Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78761
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor姚宗珍
dc.contributor.authorJui-Heng Changen
dc.contributor.author張睿恆zh_TW
dc.date.accessioned2021-07-11T15:17:29Z-
dc.date.available2024-08-28
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-07-19
dc.identifier.citation1. Alves, A.C.A. et al., 2013. Low-level laser therapy in different stages of rheumatoid arthritis: a histological study. Lasers in Medical Science, 28(2), pp.529–536.
2. Amid, R. et al., 2014. Effect of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration. Journal of lasers in medical sciences, 5(4), pp.163–170.
3. Anderson, R.R. & Parrish, J.A., 1983. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science, 220(4596), pp.524–527.
4. Anon, 2018. the Quantum Theory of Radiation. pp.1–15.
5. Bloise, N. et al., 2013. Investigation of low-level laser therapy potentiality on proliferation and differentiation of human osteoblast-like cells in the absence/presence of osteogenic factors. Journal of Biomedical Optics, 18(12), pp.128006–14.
6. Boulnois, J.-L., 1986. Photophysical processes in recent medical laser developments: A review. Lasers in Medical Science, 1(1), pp.47–66.
7. Bouvet-Gerbettaz, S. et al., 2009. Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers in Surgery and Medicine, 41(4), pp.291–297.
8. Castano, A.P. et al., 2007. Low-level laser therapy for zymosan-induced arthritis in rats: Importance of illumination time. Lasers in Surgery and Medicine, 39(6), pp.543–550.
9. Chung, H. et al., 2012. The nuts and bolts of low-level laser (light) therapy. Annals of biomedical engineering, 40(2), pp.516–533.
10. da Silva, A.P.R.B. et al., 2011. Effect of low-level laser therapy after rapid maxillary expansion on proliferation and differentiation of osteoblastic cells. Lasers in Medical Science, 27(4), pp.777–783.
11. da Silva, J.P. et al., 2010. Laser therapy in the tissue repair process: a literature review. Photomedicine and Laser Surgery, 28(1), pp.17–21.
12. de Paula Eduardo, C. et al., 2010. Laser phototherapy in the treatment of periodontal disease. A review. Lasers in Medical Science, 25(6), pp.781–792.
13. Ducy, P. et al., 1997. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 89(5), pp.747–754.
14. Evans, D.H. & Abrahamse, H., 2009. A review of laboratory-based methods to investigate second messengers in low-level laser therapy (LLLT). Medical Laser Application, 24(3), pp.201–215.
15. Fan, L. et al., 2014. Review Article The Hypoxia-Inducible Factor Pathway, Prolyl Hydroxylase Domain Protein Inhibitors, and Their Roles in Bone Repair and Regeneration. BioMed Research International, pp.1–11.
16. Hamblin, M.R., 2016. Chapter 2 History of Low-Level Laser (Light) Therapy. In Handbook of Low-Level Laser Therapy. Penthouse Level, Suntec Tower 3, 8 Temasek Boulevard, Singapore 038988: Pan Stanford Publishing Pte. Ltd., pp. 17–34.
17. Haxsen, V. et al., 2008. Relevance of laser irradiance threshold in the induction of alkaline phosphatase in human osteoblast cultures. Lasers in Medical Science, 23(4), pp.381–384.
18. Huang, Y.-Y. et al., 2011. Biphasic Dose Response in Low Level Light Therapy – an Update. Dose-Response, 9(4), pp.dose–response.1.
19. Huertas, R.M. et al., 2014. Effect and clinical implications of the low-energy diode laser on bone cell proliferation. Biological Research For Nursing, 16(2), pp.191–196.
20. Incerti Parenti, S. et al., 2014. Different doses of low-level laser irradiation modulate the in vitroresponse of osteoblast-like cells. Journal of Biomedical Optics, 19(10), pp.108002–7.
21. Jawad, M.M. et al., 2013. Effect of 940 nm low-level laser therapy on osteogenesis in vitro. Journal of Biomedical Optics, 18(12), pp.128001–7.
22. Karu, T., 2010. Low-Power Laser Therapy. In Biomedical Photonics Handbook. CRC Press.
23. Kiyosaki, T. et al., 2010. Low-Level Laser Therapy Stimulates Mineralization Via Increased Runx2 Expression and ERK Phosphorylation in Osteoblasts. Photomedicine and Laser Surgery, 28(S1), pp.S–167–S–172.
24. Komori, T., 2009. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell and Tissue Research, 339(1), pp.189–195.
25. Komori, T., 2017. Roles of Runx2 in Skeletal Development. Advances in experimental medicine and biology, 962(1), pp.83–93.
26. Kopfermann, H. & Ladenburg, R., 1926. Druckfehlerberichtigung zur Arbeit: „Elektrooptische Untersuchungen am Natriumdampf.” Annalen der Physik, 384(1), pp.96–96.
27. Kopfermann, H. & Ladenburg, R., 1925. Elektrooptische Untersuchungen am Natriumdampf. (Anomale elektrische Doppelbrechung; Starkeffekt an der Resonanzstrahlung). Annalen der Physik, 383(23), pp.659–679.
28. Kwiatkowski, S. et al., 2018. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 106, pp.1098–1107.
29. Ladenburg, R., 1933. Dispersion in Electrically Excited Gases. Reviews of Modern Physics, 5(4), pp.243–256.
30. Lanzafame, R.J. et al., 2007. Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model. Lasers in Surgery and Medicine, 39(6), pp.534–542.
31. Manzano-Moreno, F.J. et al., 2015. The effect of low-level diode laser therapy on early differentiation of osteoblast via BMP-2/TGF-β1 and its receptors. Journal of Cranio-Maxillo-Facial Surgery, pp.1–25.
32. Medina-Huertas, R. et al., 2014. The effects of low-level diode laser irradiation on differentiation, antigenic profile, and phagocytic capacity of osteoblast-like cells (MG-63). Lasers in Medical Science, 29(4), pp.1479–1484.
33. Merigo, E. et al., 2015. Green laser light irradiation enhances differentiation and matrix mineralization of osteogenic cells. JPB, pp.1–7.
34. Migliario, M. et al., 2014. Laser-induced osteoblast proliferation is mediated by ROS production. Lasers in Medical Science, 29(4), pp.1463–1467.
35. Migliario, M., Sabbatini, M., Mortellaro, C. & Renò, F., 2018a. Near infrared low-level laser therapy and cell proliferation: The emerging role of redox sensitive signal transduction pathways. Journal of Biophotonics, 11(11), pp.e201800025–14.
36. Migliario, M., Sabbatini, M., Mortellaro, C. & Renò, F., 2018b. Near infrared low‐level laser therapy and cell proliferation: The emerging role of redox sensitive signal transduction pathways. Journal of Biophotonics, 11(11), p.e201800025.
37. Oliveira, F.A. et al., 2016. Low intensity lasers differently induce primary human osteoblast proliferation and differentiation. JPB, pp.1–24.
38. Pacheco, P.S. et al., 2013. Laser Phototherapy at High Energy Densities Do Not Stimulate Pre-Osteoblast Growth and Differentiation. Photomedicine and Laser Surgery, 31(5), pp.225–229.
39. Pagin, M.T. et al., 2012. Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers in Medical Science, 29(1), pp.55–59.
40. Papachroni, K.K. et al., 2009. Mechanotransduction in osteoblast regulation and bone disease. Trends in Molecular Medicine, 15(5), pp.208–216.
41. Pejcic, A. et al., 2010. The effects of low level laser irradiation on gingival inflammation. Photomedicine and Laser Surgery, 28(1), pp.69–74.
42. Petri, A.D. et al., 2010. Effects of low-level laser therapy on human osteoblastic cells grown on titanium. Brazilian dental journal, 21(6), pp.491–498.
43. Pyo, S.-J. et al., 2012. Low-level laser therapy induces the expressions of BMP-2, osteocalcin, and TGF-β1 in hypoxic-cultured human osteoblasts. Lasers in Medical Science, 28(2), pp.543–550.
44. Renno, A.C.M. et al., 2007. The Effects of Laser Irradiation on Osteoblast and Osteosarcoma Cell Proliferation and Differentiation in Vitro. Photomedicine and Laser Surgery, 25(4), pp.275–280.
45. Soleimani, M., Abbasnia, E., Fathi, M., Sahraei, H., Fathi, Y. & Kaka, G., 2011a. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts—an in vitro study. Lasers in Medical Science, 27(2), pp.423–430.
46. Soleimani, M., Abbasnia, E., Fathi, M., Sahraei, H., Fathi, Y. & Kaka, G., 2011b. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts—an in vitro study. Lasers in Medical Science, 27(2), pp.423–430.
47. Sommer, A.P. et al., 2001. Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA's light-emitting diode array system. Journal of clinical laser medicine & surgery, 19(1), pp.29–33.
48. Stein, A. et al., 2005. Low-Level Laser Irradiation Promotes Proliferation and Differentiation of Human Osteoblasts in Vitro. Photomedicine and Laser Surgery, 23(2), pp.161–166.
49. Stein, E. et al., 2008. Initiale Effekte von Low Level Laser Therapie auf Wachstum und Differenzierung von humanen osteoblastären Zellen. Wiener klinische Wochenschrift, 120(3-4), pp.112–117.
50. Steiner, R., 2010. Laser-Tissue Interactions. In Laser and IPL Technology in Dermatology and Aesthetic Medicine. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 23–36.
51. Stepanovic, S. et al., 2000. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of microbiological methods, 40(2), pp.175–179.
52. Torri, S. & Weber, J.B.B., 2013. Influence of Low-Level Laser Therapy on the Rate of Orthodontic Movement: A Literature Review. Photomedicine and Laser Surgery, 31(9), pp.411–421.
53. Ueda, Y. & Shimizu, N., 2003. Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. Journal of clinical laser medicine & surgery, 21(5), pp.271–277.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78761-
dc.description.abstract低能量雷射能加快骨代謝速率,在臨床逐漸普及,但其影響的機制尚不 明朗,也未能制定出明確的參數設定及臨床指引。為探討不同參數設定對類 骨母細胞的影響,本研究使用 660 nm、830 nm、980 nm 二極體雷射,1、 5、10、20 J/cm2 之能量密度每天照射 MG-63 細胞株,以未照雷射者為控制 組,比較各條件下細胞增生及分化的差異。比較各組增生的差異;並在照射 後第一及第三天以 qPCR 比較 Runx2、HIF-1α、VEGFA、ALPL、IBSP 之基因 表現量。結果發現在增生方面,逐日照射後第五天以 alamarBlue 測量,促進 效果最好的參數設定為 830 nm、5 J/cm2,細胞活性比起控制組約多了 60.4%;分化方面,照射後第一天各基因表現皆與控制組無顯著差異,而逐 日照射三天後,對相關基因表現影響最大的條件是 980 nm、1 J/cm2,能增加 108% Runx2 基因表現(p<0.001)、增加 101% VEGFA 表現(p<0.001),HIF-1α 及 ALPL 的表現量無顯著差異,而 IBSP 無論實驗組與控制組皆無表現。雷射 參數為應用的重點,本實驗係少數設計嚴謹、能跨參數比較的研究,針對雷 射影響骨母細胞的時機提供更多資訊。本研究觀察照射低能量雷射對類骨母 細胞增生及分化的影響。發現在特定雷射參數設定下,確實能有效促進類骨 母細胞的增生及早期分化。zh_TW
dc.description.abstractLow-level laser therapy has been shown to accelerate bone remodeling during orthodontic tooth movement, yet the mechanism of its action and proper parameters for clinical use remain unclear. To evaluate the effect of low-level laser on osteoblasts, we had MG-63 cell line exposed to low-level laser irradiation with different wavelengths and energy densities included 660, 830, and 980 nm combined with 1, 5, 10, 20 J/cm2; we compared their proliferation activities with dark control via alamarblue assay, and measured the gene expression of Runx2, HIF-1α, VEGFA, ALPL, and IBSPwith qPCR.In the proliferation assay, after five consecutive days of irradiation, the group irradiated with 830 nm 5 J/cm2low-level laser had increased the most in cell viability(60.4% more than the dark control). In the differentiation assay, there’s no difference in expression between groups after a single exposure. However, after three consecutive days of irradiation, 980 nm 1 J/cm2 laser irradiationhad upregulated the genes the most: 108% increase in Runx2 expression(p<0.001) and 101% increase in VEGFA (p<0.001). There was no difference in HIF-1α or ALPL expression, and IBSP was not expressed at all in both experimental and control groups.Our study was one of the few that provided information comparing between different parameters, with which may determine the effect of laser on cells. In our study, we investigated the effect of low-level laser irradiation on osteoblasts, and found that with specificparameters at certain wavelength, it canaccelerate the cell proliferation and promote early differentiation. In the future, irradiationprotocols should be optimized to modulate specific biological response.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:17:29Z (GMT). No. of bitstreams: 1
ntu-108-R05422025-1.pdf: 10339413 bytes, checksum: 743411a3e00aaeae9930b4a4a28cfea3 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 2
誌謝 3
摘要 11
Abstract 12
Chapter 1 引言Introduction 13
1.1 研究動機及目的 13
1.2 雷射簡介 14
1.2.1 雷射產生原理 14
1.2.2 雷射的分類 14
1.3 雷射參數 15
1.4 雷射與組織的交互作用 16
1.4.1 組織的光學性質 16
1.4.2 雷射與組織的交互作用機制 18
1.5 文獻回顧Literature review 21
1.5.1 低能量雷射對類骨母細胞增生的影響 21
1.5.2 低能量雷射對類骨母細胞分化的影響 25
Chapter 2 材料及方法Materials and Methods 30
2.1 實驗變項 30
2.2 細胞培養 31
2.3 雷射照射 33
2.4 增生測量 35
2.4.1 Alamarblue assay 35
2.4.2 結晶紫染色法Crystal violet staining 36
2.5 分化測量:即時定量聚合酶連鎖反應real-time PCR 37
2.6 數據分析 38
Chapter 3 實驗結果Results 39
3.1 增生測量Proliferation assay 39
3.2 分化測量Differentiation assay:real-time PCR 44
Chapter 4 討論Discussion 49
4.1 主要發現 49
4.1.1 低能量連續雷射能促進類骨母細胞的增生,且效果隨波長及能量密度而異。本研究所探討的條件中,促進效果最好的參數設定為830 nm、5 J/cm2,在逐日照射五天後,細胞量比起控制組約多了60.4%。 49
4.1.2 低能量連續雷射在特定條件下能促進類骨母細胞分化。本研究所探討的條件中,對相關基因表現影響最大的條件是980 nm、1 J/cm2,在此條件雷射刺激下,逐日照射三天後,能增加108% Runx2基因表現(p<0.001)、增加101% VEGFA表現(p<0.001)、增加89%HIF-1α表現(p>0.05)、以及增加26% ALPL表現(p>0.05)。 49
4.2 低能量雷射對類骨母細胞增生的影響 49
4.2.1 低能量雷射能在特定條件下促進類骨母細胞增生,本研究嘗試跨參數比較 49
4.2.2 雷射刺激細胞增生的效果不長,本研究採用每天照射的實驗設計,未見效果累加 51
4.2.3 660 nm搭配5、10、20 J/cm2能量密度之低能量雷射照射,能有效促進類骨母細胞增生 52
4.2.4 830 nm搭配5、10 J/cm2能量密度之低能量雷射照射,能有效促進類骨母細胞增生 52
4.2.5 980 nm搭配5、10、20 J/cm2能量密度之低能量雷射照射,能有效促進類骨母細胞增生 53
4.2.6 在使用儀器甲所有測試條件下,660 nm1J/cm2、830 nm 1、5、10J/cm2之低能量雷射,對類骨母細胞MG-63增生之促進效果似乎優於其他條件 54
4.3 低能量雷射對類骨母細胞分化的影響 54
4.3.1 980 nm、1 J/cm2的雷射條件能有效促進類骨母細胞Runx2的表現,且其反應較雷射刺激延遲 54
4.3.2 830nm、5 J/cm2,980 nm、1 J/cm2及980 nm、20 J/cm2的雷射條件有促進類骨母細胞HIF-1α表現的趨向,但未達統計上顯著差異,其反應較雷射刺激延遲 55
4.3.3 980 nm、1 J/cm2的雷射條件能有效促進類骨母細胞VEGFA的表現,且其反應較雷射刺激延遲 55
4.3.4 980 nm、5 J/cm2及980 nm、20 J/cm2的雷射條件有抑制類骨母細胞ALPL表現的趨向,但未達統計上顯著差異 56
4.3.5 IBSP在儀器甲所有實驗條件下皆無表現 56
4.3.6 970 nm低能量雷射組別結果再現性差,可能與輸出功率不穩定有關。 56
4.3.7 本實驗儀器甲所探討的參數中,980 nm雷射最能影響骨母細胞的分化,其中又以1 J/cm2的能量密度對Runx2及VEGFA促進效果最佳;對HIF-1α之影響有類似趨勢,卻未達統計上顯著差異;而對於ALPL沒有相對應的影響,可能意味著雷射是刺激促進骨母細胞分化的早期 59
4.3.8 低能量雷射對於類骨母細胞分化的促進或抑制,須小心解讀 64
4.4 未來展望 64
Chapter 5 結論Conclusion 68
參考文獻 68
附錄一、增生測量中控制組每孔吸光值變化趨勢 76
附錄二、增生測量各組別於24孔盤內分佈位置 77
附錄三、增生測量吸光值原始數據——使用660、830、980、970 nm雷射照射者 78
附錄四、增生測量吸光值原始數據——使用830 nm雷射照射者 79
附錄五、增生測量吸光值原始數據——使用980 nm雷射照射者 80
附錄六、增生測量吸光值原始數據——使用970 nm雷射(儀器乙)照射者 81
附錄七、分化測量之門檻循(quantification cycle, Cq; threshold cycle, Ct)——660 nm雷射照射者 82
附錄八、分化測量之門檻循(quantification cycle, Cq; threshold cycle, Ct)——830 nm雷射照射者 83
附錄九、分化測量之門檻循(quantification cycle, Cq; threshold cycle, Ct)——980 nm雷射照射者 83
附錄十、分化測量之門檻循(quantification cycle, Cq; threshold cycle, Ct)——970 nm雷射照射者(儀器乙) 84
附錄十一、即時定量聚合酶連鎖反應使用之引子探針資訊 86
dc.language.isozh-TW
dc.subject細胞增生zh_TW
dc.subject低能量雷射zh_TW
dc.subject骨母細胞zh_TW
dc.subjectHIF-1αzh_TW
dc.subjectVEGFAzh_TW
dc.subjectALPLzh_TW
dc.subjectIBSPzh_TW
dc.subjectosteoblasten
dc.subjectlow-level laseren
dc.subjectcell profliferationen
dc.subjectIBSPen
dc.subjectALPLen
dc.subjectVEGFAen
dc.subjectHIF-1αen
dc.title低能量雷射對類骨母細胞之影響zh_TW
dc.titleEffects of low level laser irradiation on osteoblast-like cellsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳羿貞,王詩凱,張百恩
dc.subject.keyword低能量雷射,骨母細胞,HIF-1α,VEGFA,ALPL,IBSP,細胞增生,zh_TW
dc.subject.keywordlow-level laser,osteoblast,HIF-1α,VEGFA,ALPL,IBSP,cell profliferation,en
dc.relation.page88
dc.identifier.doi10.6342/NTU201603607
dc.rights.note有償授權
dc.date.accepted2019-07-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
dc.date.embargo-lift2024-08-28-
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-R05422025-1.pdf
  未授權公開取用
10.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved