no effect on diet-specific aldicarb responsive. 59 Figure 3S. asm-3 mutant block autophagosome-lysosome fusion om DA1877 diet. 63 Figure 4S. klu-1 and fos-1, transcription factors of asm-3, were not major regulator in diet-specific effect. 66 Tables 68 Table 1. Downstream genes of DAF-2/DAF-16 pathway had significantly differential expression level on different diet by RNA-seq analysis. 70 Table 2. the expression of ins-7 is the highest in all insulin genes by RNA-seq analysis. 71 Supplementary: One-way ANOVA analysis 72 Supplementary: Two-way ANOVA analysis 75 Reference 94 | |
| dc.language.iso | en | |
| dc.subject | 鞘脂 | zh_TW |
| dc.subject | 秀麗隱桿線蟲 | zh_TW |
| dc.subject | 飲食 | zh_TW |
| dc.subject | 代謝 | zh_TW |
| dc.subject | 脂質 | zh_TW |
| dc.subject | 脂肪 | zh_TW |
| dc.subject | Caenorhabditis elegans | en |
| dc.subject | lipid | en |
| dc.subject | diet | en |
| dc.subject | fat | en |
| dc.subject | sphingolipid | en |
| dc.subject | metabolism | en |
| dc.title | 在線蟲內飲食調控酸性鞘磷脂酶 | zh_TW |
| dc.title | Regulation of acid sphingomyelinase by bacterial dietary effect in C. elegans | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳昌熙(Chang-Shi Chen),廖秀娟(Hsiu-Chuan Liao) | |
| dc.subject.keyword | 秀麗隱桿線蟲,鞘脂,脂肪,脂質,代謝,飲食, | zh_TW |
| dc.subject.keyword | Caenorhabditis elegans,sphingolipid,fat,lipid,metabolism,diet, | en |
| dc.relation.page | 102 | |
| dc.identifier.doi | 10.6342/NTU202004108 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-31 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-31 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1908202022221200.pdf 未授權公開取用 | 4.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
