請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78758完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁碧惠 | |
| dc.contributor.author | I-Chun Lin | en |
| dc.contributor.author | 林怡君 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:17:17Z | - |
| dc.date.available | 2024-08-28 | |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-22 | |
| dc.identifier.citation | 1. Breast cancer. https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/ (accessed Jun, 2019).
2. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. 2018, 68, 394-424. 3. Kamińska, M.; Ciszewski, T.; Łopacka-Szatan, K.; Miotła, P.; Starosławska, E., Breast cancer risk factors. Prz Menopauzalny 2015, 14, 196-202. 4. Ban, K. A.; Godellas, C. V., Epidemiology of breast cancer. Surg. Oncol. Clin. N. Am. 2014, 23, 409-422. 5. Tamimi, R. M.; Spiegelman, D.; Smith-Warner, S. A.; Wang, M.; Pazaris, M., et al., Population attributable risk of modifiable and nonmodifiable breast cancer risk factors in postmenopausal breast cancer. Am. J. Epidemiol. 2016, 184, 884-893. 6. Bagnardi, V.; Rota, M.; Botteri, E.; Tramacere, I.; Islami, F., et al., Light alcohol drinking and cancer: a meta-analysis. Ann. Oncol. 2013, 24, 301-308. 7. Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z., et al., Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018, 5, 77-106. 8. Rosen, P. P.; Kosloff, C.; Lieberman, P. H.; Adair, F.; Braun, D. W., Jr., Lobular carcinoma in situ of the breast. Detailed analysis of 99 patients with average follow-up of 24 years. Am. J. Surg. Pathol. 1978, 2, 225-251. 9. Stuart, K. E.; Houssami, N.; Taylor, R.; Hayen, A.; Boyages, J., Long-term outcomes of ductal carcinoma in situ of the breast: a systematic review, meta-analysis and meta-regression analysis. BMC Cancer 2015, 15, 890. 10. Eroles, P.; Bosch, A.; Perez-Fidalgo, J. A.; Lluch, A., Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat. Rev. 2012, 38, 698-707. 11. Reis-Filho, J. S.; Pusztai, L., Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet 2011, 378, 1812-1823. 12. Pasqualini, J. R., The selective estrogen enzyme modulators in breast cancer: a review. Biochim. Biophys. Acta. 2004, 1654, 123-143. 13. Bjornstrom, L.; Sjoberg, M., Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol. Endocrinol. 2005, 19, 833-842. 14. Nilsson, S.; Makela, S.; Treuter, E.; Tujague, M.; Thomsen, J., et al., Mechanisms of estrogen action. Physiol. Rev. 2001, 81, 1535-1565. 15. Marino, M.; Galluzzo, P.; Ascenzi, P., Estrogen signaling multiple pathways to impact gene transcription. Curr. Genomics 2006, 7, 497-508. 16. Bradlow, H. L.; Hershcopf, R. J.; Martucci, C. P.; Fishman, J., Estradiol 16 alpha-hydroxylation in the mouse correlates with mammary tumor incidence and presence of murine mammary tumor virus: a possible model for the hormonal etiology of breast cancer in humans. Proc. Natl. Acad. Sci. U. S. A. 1985, 82, 6295-6299. 17. Cavalieri, E. L.; Rogan, E. G., Unbalanced metabolism of endogenous estrogens in the etiology and prevention of human cancer. J. Steroid Biochem. Mol. Biol. 2011, 125, 169-180. 18. Cavalieri, E.; Chakravarti, D.; Guttenplan, J.; Hart, E.; Ingle, J., et al., Catechol estrogen quinones as initiators of breast and other human cancers: Implications for biomarkers of susceptibility and cancer prevention. Biochim. Biophys. Acta 2006, 1766, 63-78. 19. Yager, J. D.; Davidson, N. E., Estrogen carcinogenesis in breast cancer. N. Engl. J. Med. 2006, 354, 270-282. 20. Yue, W.; Yager, J. D.; Wang, J. P.; Jupe, E. R.; Santen, R. J., Estrogen receptor-dependent and independent mechanisms of breast cancer carcinogenesis. Steroids 2013, 78, 161-170. 21. Early breast cancer trialists' collaborative group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005, 365, 1687-1717. 22. Davies, C.; Pan, H.; Godwin, J.; Gray, R.; Arriagada, R., et al., Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 2013, 381, 805-816. 23. Miller, W. R.; Bartlett, J.; Brodie, A. M.; Brueggemeier, R. W.; di Salle, E., et al., Aromatase inhibitors: are there differences between steroidal and nonsteroidal aromatase inhibitors and do they matter? Oncologist 2008, 13, 829-37. 24. Nussbaumer, P.; Billich, A., Steroid sulfatase inhibitors. Med. Res. Rev. 2004, 24, 529-576. 25. Reed, M. J.; Purohit, A.; Woo, L. W. L.; Newman, S. P.; Potter, B. V. L., Steroid sulfatase: molecular biology, regulation, and inhibition. Endocr. Rev. 2005, 26, 171-202. 26. Ghosh, D., Human sulfatases: a structural perspective to catalysis. Cell. Mol. Life Sci. 2007, 64, 2013-2022. 27. G Hernandez-Guzman, F.; Higashiyama, T.; Pangborn, W.; Osawa, Y.; Ghosh, D., Structure of Human Estrone Sulfatase Suggests Functional Roles of Membrane Association. J. Biol. Chem. 2003, 278, 22989-22997. 28. Appel, M. J.; Bertozzi, C. R., Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications. ACS Chem. Biol. 2015, 10, 72-84. 29. Recksiek, M.; Selmer, T.; Dierks, T.; Schmidt, B.; von Figura, K., Sulfatases, trapping of the sulfated enzyme intermediate by substituting the active site formylglycine. J. Biol. Chem. 1998, 273, 6096-6103. 30. Woo, L. L.; Purohit, A.; Malini, B.; Reed, M. J.; Potter, B. V., Potent active site-directed inhibition of steroid sulphatase by tricyclic coumarin-based sulphamates. Chem. Biol. 2000, 7, 773-791. 31. Maltais, R.; Poirier, D., Steroid sulfatase inhibitors: a review covering the promising 2000-2010 decade. Steroids 2011, 76, 929-948. 32. Howarth, N. M.; Purohit, A.; Reed, M. J.; Potter, B. V. L., Estrone sulfamates: potent inhibitors of estrone sulfatase with therapeutic potential. J. Med. Chem. 1994, 37, 219-221. 33. Li, P. K.; Pillai, R.; Young, B. L.; Bender, W. H.; Martino, D. M., et al., Synthesis and biochemical studies of estrone sulfatase inhibitors. Steroids 1993, 58, 106-111. 34. Woo, L. W. L.; Lightowler, M.; Purohit, A.; Reed, M. J.; Potter, B. V. L., Heteroatom-substituted analogues of the active-site directed inhibitor estra-1,3,5(10)-trien-17-one-3-sulphamate inhibit estrone sulphatase by a different mechanism. J. Steroid Biochem. Mol. Biol. 1996, 57, 79-88. 35. Anderson, C.; Freeman, J.; Lucas, L. H.; Farley, M.; Dalhoumi, H., et al., Estrone sulfatase: probing structural requirements for substrate and inhibitor recognition. Biochemistry 1997, 36, 2586-94. 36. Li, P. K.; Pillai, R.; Dibbelt, L., Estrone sulfate analogs as estrone sulfatase inhibitors. Steroids 1995, 60, 299-306. 37. Selcer, K. W.; Jagannathan, S.; Rhodes, M. E.; Li, P. K., Inhibition of placental estrone sulfatase activity and MCF-7 breast cancer cell proliferation by estrone-3-amino derivatives. J. Steroid Biochem. Mol. Biol. 1996, 59, 83-91. 38. Ciobanu, L. C.; Boivin, R. P.; Luu-The, V.; Poirier, D., 3β-sulfamate derivatives of C19 and C21 steroids bearing a t-butylbenzyl or a benzyl group: synthesis and evaluation as non-estrogenic and non-androgenic steroid sulfatase inhibitors. J. Enzyme Inhib. Med. Chem. 2003, 18, 15-26. 39. Boivin, R. P.; Luu-The, V.; Lachance, R.; Labrie, F.; Poirier, D., Structure−activity relationships of 17α-derivatives of estradiol as inhibitors of steroid sulfatase. J. Med. Chem. 2000, 43, 4465-4478. 40. Boivin, R. P.; Labrie, F.; Poirier, D., 17α-Alkan (or alkyn) amide derivatives of estradiol as inhibitors of steroid-sulfatase activity. Steroids 1999, 64, 825-833. 41. Jütten, P.; Schumann, W.; Härtl, A.; Heinisch, L.; Gräfe, U., et al., A novel type of nonsteroidal estrone sulfatase inhibitors. Bioorg. Med. Chem. Lett. 2002, 12, 1339-1342. 42. Nussbaumer, P.; Geyl, D.; Horvath, A.; Lehr, P.; Wolff, B., et al., Nortropinyl-Arylsulfonylureas as novel, reversible inhibitors of human steroid sulfatase. Bioorg. Med. Chem. Lett. 2003, 13, 3673-3677. 43. Ahmed, V.; Liu, Y.; Silvestro, C.; Taylor, S. D., Boronic acids as inhibitors of steroid sulfatase. Biorg. Med. Chem. 2006, 14, 8564-8573. 44. Demkowicz, S.; Kozak, W.; Dasko, M.; Maslyk, M.; Gielniewski, B., et al., Synthesis of bicoumarin thiophosphate derivatives as steroid sulfatase inhibitors. Eur. J. Med. Chem. 2015, 101, 358-366. 45. Demkowicz, S.; Kozak, W.; Dasko, M.; Maslyk, M.; Kubinski, K., et al., Phosphate and thiophosphate biphenyl analogs as steroid sulfatase inhibitors. Drug Dev. Res. 2015, 76, 94-104. 46. Reed MJ, P. B., Hejaz H, Purohit A. , synthesis of halogenated sulfamate-, phosphonate-, thiophosphonate-, sulfonate- and sulphonamide estrone compounds as inhibitors of steroid sulfatase. WO2001044268, Dec. 1999. 47. Reed, J. E.; Woo, L. W.; Robinson, J. J.; Leblond, B.; Leese, M. P., et al., 2-difluoromethyloestrone 3-O-sulphamate, a highly potent steroid sulphatase inhibitor. Biochem. Biophys. Res. Commun. 2004, 317, 169-175. 48. Leese, M. P.; Leblond, B.; Newman, S. P.; Purohit, A.; Reed, M. J., et al., Anti-cancer activities of novel D-ring modified 2-substituted estrogen-3-O-sulfamates. J. Steroid Biochem. Mol. Biol. 2005, 94, 239-251. 49. Li, P. K.; Chu, G. H.; Guo, J. P.; Peters, A.; Selcer, K. W., Development of potent non-estrogenic estrone sulfatase inhibitors. Steroids 1998, 63, 425-432. 50. Y. Jinbo, Y. I., Novel estradiol derivatives. WO2000053620A1, Mar. 2000. 51. Leese, M. P.; Leblond, B.; Smith, A.; Newman, S. P.; Di Fiore, A., et al., 2-Substituted estradiol bis-sulfamates, multitargeted antitumor agents: synthesis, in vitro SAR, protein crystallography, and in vivo activity. J. Med. Chem. 2006, 49, 7683-7696. 52. Mfg., T. H., 3-Substituted-D-HOMO-1,3,5,(10)-estratriene derivatives. EP0934949, Aug. 1999. 53. Reed, M. J., Potter, B. V. L.,, Steroid 3-O-sulphamate derivatives as inhibitors of oestrone sulphatase. WO9927935, Jun. 1999. 54. Fischer, D. S.; Woo, L. W.; Mahon, M. F.; Purohit, A.; Reed, M. J., et al., D-ring modified estrone derivatives as novel potent inhibitors of steroid sulfatase. Bioorg. Med. Chem. 2003, 11, 1685-1700. 55. Jourdan, F.; Bubert, C.; Leese, M. P.; Smith, A.; Ferrandis, E., et al., Effects of C-17 heterocyclic substituents on the anticancer activity of 2-ethylestra-1,3,5(10)-triene-3-O-sulfamates: synthesis, in vitro evaluation and computational modelling. Org. Biomol. Chem. 2008, 6, 4108-4119. 56. Schreiner, E. P.; Billich, A., Estrone formate: a novel type of irreversible inhibitor of human steroid sulfatase. Bioorg. Med. Chem. Lett. 2004, 14, 4999-5002. 57. Ahmed, V.; Liu, Y.; Taylor, S. D., Multiple pathways for the irreversible inhibition of steroid sulfatase with quinone methide-generating suicide inhibitors. ChemBioChem. 2009, 10, 1457-1461. 58. Mostafa, Y. A.; Taylor, S. D., Steroid derivatives as inhibitors of steroid sulfatase. J. Steroid Biochem. Mol. Biol. 2013, 137, 183-198. 59. Purohit, A.; Woo, L. W. L.; Singh, A.; Winterborn, C. J.; Potter, B. V. L., et al., In vivo activity of 4-methylcoumarin-7-O-Sulfamate, a nonsteroidal, Nonestrogenic Steroid Sulfatase Inhibitor. Cancer Res. 1996, 56, 4950. 60. Ganeshapillai, D.; Woo, L. W. L.; Thomas, M. P.; Purohit, A.; Potter, B. V. L., C-3- and C-4-substituted bicyclic coumarin sulfamates as potent steroid sulfatase inhibitors. ACS Omega 2018, 3, 10748-10772. 61. Demkowicz, S.; Daśko, M.; Masłyk, M.; Kubiński, K.; Aszyk, J., et al., Synthesis and steroid sulfatase inhibitory activities of N-phosphorylated 3-(4-aminophenyl)-coumarin-7-O-sulfamates. Med. Chem. Commun. 2016, 7, 1146-1150. 62. Malini, B.; Purohit, A.; Ganeshapillai, D.; Woo, L. W.; Potter, B. V., et al., Inhibition of steroid sulphatase activity by tricyclic coumarin sulphamates. J. Steroid Biochem. Mol. Biol. 2000, 75, 253-258. 63. Stanway, S. J.; Purohit, A.; Woo, L. W.; Sufi, S.; Vigushin, D., et al., Phase I study of STX 64 (667 Coumate) in breast cancer patients: the first study of a steroid sulfatase inhibitor. Clin. Cancer Res. 2006, 12, 1585-1592. 64. Woo, L. W.; Ganeshapillai, D.; Thomas, M. P.; Sutcliffe, O. B.; Malini, B., et al., Structure-activity relationship for the first-in-class clinical steroid sulfatase inhibitor Irosustat (STX64, BN83495). ChemMedChem. 2011, 6, 2019-2034. 65. Bilban, M.; Billich, A.; Auer, M.; Nussbaumer, P., New fluorogenic substrate for the first continuous steroid sulfatase assay. Bioorg. Med. Chem. Lett. 2000, 10, 967-969. 66. Billich A, S. E., Wolff-Winiski B., Benzoxa- and benzthiazoles and their pharmaceuticalcompositions and use as steroid sulfatase inhibitors. WO 2001036398, Nov. 1999. 67. Schreiner, E. P.; Wolff, B.; Winiski, A. P.; Billich, A., 6-(2-Adamantan-2-ylidene-hydroxybenzoxazole)-O-sulfamate: A potent non-steroidal irreversible inhibitor of human steroid sulfatase. Bioorg. Med. Chem. Lett. 2003, 13, 4313-4316. 68. Nussbaumer, P.; Lehr, P.; Billich, A., 2-Substituted 4-(thio)chromenone 6-O-sulfamates: potent inhibitors of human steroid sulfatase. J. Med. Chem. 2002, 45, 4310-4320. 69. Walter, G.; Liebl, R.; von Angerer, E., 2-phenylindole sulfamates: inhibitors of steroid sulfatase with antiproliferative activity in MCF-7 breast cancer cells. J. Steroid Biochem. Mol. Biol. 2004, 88, 409-420. 70. Peters, R. H.; Chao, W. R.; Sato, B.; Shigeno, K.; Zaveri, N. T., et al., Steroidal oxathiazine inhibitors of estrone sulfatase. Steroids 2003, 68, 97-110. 71. Lawrence Woo, L. W.; Leblond, B.; Purohit, A.; Potter, B. V., Synthesis and evaluation of analogues of estrone-3-O-sulfamate as potent steroid sulfatase inhibitors. Bioorg. Med. Chem. 2012, 20, 2506-2519. 72. Li, P.-K.; Milano, S.; Kluth, L.; Rhodes, M. E., Synthesis and sulfatase inhibitory activities of non-steroidal estrone sulfatase inhibitors. J. Steroid Biochem. Mol. Biol. 1996, 59, 41-48. 73. Ciobanu, L. C.; Luu-The, V.; Poirier, D., Nonsteroidal compounds designed to mimic potent steroid sulfatase inhibitors. J. Steroid Biochem. Mol. Biol. 2002, 80, 339-353. 74. Patel, C. K.; Owen, C. P.; Ahmed, S., The design, synthesis, and in vitro biochemical evaluation of a series of esters of 4-[(aminosulfonyl)oxy]benzoate as novel and highly potent inhibitors of estrone sulfatase. Biochem. Biophys. Res. Commun. 2003, 307, 778-781. 75. Palmieri, C.; Stein, R. C.; Liu, X.; Hudson, E.; Nicholas, H., et al., IRIS study: a phase II study of the steroid sulfatase inhibitor Irosustat when added to an aromatase inhibitor in ER-positive breast cancer patients. Breast Cancer Res. Treat. 2017, 165, 343-353. 76. Stanway, S. J.; Purohit, A.; Woo, L. W. L.; Sufi, S.; Vigushin, D., et al., Phase I study of STX 64 (667 coumate) in breast cancer patients: The first study of a steroid sulfatase inhibitor. Clin. Cancer Res. 2006, 12, 1585-1592. 77. Coombes, R. C.; Cardoso, F.; Isambert, N.; Lesimple, T.; Soulié, P., et al., A phase I dose escalation study to determine the optimal biological dose of irosustat, an oral steroid sulfatase inhibitor, in postmenopausal women with estrogen receptor-positive breast cancer. Breast Cancer Res. Treat. 2013, 140, 73-82. 78. H'ng, Y., Design and synthesis of 3-benzylaminocoumarin-7-O-sulfamate derivatives as steroid sulfatase inhibitors. M.S. Thesis, National Taiwan University, Sep. 2016. 79. Liu, I. C., Synthesis and biological evaluation of coumarin-7-sulfamate with ring expansion at 3, 4-position as steroid sulfatase inhibitors. M.S. Thesis, National Taiwan University, Sep. 2017. 80. Chang, C. N., Synthesis and biological evaluation of coumarin-7-sulfamate derivatives as steroid sulfatase inhibitors for the treatment of hormone-dependent breast cancer. M.S. Thesis, National Taiwan University, Sep. 2018. 81. Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A., Applications of fluorine in medicinal chemistry. J. Med. Chem. 2015, 58, 8315-8359. 82. De Vos, F.; Dumont, F.; Santens, P.; Slegers, G.; Dierckx, R. A., et al., Synthesis of two dopamine D4 receptor ligands: 11C labelled chromeno[3,4-c]pyridin-5-ones. J. Labelled Compd. Radiopharm. 2000, 43, 989-996. 83. Maurer, T.; Fung, H. L., Comparison of methods for analyzing kinetic data from mechanism-based enzyme inactivation: application to nitric oxide synthase. AAPS pharmSci. 2000, 2, 68-77. 84. Kawai, J.; Ota, M.; Ohki, H.; Toki, T.; Suzuki, M., et al., Structure-based design and synthesis of an isozyme-selective MTHFD2 Inhibitor with a tricyclic coumarin scaffold. ACS Med. Chem. Lett. 2019, 10, 893-898. 85. Katherine, H. S.; Andre, S.; Chingkuang, T.; Balasubramanian, V.; Arthur, H. R., et al., Characterization of carbonic anhydrase isozyme specific inhibition by sulfamated 2-ethylestra compounds. Lett. Drug Des. Discov. 2011, 8, 678-684. 86. OCED, Test No. 117: Partition Coefficient (n-octanol/water), HPLC Method. OCED Publishing: 2004. 87. Sangster, J., Octanol‐water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data 1989, 18, 1111-1229. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78758 | - |
| dc.description.abstract | 類固醇硫酸酯酶 (steroid sulfatase, STS)以水解類固醇3號位的硫酸根基團,而調節人體內的雌激素 (estrogen)與雄激素 (androgens)的濃度。在雌激素受體陽性型 (ER+)的乳癌組織中,若類固醇硫酸酯酶過度表達,則會造成體內雌激素濃度上升,導致癌細胞增生及抑制細胞凋亡的結果,因此發展類固醇硫酸酯酶抑制劑有其必要性。
Irosustat (STX64, 50c)是第一個進入臨床二期的類固醇硫酸酯酶抑制劑,我們基於STX64的香豆素-7-胺基磺酸骨架,並根據類固醇硫酸酯酶抑制劑的結構通則,設計且合成一系列的芐基衍生物。在本實驗室的先前研究中,香豆素3號位芐基衍生物如3-(2,3-dimethoxybenzamido)-2-oxo-2H-chromen-7-yl sulfamate (69)在環外形成醯胺鍵仍對STS具有良好活性,於是我們進一步,將香豆素3、4號位擴環以增加平面性,其芐基衍生物在人類胎盤類固醇硫酸酯酶與MCF7乳癌細胞中,普遍具有極佳的抑制活性。因此本研究基於此研究成果,再優化三環香豆素骨架的類固醇硫酸酯酶抑制劑,同時合成單環結構的類固醇硫酸酯酶抑制劑以確認剛性結構是否為合適的發展方向,此外本研究亦將香豆素骨架融入雌激素結構中,並且在2、17號位進行取代基修飾,合成一系列四環香豆素骨架的類固醇硫酸酯酶抑制劑。 其結果顯示,單環結構的類固醇硫酸酯酶抑制劑不具有活性;而在三環香豆素骨架中,若衍生物芐基對位為親脂性基團,則在對位或間位加入氟原子 (70f-h),能有效提升人類胎盤類固醇硫酸酯酶與MCF7乳癌細胞的抑制活性,更可使kinact/KI的數值大幅提升,而電腦模擬結果表明,三環香豆素衍生物皆能有效避免和類固醇硫酸酯酶活性端內的胺基酸產生碰撞,並在衍生的部位和酵素產生疏水性作用力;在四環香豆素骨架的類固醇型化合物中,則是以2號位為乙基、17號位為酮基取代的76c為最具潛力的類固醇硫酸酯酶抑制劑,生物活性和電腦模擬的結果皆表明,2號位取代基的疏水性質是重要的。這些化合物在人類胎盤類固醇硫酸酯酶與MCF7乳癌細胞的抑制活性效果皆優於STX64,顯示其具有治療雌激素受體陽性型乳癌的潛力,此外這些化合物kinact/KI的數值亦大幅增加,因此下一階段將於乳癌(ER+)動物模型中進行測試,期望最終能為乳癌患者提供新機轉治療藥物。 | zh_TW |
| dc.description.abstract | Steroid sulfatase (STS) regulates the local concentration of estrogen and androgens from systemic precursors through hydrolysis of the sulfate esters of 3-hydroxy steroids. Many evidences have shown that the overexpression of STS in estrogen positive (ER+) breast cancers increased cellular estrogen level and resulted in cancer cells proliferation and anti-apoptosis activities. Thus, the development of STS inhibitor was necessary.
Irosustat (STX64, 50c), a coumarin compound, is the first STS inhibitor that enters phase Ⅱ clinical trial. Based on structures of STX64 and followed the structural rules of steroid sulfatase inhibitors, a series of STS inhibitors with coumarin skeleton were designed and synthesized. It was found earlier that 3-benzylcarboxamido coumarin-7-sulfamate (69) was capable to inhibit STS activity. Moreover, ring expansion at 3,4-position of coumarin compounds were synthesized, and most of them displayed excellent inhibitory activity against STS of both human placenta and MCF7 cells. Herein, we reported the comprehensive investigation of substitution for the tricyclic coumarin-based compounds. Furthermore, we also designed and synthesized four-membered rings compounds, as estrogen (E1) mimic, and modified substituents on carbon-2 and carbon-17 position. In this study, monocyclic STS inhibitors had no obvious inhibitory activity, while tricyclic derivatives with hydrophobic group at para-position phenyl ring showed significantly improvement against STS from human placenta and MCF7 cell line and their values of kinact/KI were also elevated, especially for those with fluoride substituent at ortho- or meta-position phenyl ring (70f-h). Besides, the docking model showed that tricyclic derivatives could avoid collision with amino acid in the active site of STS, and the hydrophobic interaction formed between derived part of compounds and enzyme. Among E1S mimic compounds, compound 76c was the most potent STS inhibitor with an IC50 value of 0.31 nM and 0.13 μM in STS from placental microsomes and MCF7 cell line, respectively, and the value of kinact/KI was 43. Both bioassays and docking results showed the hydrophobic property was important on carbon-2 position. The inhibitory activity of these compounds against STS from human placenta and MCF7 cell line were better than STX64, indicating that they are potential agents for breast cancer as adjuvant endocrine therapy (AET). Besides, the values of kinact/KI of these compounds also increased significantly. Hence, they will be tested in animal model bearing ER+ breast cancer in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:17:17Z (GMT). No. of bitstreams: 1 ntu-108-R06423001-1.pdf: 15175072 bytes, checksum: 829d296d035288ee9ae2412a25c4a0ce (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書..........................................ii
謝誌....................................................iii 中文摘要..................................................iv Abstract.................................................vi 縮寫對照表................................................xi 圖目錄..................................................xiv 表目錄.................................................xvii 路徑目錄...............................................xviii 方程式目錄...............................................xix 第一章、簡介...............................................1 1.1 乳癌................................................1 1.1.1 流行病學.........................................1 1.1.2 乳癌危險因子.....................................2 1.1.3 乳癌的分類.......................................3 1.2 雌激素..............................................6 1.2.1 雌激素與其生合成途徑..............................6 1.2.2 雌激素於乳癌中的機轉..............................8 1.2.3 激素療法藥物....................................11 1.3 類固醇硫酸酯酶......................................13 1.3.1類固醇硫酸酯酶簡介...............................13 1.3.2 類固醇硫酸酯酶與其抑制劑之作用機轉................15 1.3.3 類固醇硫酸酯酶之受質與功能.......................17 1.4 類固醇硫酸酯酶抑制劑之發展...........................19 1.4.1 具可逆抑制類固醇硫酸酯酶作用的化合物..............20 1.4.2 具不可逆抑制類固醇硫酸酯酶作用的化合物............24 第二章、研究方向與目的.....................................36 2.1 研究目標............................................36 2.2 研究策略............................................37 2.2.1 設計類固醇硫酸酯酶抑制劑之啟發....................37 2.2.2先前研究之成果...................................38 2.2.3 本論文研究主軸..................................40 第三章、結果與討論........................................43 3.1 化學合成...........................................43 3.1.1 單環胺基磺酸苯胺衍生物71a-c......................43 3.1.2 三環香豆素芐基胺基磺酸72a-h、73a-d、74a-c........46 3.1.3 類固醇型香豆素胺基磺酸衍生物75a-f、76a-f、77a-f...50 3.2 生物分析............................................59 3.2.1 類固醇硫酸酯酶試驗..............................59 3.2.2 MCF7乳癌細胞試驗................................60 3.2.3 類固醇硫酸酯酶之酵素動力學探討....................61 3.2.4 類固醇硫酸酯酶的抑制活性測試.....................62 3.2.5 類固醇硫酸酯酶抑制劑之細胞毒性試驗................67 3.3 電腦模擬............................................68 第四章、結論..............................................73 4.1 本論文的研究成果....................................73 4.2 三環香豆素芐基胺基磺酸之SAR Profiles.................74 4.3 類固醇型的胺基磺酸之SAR Profiles.....................75 第五章、實驗材料與方法.....................................76 5.1 生物分析............................................76 5.1.1 試劑與器材......................................76 5.1.2 人類胎盤類固醇硫酸酯酶之萃取及純化................77 5.1.3 人類胎盤類固醇硫酸酯酶濃度測定....................77 5.1.4 人類胎盤類固醇硫酸酯酶膠體電泳分析................77 5.1.5 MCF7細胞培養....................................78 5.1.6 藥物對類固醇硫酸酯酶的抑制活性測試................79 5.1.7 藥物的logP量測86, 87............................80 5.2 化學合成............................................82 5.2.1 反應試劑........................................82 5.2.2 實驗儀器........................................82 References..............................................134 Appendix..................................................I | |
| dc.language.iso | zh-TW | |
| dc.subject | 類固醇-3-胺基磺酸 | zh_TW |
| dc.subject | 香豆素-7-胺基磺酸 | zh_TW |
| dc.subject | 荷爾蒙受體陽性型乳癌 | zh_TW |
| dc.subject | 荷爾蒙療法 | zh_TW |
| dc.subject | 類固醇硫酸酯?抑制劑 | zh_TW |
| dc.subject | steroid-3-O-sulfamate | en |
| dc.subject | hormone receptor-positive breast cancer | en |
| dc.subject | adjuvant endocrine therapy | en |
| dc.subject | STS | en |
| dc.subject | steroid sulfatase inhibitor | en |
| dc.subject | coumarin-7-O-sulfamate | en |
| dc.title | 設計與合成香豆素骨架的化合物作為類固醇硫酸酯酶抑制劑 | zh_TW |
| dc.title | Design and Synthesis of Coumarin-based Compounds as Steroid Sulfatase Inhibitors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李水盛,忻凌偉,顧記華 | |
| dc.subject.keyword | 荷爾蒙受體陽性型乳癌,荷爾蒙療法,類固醇硫酸酯?抑制劑,香豆素-7-胺基磺酸,類固醇-3-胺基磺酸, | zh_TW |
| dc.subject.keyword | hormone receptor-positive breast cancer,adjuvant endocrine therapy,STS,steroid sulfatase inhibitor,coumarin-7-O-sulfamate,steroid-3-O-sulfamate, | en |
| dc.relation.page | 260 | |
| dc.identifier.doi | 10.6342/NTU201901449 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-23 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-28 | - |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R06423001-1.pdf 未授權公開取用 | 14.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
