請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78751完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭如忠(Ru-Jong Jeng) | |
| dc.contributor.author | Han-Yu Lin | en |
| dc.contributor.author | 林含育 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:16:48Z | - |
| dc.date.available | 2020-09-23 | |
| dc.date.copyright | 2020-09-23 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-09-02 | |
| dc.identifier.citation | [1] Song, L.; Bly, R. K.; Wilson, J. N.; Bakbak, S.; Park, J. O.; Srinivasarao, M.; Bunz, U. H. Facile microstructuring of organic semiconducting polymers by the breath figure method: hexagonally ordered bubble arrays in rigid rod‐polymers. Advanced Materials 2004, 16, 115-118. [2] Haswell, S. J.; Skelton, V. Chemical and biochemical microreactors. TRAC Trends in Analytical Chemistry 2000, 19, 389-395. [3] Park, Seung-Keun, et al. Scalable synthesis of honeycomb-like ordered mesoporous carbon nanosheets and their application in lithium–sulfur batteries. ACS applied materials interfaces, 2017, 9.3: 2430-2438. [4] Nomura, E.; Hosoda, A.; Takagaki, M.; Mori, H.; Miyake, Y.; Shibakami, M.; Taniguchi, H. Self-organized honeycomb-patterned microporous polystyrene thin films fabricated by calix [4] arene derivatives. Langmuir 2010, 26, 10266-10270. [5] Erdogan, B.; Song, L.; Wilson, J. N.; Park, J. O.; Srinivasarao, M.; Bunz, U. H. Permanent bubble arrays from a cross-linked poly (para-phenyleneethynylene): picoliter holes without microfabrication. Journal of the American Chemical Society 2004, 126, 3678-3679. [6] Li, L.; Chen, C.; Li, J.; Zhang, A.; Liu, X.; Xu, B.; Gao, S.; Jin, G.; Ma, Z. Robust and hydrophilic polymeric films with honeycomb pattern and their cell scaffold applications. Journal of Materials Chemistry 2009, 19, 2789-2796. [7] C. Decker, 'UV- Curing chemistry, ' Journal of Coatings Technology, vol. 59,no. 751, 1987, pp.97-103. [8] N. H. Park, K. D. Suh, J. Y. Kim, 'Preparation of UV-curable PEG-modifiedurethane acrylate emulsions and their coating properties. II. Effect of chain length of polyoxyethylene, ' Journal of Applied Polymer science, vol. 64, 1999, pp.2657-2664. [9] Masson, F., et al. UV-Radiation curing of waterbased urethane–acrylate coatings. Progress in Organic Coatings, 2000, 39.2-4: 115-126. [10] Gao, Qiongzhi; Li, Hongqiang; Zeng, Xingrong. Preparation and characterization of UV-curable hyperbranched polyurethane acrylate. Journal of coatings technology and research, 2011, 8.1: 61-66. [11] Decker, C.; Masson, F.; Schwalm, R. Weathering resistance of waterbased UV-cured polyurethane-acrylate coatings. Polymer Degradation and Stability, 2004, 83.2: 309-320. [12] Yabu, H.; Shimomura, M. Single-step fabrication of transparent superhydrophobic porous polymer films. Chemistry of Materials 2005, 17, 5231-5234. [13] Bormashenko, E.; Schechter, A.; Stanevsky, O.; Stein, T.; Balter, S.; Musin, A.; Bormashenko, Y.; Pogreb, R.; Barkay, Z.; Aurbach, D. Free‐standing, thermostable, micrometer‐scale honeycomb polymer films and their properties. Macromolecular Materials and Engineering 2008, 293, 872-877. [14] Beattie, D.; Wong, K. H.; Williams, C.; Poole-Warren, L. A.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H. Honeycomb-structured porous films from polypyrrole-containing block copolymers prepared via RAFT polymerization as a scaffold for cell growth. Biomacromolecules 2006, 7, 1072-1082. [15] Kong, L.; Dong, R.; Ma, H.; Hao, J. Au NP honeycomb-patterned films with controllable pore size and their surface-enhanced Raman scattering. Langmuir 2013, 29, 4235-41. [16] Widawski, G.; Rawiso, M.; Francois, B. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 1994, 369, 387-389. [17] Jenekhe, S. A.; Chen, X. L. Self-assembly of ordered microporous materials from rod-coil block copolymers. Science 1999, 283, 372-375. [18] Bunz, U. H. F. Breath figures as a dynamic templating method for polymers and nanomaterials. Advanced Materials 2006, 18, 973-989. [19] Maruyama, N.; Koito, T.; Nishida, J.; Sawadaishi, T.; Cieren, X.; Ijiro, K.; Karthaus, O.; Shimomura, M. Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films 1998, 327, 854-856. [20] Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S. Three-dimensionally ordered array of air bubbles in a polymer film. Science 2001, 292, 79-83. [21] Beysens, D. Dew nucleation and growth. Comptes Rendus Physique 2006, 7, 1082-1100. [22] Muñoz-Bonilla, A.; Fernández-García, M.; Rodríguez-Hernández, J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Progress in Polymer Science 2014, 39, 510-554. [23] Wong, K. H.; Hernández-Guerrero, M.; Granville, A. M.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H. Water-assisted formation of honeycomb structured porous films. Journal of Porous Materials 2006, 13, 213-223. [24] Stenzel, M. H.; Barner‐Kowollik, C.; Davis, T. P. Formation of honeycomb‐structured, porous films via breath figures with different polymer architectures. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44, 2363-2375. [25] Orlov, M.; Tokarev, I.; Scholl, A.; Doran, A.; Minko, S. PH-responsive thin film membranes from poly (2-vinylpyridine): water vapor-induced formation of a microporous structure. Macromolecules 2007, 40, 2086-2091. [26] Roszol, L.; Lawson, T.; Koncz, V.; Noszticzius, Z. n.; Wittmann, M.; Sarkadi, T.; Koppa, P. l. Micropatterned polyvinyl butyral membrane for acid−base diodes. The Journal of Physical Chemistry B 2010, 114, 13718-13725. [27] Peng, J.; Han, Y.; Yang, Y.; Li, B. The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer 2004, 45, 447-452. [28] Bormashenko, E.; Pogreb, R.; Stanevsky, O.; Bormashenko, Y.; Socol, Y.; Gendelman, O. Self‐assembled honeycomb polycarbonate films deposited on polymer piezoelectric substrates and their applications. Polymers for Advanced Technologies 2005, 16, 299-304. [29] Saunders, A. E.; Dickson, J. L.; Shah, P. S.; Lee, M. Y.; Lim, K. T.; Johnston, K. P.; Korgel, B. A. Breath figure templated self-assembly of porous diblock copolymer films. Physical Review E 2006, 73, 031608. [30] Stenzel‐Rosenbaum, M. H.; Davis, T. P.; Fane, A. G.; Chen, V. Porous polymer films and honeycomb structures made by the self‐organization of well‐defined macromolecular structures created by living radical polymerization techniques. Angewandte Chemie International Edition 2001, 40, 3428-3432. [31] Chen, J. Z.; Zhao, Q. L.; Lu, H. C.; Huang, J.; Cao, S. K.; Ma, Z. Polymethylene‐b‐polystyrene diblock copolymer: synthesis, property, and application. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, 1894-1900. [32] de León, A. S.; Muñoz‐Bonilla, A.; Fernández‐García, M.; Rodríguez‐Hernández, J. Breath figures method to control the topography and the functionality of polymeric surfaces in porous films and microspheres. Journal of Polymer Science Part A: Polymer Chemistry 2012, 50, 851-859. [33] Deepak, V.; Asha, S. Self-organization-induced three-dimensional honeycomb pattern in structure-controlled bulky methacrylate polymers: synthesis, morphology, and mechanism of pore formation. The Journal of Physical Chemistry B 2006, 110, 21450-21459. [34] Böker, A.; Lin, Y.; Chiapperini, K.; Horowitz, R.; Thompson, M.; Carreon, V.; Xu, T.; Abetz, C.; Skaff, H.; Dinsmore, A. D. Hierarchical nanoparticle assemblies formed by decorating breath figures. Nature Materials 2004, 3, 302. [35] Yonezawa, T.; Onoue, S.-y.; Kimizuka, N. Self‐organized superstructures of fluorocarbon‐stabilized silver nanoparticles. Advanced Materials 2001, 13, 140-142. [36] Jiang, X.; Zhou, X.; Zhang, Y.; Zhang, T.; Guo, Z.; Gu, N. Interfacial effects of in situ-synthesized Ag nanoparticles on breath figures. Langmuir 2009, 26, 2477-2483. [37] Zhang, N.; Li, J.; Ni, D.; Sun, K. Preparation of honeycomb porous La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ–Gd0. 2Ce0. 8O2− δ composite cathodes by breath figures method for solid oxide fuel cells. Applied Surface Science 2011, 258, 50-57. [38] Saito, Y.; Shimomura, M.; Yabu, H. Dispersion of Al2O3 nanoparticles stabilized with mussel-inspired amphiphilic copolymers in organic solvents and formation of hierarchical porous films by the breath figure technique. Chemical Communications (Cambridge) 2013, 49, 6081-6083. [39] Wakamatsu, N.; Takamori, H.; Fujigaya, T.; Nakashima, N. Self‐organized single‐walled carbon nanotube conducting thin films with honeycomb structures on flexible plastic films. Advanced Functional Materials 2009, 19, 311-316. [40] Stenzel-Rosenbaum, M. H.; Davis, T. P.; Fane, A. G.; Chen, V. Porous polymer films and honeycomb structures made by the self-organization of well-defined macromolecular structures created by living radical polymerization techniques. Angewandte Chemie International Edition 2001, 40, 3428-3432. [41] Deepak, V. D.; Asha, S. K. Self-organization-induced three-dimensional honeycomb pattern in structure-controlled bulky methacrylate polymers: synthesis, morphology, and mechanism of pore formation. The Journal of Physical Chemistry B 2006, 110, 21450-21459. [42] Stenzel, M. H.; Davis, T. P.; Fane, A. G. Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process. Journal of Materials Chemistry 2003, 13, 2090-2097. [43] Kim, J. H.; Seo, M.; Kim, S. Y. Lithographically patterned breath figure of photoresponsive small molecules: dual‐patterned honeycomb lines from a combination of bottom‐up and top‐down lithography. Advanced Materials 2009, 21, 4130-4133. [44] Babu, S. S.; Mahesh, S.; Kartha, K. K.; Ajayaghosh, A. Solvent‐directed self‐assembly of π gelators to hierarchical macroporous structures and aligned fiber bundles. Chemistry–An Asian Journal 2009, 4, 824-829. [45] Yu, Y.; Ma, Y. Breath figure fabrication of honeycomb films with small molecules through hydrogen bond mediated self-assembly. Soft Matter 2011, 7, 884-886. [46] Cheng, C. Xia, et al. Porous polymer films and honeycomb structures based on amphiphilic dendronized block copolymers. Langmuir, 2005, 21.14: 6576-6581. [47] Connal, Luke A., et al. Dramatic morphology control in the fabrication of porous polymer films. Advanced Functional Materials, 2008, 18.22: 3706-3714. [48] Gong, Feirong, et al. Biodegradable comb-dendritic tri-block copolymers consisting of poly (ethylene glycol) and poly (l-lactide): synthesis, characterizations, and regulation of surface morphology and cell responses. Polymer, 2009, 50.13: 2775-2785. [49] Ting, W.-H.; Chen, C.-C.; Dai, S. A.; Suen, S.-Y.; Yang, I.-K.; Liu, Y.-L.; Chen, F. M.; Jeng, R.-J. Superhydrophobic waxy-dendron-grafted polymer films via nanostructure manipulation. Journal of Materials Chemistry 2009, 19, 4819-4828. [50] Chang, C.-C.; Juang, T.-Y.; Ting, W.-H.; Lin, M.-S.; Yeh, C.-M.; Dai, S. A.; Suen, S.-Y.; Liu, Y.-L.; Jeng, R.-J. Using a breath-figure method to self-organize honeycomb-like polymeric films from dendritic side-chain polymers. Materials Chemistry and Physics 2011, 128, 157-165.. [51] Su, Y.-A.; Chen, W.-F.; Juang, T.-Y.; Ting, W.-H.; Liu, T.-Y.; Hsieh, C.-F.; Dai, S. A.; Jeng, R.-J. Honeycomb-like polymeric films from dendritic polymers presenting reactive pendent moieties. Polymer 2014, 55, 1481-1490. [52] Wu, C.-H.; Ting, W.-H.; Lai, Y.-W.; Dai, S. A.; Su, W.-C.; Tung, S.-H.; Jeng, R.-J. Tailored honeycomb-like polymeric films based on amphiphilic poly (urea/malonamide) dendrons. RSC Advances 2016, 6, 91981-91990. [53] Tomalia, D. A. Supramolecular chemistry: fluorine makes a difference. Nature Materials 2003, 2, 711. [54] Carlmark, A.; Hawker, C.; Hult, A.; Malkoch, M. New methodologies in the construction of dendritic materials. Chemical Society Reviews 2009, 38, 352-362. [55] Tomalia, D.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A new class of polymers: starburst-dendritic. Polymer Journal 1985, 17, 117-132. [56] Hawker, C.; Fréchet, J. M. A new convergent approach to monodisperse dendritic macromolecules. Journal of the Chemical Society, Chemical Communications 1990, 1010-1013. [57] Tomalia, D. A.; Baker, H.; J., D.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A new class of polymers: starburst-dendritic macromolecules. Polymer Journal 1985, 17, 117-132. [58] Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K. Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. Journal of Organic Chemistry 1985, 50, 2003-2004. [59] Lothian-Tomalia, M. K.; Hedstrand, D. M.; Tomalia, D. A.; Padias, A. B.; H. K. Hall Jr. A contemporary survey of covalent connectivity and complexity. The divergent synthesis of poly(thioether) dendrimers. Amplified, genealogically directed synthesis leading to the de gennes dense packed state. Tetrahedron 1997, 53, 15495-15513. [60] Padias, A. B.; Hall, H. K.; Tomalia, D. A.; McConnell, J. R. Starburst polyether dendrimers Journal of Organic Chemistry 1987, 52, 5305-5312. [61] Miller, T. M.; Neenan, T. X. Convergent synthesis of monodisperse dendrimers based upon 1,3,5-trisubstituted benzenes. Chemistry of Materials 1990, 2, 346-349 [62] Hawker, C. J.; Frechet, J. M. J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. Journal of the American Chemical Society 1990, 112, 7638-7647. [63] Cheng, C. X.; Tian, Y.; Shi, Y. Q.; Tang, R. P.; Xi, F. Porous polymer films and honeycomb structures based on amphiphilic dendronized block copolymers. Langmuir 2005, 21, 6576-6581. [64] Schluter, A. D.; Rabe, J. P. Dendronized polymers: synthesis, characterization, assembly at Interfaces, and manipulation. Angewandte Chemie International Edition 2000, 39, 864-883. [65] Cheng, C.-X.; Huang, Y.; Tang, R.-P.; Chen, E.-q.; Xi, F. Molecular architecture effect on self-assembled nanostructures of a linear-dendritic rod triblock copolymer in solution. Macromolecules 2005, 38, 3044-3047. [66] Roovers, J.; Comanita, B. Dendrimers and dendrimer-polymer hybrids Advances in Polymer Science 1999, 142, 179-228. [67] Zhao, Y.; Shuai, X.; Chen, C.; Xi, F. Synthesis of novel dendrimer-like star block copolymers with definite numbers of arms by combination of ROP and ATRP. Chemical Communications 2004, 1608-1609. [68] Darcos, V.; Dureault, A.; Taton, D.; Gnanou, Y.; Marchand, P.; Caminade, A.-M.; Majoral, J.-P.; Destarac, M.; Leising, F. Synthesis of hybrid dendrimer-star polymers by the RAFT process. Chemical Communications 2004, 2110-2111. [69] Chen, C. P.; Dai, S. A.; Chang, H. L.; Su, W. C.; Jeng, R. J. Facile approach to polyurea/malonamide dendrons via a selective ring‐opening addition reaction of azetidine‐2, 4‐dione. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43, 682-688. [70] Roffey, C., Photogeneration of Reactive Species for UV-Curing, Wiley, New York, 1997. [71] RIMOTEC, https://rimotec.nl/uv-curing/ [72] Masson, F., et al. UV-Radiation curing of waterbased urethane–acrylate coatings. Progress in Organic Coatings, 2000, 39.2-4: 115-126. [73] Kim, Byung Kyu; Paik, Sang Hyun. UV‐curable poly (ethylene glycol)–based polyurethane acrylate hydrogel. Journal of Polymer Science Part A: Polymer Chemistry, 1999, 37.15: 2703-2709. [74] Patel, Dinesh K., et al. Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Advanced Materials, 2017, 29.15: 1606000. [75] Rwei, Syang-Peng; Chen, Jung-Da; Su, Che-Meng. Kinetics of UV-curing of waterborne polyurethane acrylate dendrimer. Polymer bulletin, 2013, 70.3: 1019-1035. [76] Imperiyka, M., et al. Investigation of plasticized UV-curable glycidyl methacrylate based solid polymer electrolyte for photoelectrochemical cell (PEC) application. International journal of hydrogen energy, 2014, 39.6: 3018-3024. [77] Decker, Christian; Masson, Frédéric; Schwalm, Reinhold. Dual‐curing of waterborne urethane‐acrylate coatings by UV and thermal processing. Macromolecular materials and Engineering, 2003, 288.1: 17-28. [78] Chang, Hao-Hueng, et al. Evaluation of Carbon Dioxide-Based Urethane Acrylate Composites for Sealers of Root Canal Obturation. Polymers, 2020, 12.2: 482 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78751 | - |
| dc.description.abstract | 本研究使用具有反應選擇性單體4-isocyanato-4'-(3,3-dimethyl-2,4-dioxo-azetidino)-diphenylmethane (IDD) 為構築單元,與壓克力基的單體2-hydroxyethyl methacrylate (2-HEMA) 進行反應,得到末段具有壓克力基的樹枝狀分子構築單元G0.5-MA,再經由與Diethylenetriamine (DETA)和重複單元逐步進行收斂式反應,製備出不同代數,末端具有多個壓克力基的規則樹枝狀poly(urea/malonamides)高分子(G1.0-G2.5),並經由多種結構鑑定法確認規則樹枝狀分子具有高密度雙鍵且精準的結構。而藉由改質G0.5-MA和十八碳系列的樹枝狀分子G1.5-C18,分別合成具有二醇結構的A-G0.5-MA和A-G1.5-C18,並與Methylene diphenyl isocyanate (MDI)以不同的比例聚合形成PU-PMA,而PU高分子結構中的雙親性樹枝狀高分子能穩定水分子及高分子溶液間的界面,並控制水分子整齊排列於溶液表面的自組裝現象,等到水分子及溶劑完全揮發即得到規整的孔洞結構。藉由混摻適當比例的樹枝狀分子G1.5-MA和G2.5-MA以及光起始劑CQ (Camphorquinone)、EDMA (Ethyl-4-dimethylaminobenzoate)、AIBN (Azobisisobutyronitrile),使得形成蜂窩狀孔洞結構同時具有可光交聯的性質。而在適當的光波長照射之下,能夠使膜上的雙鍵結構進行光交聯,並在浸泡於交聯前無法承受之特定溶劑後,仍在膜上維持孔洞結構。本研究成功製備出光交聯之蜂窩狀孔洞膜,使原先較為脆弱之孔洞膜具有更為強健的溶劑抗性。 | zh_TW |
| dc.description.abstract | In this study, a series of dendritic diluents with each molecule featuring for multiple photo-crosslinkable moieties were developed. Through the convergent route, well-defined poly(urea/malonamide) dendrons of different generations (G0.5~G2.5) with peripheral methacryloyl groups were synthesized by using a building block with selective reactivity such as 4-isocyanato-4'-(3,3-dimethyl-2,4-dioxo-azetidino) -diphenylmethane (IDD). These newly synthesized dendrons were utilized as dendritic diluents for polyurethanes. Subsequently, honeycomb-array would able to be prepared in the presence of the diluents, and acrylate-containing dendritic polyurethanes (PU-PMA) which were synthesized based on amphiphilic dendrons and methylene diphenyl isocyanate (MDI). Consequently, robust honeycomb-like films with solvent resistance were realized after the exposure of ultra-violet (UV) light, i.e. photo-crosslinking. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:16:48Z (GMT). No. of bitstreams: 1 U0001-0209202001130500.pdf: 12647372 bytes, checksum: acee942154b9890b0642d092ee1893e4 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract iv 目錄 v 圖目錄 ix 表目錄 1 1 第一章、緒論 2 2 第二章、文獻回顧 3 2.1 蜂窩狀孔洞膜簡介 3 2.1.1 Breath Figure法之機制 3 2.1.2 應用於Breath Figure方法之材料 7 2.1.2.1 高分子材料 7 2.1.2.2 小分子化合物(超分子聚合物) 11 2.1.2.3 規則樹枝狀高分子 13 2.1.3 poly(urea/malonamide) dendrons應用於製備蜂窩狀孔洞膜 15 2.1.3.1 poly(urea/malonamide) dendrons作為高分子側鏈 15 2.1.3.2 poly(urea/malonamide) dendrons作為與高分子混摻的界面活性劑 18 2.2 規則樹枝狀高分子 22 2.2.1 Dendrimer合成路徑 23 2.2.2 反應選擇性單體 IDD 製備poly(urea/malonamide) dendrons 25 2.2.2.1 合成具有反應選擇性之建構單元IDD 25 2.2.2.2 利用反應選擇性單體 IDD合成poly(urea/malonamide) dendrons 26 2.3 紫外光交聯材料簡介 28 2.3.1 壓克力樹脂應用於紫外光交聯 29 2.4 研究動機 31 3 第三章、實驗內容 32 3.1 藥品及溶劑 32 3.2 實驗儀器 34 3.3 實驗流程圖 36 3.4 實驗步驟 37 3.4.1 Isocyanato-4’(3,3-dimethyl-2,4-dioxo-azetidino) diphenylmethane (IDD) 之合成 37 3.4.2 Methacrylate系列poly(urea/malonamide) dendrons 之合成 38 3.4.2.1 G0.5-MA之合成 38 3.4.2.2 G1.0-MA之合成 39 3.4.2.3 G1.5-MA之合成 39 3.4.2.4 G2.0-MA之合成 40 3.4.2.5 G2.5-MA之合成 40 3.4.3 C18系列poly(urea/malonamide) dendrons之合成 41 3.4.3.1 G0.5-C18之合成 41 3.4.3.2 G1.0-C18之合成 42 3.4.3.3 G1.5-C18之合成 42 3.4.4 鏈延長劑之合成 42 3.4.4.1 A-G0.5-MA之合成 42 3.4.4.2 A-G1.5-C18之合成 43 3.4.5 側鏈具反應官能基之PU-PMA高分子之合成 43 3.4.6 規則蜂窩狀孔洞高分子薄膜之製備 44 3.4.7 光交聯之規則蜂窩狀孔洞薄膜製備 45 3.4.8 光交聯蜂窩狀孔洞薄膜之抗溶劑測試 45 4 第四章、結果與討論 46 4.1 IDD之合成及結構鑑定 46 4.2 Methacrylate系列poly(urea/malonamide) dendrons之合成及結構鑑定 49 4.2.1 G0.5-MA之合成及結構鑑定 49 4.2.2 G1.0-MA之合成及結構鑑定 50 4.2.3 G1.5-MA之合成及結構鑑定 52 4.2.4 G2.0-MA之合成及結構鑑定 55 4.2.5 G2.5-MA之合成及結構鑑定 57 4.3 鏈延長劑之合成及結構鑑定 60 4.3.1 A-G0.5-MA之合成及結構鑑定 60 4.3.2 A-G1.5-C18之合成及結構鑑定 62 4.4 側鏈具反應官能基之PU-PMA高分子之化學結構及熱性質分析 64 4.5 不同變因對於蜂窩狀孔洞形態之影響 65 4.5.1 高分子溶液濃度對於蜂窩狀孔洞排列之影響 66 4.5.2 樹枝狀高分子濃度對於蜂窩狀孔洞排列之影響 67 4.6 光交聯前後之蜂窩狀孔洞膜於溶劑測試 68 5 第五章、結論 69 6 第六章、參考文獻 70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 紫外光交聯 | zh_TW |
| dc.subject | breath figure法 | zh_TW |
| dc.subject | 規則樹枝狀分子 | zh_TW |
| dc.subject | 蜂窩狀孔洞膜 | zh_TW |
| dc.subject | 聚氨酯壓克力材料 | zh_TW |
| dc.subject | Polyurethane acrylate | en |
| dc.subject | Honeycomb-like film | en |
| dc.subject | UV-curing | en |
| dc.subject | Dendrimers | en |
| dc.subject | Breath Figure | en |
| dc.title | 合成含甲基丙烯酸乙酯之規則樹枝狀高分子應用於光交聯蜂窩狀孔洞薄膜 | zh_TW |
| dc.title | Photo-crosslinkable honeycomb-like films based on poly(urea/malonamide) dendrons with peripheral methacrylates | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 劉定宇(Ting-Yu Liu) | |
| dc.contributor.oralexamcommittee | 吳建欣(Chien-Hsin Wu),鄭有為(Yu-Wei Cheng) | |
| dc.subject.keyword | breath figure法,規則樹枝狀分子,蜂窩狀孔洞膜,聚氨酯壓克力材料,紫外光交聯, | zh_TW |
| dc.subject.keyword | Breath Figure,Dendrimers,Honeycomb-like film,Polyurethane acrylate,UV-curing, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU202004202 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-09-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0209202001130500.pdf 未授權公開取用 | 12.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
