Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78750
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張琳巧(Lin-Chau Chang)
dc.contributor.authorJhih-Wei Huangen
dc.contributor.author黃治瑋zh_TW
dc.date.accessioned2021-07-11T15:16:44Z-
dc.date.available2024-08-28
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-07-23
dc.identifier.citationAccomasso L, Cristallini C, Giachino C. Risk assessment and risk minimization in nanomedicine: a need for predictive, alternative, and 3Rs strategies. Front Pharmacol 2018;9:228.
Agholme L, Lindström T, Kågedal K, Marcusson J, Hallbeck M. An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. J Alzheimers Dis 2010;20(4):1069-1082.
Barz M, Luxenhofer R, Schillmeier M. Quo vadis nanomedicine? Nanomedicine (Lond) 2015;10(20):3089-3091.
Bhushan B. Introduction to nanotechnoledgy. ln: Bhushan B, editor. Springer handbook of nanotechnology. 4th ed. Berlin, Heidelberg: Springer-Verlag; 2017, p. 1-18.
Bieber LL, Abraham T, Helmrath T. A rapid spectrophotometric assay for carnitine palmitoyltransferase. Anal Biochem 1972;50(2):509-518.
Bjørndal B, Alterås EK, Lindquist C, Svardal A, Skorve J, Berge RK. Associations between fatty acid oxidation, hepatic mitochondrial function, and plasma acylcarnitine levels in mice. Nutr Metab (Lond) 2018;15:10.
Blair HA, Deeks ED. Albumin-bound paclitaxel: a review in non-small cell lung cancer. Drugs 2015;75(17):2017-2024.
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 2016;33(10):2373-2387.
Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med 2004;25(5-6):495-520.
Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, Clish CB, et al. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr Opin Biotechnol 2015; 34:189-201.
Cabré R, Jové M, Naudí A, Ayala V, Piñol-Ripoll G, Gil-Villar MP, et al. Specific metabolomics adaptations define a differential regional vulnerability in the adult human cerebral cortex. Front Mol Neurosci 2016;9:138.
Cashdollar JL, Huff E, Ryu H, Grimm AC. The influence of incubation time on adenovirus quantitation in A549 cells by most probable number. J Virol Methods 2016;237:200-203.
Chace DH, Hillman SL, Van Hove JLK, Naylor EW. Rapid diagnosis of MCAD deficiency: quantitative analysis of octanoylcarnitine and other acylcarnitines in newborn blood spots by tandem mass spectrometry. Clin Chem 1997;43(11):2106-2113.
Chao HC, Chen GY, Hsu LC, Liao HW, Yang SY, Wang SY, et al. Using precursor ion scan of 184 with liquid chromatography-electrospray ionization-tandem mass spectrometry for concentration normalization in cellular lipidomic studies. Anal Chim Acta 2017;971:68-77.
Chen GY, Liao HW, Tsai IL, Tseng YJ, Kuo CH. Using the matrix-induced ion suppression method for concentration normalization in cellular metabolomics studies. Anal Chem 2015a;87(19):9731-9739.
Chen N, Brachmann C, Liu X, Pierce DW, Dey J, Kerwin WS, et al. Albumin-bound nanoparticle (nab) paclitaxel exhibits enhanced paclitaxel tissue distribution and tumor penetration. Cancer Chemother Pharmacol 2015b;76(4):699-712.
Chen N, Li Y, Ye Y, Palmisano M, Chopra R, Zhou S. Pharmacokinetics and pharmacodynamics of nab-paclitaxel in patients with solid tumors: disposition kinetics and pharmacology distinct from solvent-based paclitaxel. J Clin Pharmacol 2014;54(10):1097-1107.
Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 2018;46(W1):W486-W494.
Cucinotto I, Fiorillo L, Gualtieri S, Arbitrio M, Ciliberto D, Staropoli N, et al. Nanoparticle albumin bound paclitaxel in the treatment of human cancer: nanodelivery reaches prime-time? J Drug Deliv 2013;2013:905091.
Čuperlović-Culf M, Barnett DA, Culf AS, Chute I. Cell culture metabolomics: applications and future directions. Drug Discov Today 2010;15(15/16):610-621.
Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J 2012;14(2):282-295.
Desai N. Nanoparticle albumin-bound paclitaxel (Abraxane®). ln: Otagiri M, Chuang VTG, editors. Albumin in medicine: pathological and clinical applications. 1st ed. Singapore: Springer Singapore; 2016, p. 101-119.
Di Stefano G, Di Lionardo A, Galosi E, Truini A, Cruccu G. Acetyl-L-carnitine in painful peripheral neuropathy: a systematic review. J Pain Res 2019;12:1341-1351.
Doan KN, Ellenrieder L, Becker T. Mitochondrial porin links protein biogenesis to metabolism. Curr Genet 2019. doi:10.1007/s00294-019-00965-z.
Dranitsaris G, Yu B, Wang L, Sun W, Zhou Y, King J, et al. Abraxane® versus Taxol® for patients with advanced breast cancer: a prospective time and motion analysis from a Chinese health care perspective. J Oncol Pharm Pract 2016;22(2):205-211.
Driessen MD, Mues S, Vennemann A, Hellack B, Bannuscher A, Vimalakanthan V, et al. Proteomic analysis of protein carbonylation: a useful tool to unravel nanoparticle toxicity mechanisms. Part Fibre Toxicol 2015;12:36.
Duggett NA, Griffiths LA, Flatters SJL. Paclitaxel-induced painful neuropathy is associated with changes in mitochondrial bioenergetics, glycolysis, and an energy deficit in dorsal root ganglia neurons. Pain 2017;158(8):1499-1508.
Dunning KR, Anastasi MR, Zhang VJ, Russell DL, Robker RL. Regulation of fatty acid oxidation in mouse cumulus-oocyte complexes during maturation and modulation by PPAR agonists. PLoS One 2014;9(2):e87327.
Fröhlich E. Role of omics techniques in the toxicity testing of nanoparticles. J Nanobiotechnology 2017;15(1):84.
Gioria S, Lobo Vicente J, Barboro P, La Spina R, Tomasi G, Urbán P, et al. A combined proteomics and metabolomics approach to assess the effects of gold nanoparticles in vitro. Nanotoxicology 2016;10(6):736-748.
Gomes SIL, Roca CP, Pegoraro N, Trindade T, Scott-Fordsmand JJ, Amorim MJB. High-throughput tool to discriminate effects of NMs (Cu-NPs, Cu-nanowires, CuNO3, and Cu salt aged): transcriptomics in Enchytraeus crypticus. Nanotoxicology 2018;12(4):325-340.
Grevengoed TJ, Klett EL, Coleman RA. Acyl-CoA metabolism and partitioning. Annu Rev Nutr 2014;34:1-30.
Gunstone FD. Fatty acids-Nomenclature, structure, isolation and structure determination, biosynthesis and chemical synthesis. In: Gunstone FD, editor. Fatty Acid and Lipid Chemistry. 1st ed. Boston: Springer; 1996, p. 1-34.
Happyana N, Kayser O. Monitoring metabolite profiles of Cannabis sativa L. trichomes during flowering period using 1H NMR-based metabolomics and real-time PCR. Planta Med 2016;82(13):1217-1223.
Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev 2017;108:25-38.
Hayton S, Maker GL, Mullaney I, Trengove RD. Experimental design and reporting standards for metabolomics studies of mammalian cell lines. Cell Mol Life Sci 2017;74(24):4421-4441.
Horgan RP, Kenny LC. ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet Gynecol 2011;13:189-195.
Hua S, de Matos MBC, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol 2018;9:790.
Hua S, Wu SY. Editorial: advances and challenges in nanomedicine. Front Pharmacol 2018;9:1397.
Huang H, Tong TT, Yau LF, Chen CY, Mi JN, Wang JR, et al. LC-MS based sphingolipidomic study on A549 human lung adenocarcinoma cell line and its taxol-resistant strain. BMC Cancer 2018;18(1):799.
Hsu KH. The transcriptional regulation of LMBRD1 gene in neuron cell differentiation. NTU, Master thesis 2018.
Hsu HW, Zytkovicz TH, Comeau AM, Strauss AW, Marsden D, Shih VE, et al. Spectrum of medium-chain acyl-CoA dehydrogenase deficiency detected by newborn screening. Pediatrics 2008;121(5):e1108-e1114.
Idrovo JP, Yang WL, Nicastro J, Coppa GF, Wang P. Stimulation of carnitine palmitoyltransferase 1 improves renal function and attenuates tissue damage after ischemia/reperfusion. J Surg Res 2012;177(1):157-164.
Ilinskaya AN, Clogston JD, McNeil SE, Dobrovolskaia MA. Induction of oxidative stress by Taxol® vehicle Cremophor-EL triggers production of interleukin-8 by peripheral blood mononuclear cells through the mechanism not requiring de novo synthesis of mRNA. Nanomedicine 2015;11(8):1925-1938.
Jain KK. Nanotoxicology. ln: Jain KK, editor. The handbook of nanomedicine. 3rd ed. New York: Springer New York; 2017, p. 575-603.
Jang SH, Choi SY, Ryu PD, Lee SY. Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivo. Eur J Pharmacol 2011;651(1-3):26-32.
Jin HW, Flatters SJL, Xiao WH, Mulhern HL, Bennett GJ. Prevention of paclitaxel-evoked painful peripheral neuropathy by acetyl-L-carnitine: effects on axonal mitochondria, sensory nerve fiber terminal arbors, and cutaneous Langerhans cells. Exp Neurol 2008;210(1):229-237.
Jones LL, McDonald DA, Borum PR. Acylcarnitines: role in brain. Prog Lipid Res 2010;49(1):61-75.
Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 2016;17(7):451-459.
Kajimoto M, Ledee DR, Olson AK, Isern NG, Des Rosiers C, Portman MA. Differential effects of octanoate and heptanoate on myocardial metabolism during extracorporeal membrane oxygenation in an infant swine model. Am J Physiol Heart Circ Physiol 2015;309(7):H1157-H1165.
Kamei D, Tsuchiya K, Nitta K, Mineshima M, Akiba T. Association between resistance to erythropoiesis-stimulating agents and carnitine profile in patients on maintenance haemodialysis. Nephrology (Carlton) 2018;23(8):737-743.
Kellar A, Egan C, Morris D. Preclinical murine models for lung cancer: clinical trial applications. Biomed Res Int 2015;2015:621324.
Khwanraj K, Phruksaniyom C, Madlah S, Dharmasaroja P. Differential expression of tyrosine hydroxylase protein and apoptosis-related genes in differentiated and undifferentiated SH-SY5Y neuroblastoma cells treated with MPP+. Neurol Res Int 2015;2015:734703.
Kidd JF, Pilkington MF, Schell MJ, Fogarty KE, Skepper JN, Taylor CW, et al. Paclitaxel affects cytosolic calcium signals by opening the mitochondrial permeability transition pore. J Biol Chem 2002;277(8):6504-6510.
Kihara A. Very long-chain fatty acids: elongation, physiology and related disorders. J Biochem 2012;152(5):387-395.
Kołodziejczak-Radzimska A, Jesionowski T. Zinc oxide-from synthesis to application: a review. Materials (Basel) 2014;7(4):2833-2881.
Korecka JA, van Kesteren RE, Blaas E, Spitzer SO, Kamstra JH, Smit AB, et al. Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One 2013;8(5):e63862.
Kovalevich J, Langford D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 2013;1078:9-21.
Krimmer T, Rapaport D, Ryan MT, Meisinger C, Kassenbrock CK, Blachly-Dyson E, et al. Biogenesis of porin of the outer mitochondrial membrane involves an import pathway via receptors and the general import pore of the TOM complex. J Cell Biol 2001;152(2):289-300.
Krishna A, Biryukov M, Trefois C, Antony PMA, Hussong R, Lin J, et al. Systems genomics evaluation of the SH-SY5Y neuroblastoma cell line as a model for Parkinson's disease. BMC Genomics 2014;15:1154.
Kumar Sarker S, Islam MT, Sarower Bhuyan G, Sultana N, Begum MN, Al Mahmud-Un-Nabi M, et al. Impaired acylcarnitine profile in transfusion-dependent beta-thalassemia major patients in Bangladesh. J Adv Res 2018;12:55-66.
Lee SH, Wang TY, Hong JH, Cheng TJ, Lin CY. NMR-based metabolomics to determine acute inhalation effects of nano- and fine-sized ZnO particles in the rat lung. Nanotoxicology 2016;10(7):924-934.
Lehmann R, Zhao X, Weigert C, Simon P, Fehrenbach E, Fritsche J, et al. Medium chain acylcarnitines dominate the metabolite pattern in humans under moderate intensity exercise and support lipid oxidation. PLoS One 2010;5(7):e11519.
Li J, Zhao S, Zhou X, Zhang T, Zhao L, Miao P, et al. Inhibition of lipolysis by mercaptoacetate and etomoxir specifically sensitize drug-resistant lung adenocarcinoma cell to paclitaxel. PLoS One 2013;8(9):e74623.
Li S, Gao D, Jiang Y. Function, detection and alteration of acylcarnitine metabolism in hepatocellular carcinoma. Metabolites 2019;9(2):E36.
Li S, Li Q, Li Y, Li L, Tian H, Sun X. Acetyl-L-carnitine in the treatment of peripheral neuropathic pain: a systematic review and meta-analysis of randomized controlled trials. PLoS One 2015;10(3):e0119479.
Liberato MV, Nascimento AS, Ayers SD, Lin JZ, Cvoro A, Silveira RL, et al. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists. PLoS One 2012;7(5):e36297.
Liepinsh E, Makrecka-Kuka M, Volska K, Kuka J, Makarova E, Antone U, et al. Long-chain acylcarnitines determine ischaemia/reperfusion-induced damage in heart mitochondria. Biochem J 2016;473(9):1191-1202.
Lim SC, Tajika M, Shimura M, Carey KT, Stroud DA, Murayama K, et al. Loss of the mitochondrial fatty acid β-oxidation protein medium-chain acyl-Coenzyme A dehydrogenase disrupts oxidative phosphorylation protein complex stability and function. Sci Rep 2018;8(1):153.
Longo N, Frigeni M, Pasquali M. Carnitine transport and fatty acid oxidation. Biochim Biophys Acta 2016;1863(10):2422-2435.
Lopes FM, Schröder R, da Frota MLC Jr, Zanotto-Filho A, Müller CB, Pires AS, et al. Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Res 2010;1337:85-94.
Lorenz MA, Burant CF, Kennedy RT. Reducing time and increasing sensitivity in sample preparation for adherent mammalian cell metabolomics. Anal Chem 2011;83(9):3406-3414.
Lungu II, Holban AM, Ficai A, Grumezescu AM. Zinc oxide nanostrucures: new trends in antimicrobial therapy. In: Ficai A, Grumezescu AM, editors. Nanostructures for antimicrobial therapy. 1st ed. Amsterdam: Elsevier; 2017, p. 503-514.
Luxenhofer R, Barz M, Schillmeier M. Quo vadis nanomedicine? Nanomedicine (Lond) 2014;9(14):2083-2086.
Lv M, Huang W, Chen Z, Jiang H, Chen J, Tian Y, et al. Metabolomics techniques for nanotoxicity investigations. Bioanalysis 2015;7(12):1527-1544.
MacArthur Clark J. The 3Rs in research: a contemporary approach to replacement, reduction and refinement. Br J Nutr 2018;120(s1):S1-S7.
Madji Hounoum B, Blasco H, Emond P, Mavel S. Liquid chromatography-high-resolution mass spectrometry-based cell metabolomics: experimental design, recommendations, and applications. TrAC Trends Anal Chem 2016;75:118-128.
Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 2015;91:3-6.
Makrecka-Kuka M, Sevostjanovs E, Vilks K, Volska K, Antone U, Kuka J, et al. Plasma acylcarnitine concentrations reflect the acylcarnitine profile in cardiac tissues. Sci Rep. 2017;7(1):17528.
McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 1997;244(1):1-14.
Melone MAB, Valentino A, Margarucci S, Galderisi U, Giordano A, Peluso G. The carnitine system and cancer metabolic plasticity. Cell Death Dis 2018;9(2):228.
Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomedicine 2009;4:99-105.
Moghimi SM, Hunter AC, Andresen TL. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol Toxicol 2012;52:481-503.
Narayanan V, Weekes CD. Nanoparticle albumin-bound (nab)-paclitaxel for the treatment of pancreas ductal adenocarcinoma. Gastrointest Cancer 2015;5:11-19.
Nassar AF, Wu T, Nassar SF, Wisnewski AV. UPLC-MS for metabolomics: a giant step forward in support of pharmaceutical research. Drug Discov Today 2017;22(2):463-470.
Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2005;2:8.
Okere IC, McElfresh TA, Brunengraber DZ, Martini W, Sterk JP, Huang H, et al. Differential effects of heptanoate and hexanoate on myocardial citric acid cycle intermediates following ischemia-reperfusion. J Appl Physiol 2006;100(1):76-82.
Onoue S, Yamada S, Chan HK. Nanodrugs: pharmacokinetics and safety. Int J Nanomedicine 2014;9:1025-1037.
Otsubo C, Bharathi S, Uppala R, Ilkayeva OR, Wang D, McHugh K, et al. Long-chain acylcarnitines reduce lung function by inhibiting pulmonary surfactant. J Biol Chem 2015;290(39):23897-23904.
Picard M, Castells MC. Re-visiting hypersensitivity reactions to taxanes: a comprehensive review. Clin Rev Allergy Immunol 2015;49(2):177-191.
Puchades-Carrasco L, Pineda-Lucena A. Metabolomics in pharmaceutical research and development. Curr Opin Biotechnol 2015;35:73-77.
Qu Q, Zeng F, Liu X, Wang QJ, Deng F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis 2016; 19(7):e2226
Rafikova O, Meadows ML, Kinchen JM, Mohney RP, Maltepe E, Desai AA, et al. Metabolic changes precede the development of pulmonary hypertension in the monocrotaline exposed rat lung. PLoS One 2016;11(3):e0150480.
Rasmussen BB, Holmbäck UC, Volpi E, Morio-Liondore B, Paddon-Jones D, Wolfe RR. Malonyl coenzyme A and the regulation of functional carnitine palmitoyltransferase-1 activity and fat oxidation in human skeletal muscle. J Clin Invest 2002;110(11):1687-1693.
Reuter SE, Evans AM. Carnitine and acylcarnitines: pharmacokinetic, pharmacological and clinical aspects. Clin Pharmacokinet 2012;51(9):553-572.
Roco MC. The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years. J Nanopart Res 2011;13(2):427-445.
Roco MC, Mirkin CA, Hersam MC. Nanotechnology research directions for societal needs in 2020: summary of international study. J Nanopar Res 2011;13(3):897-919.
Roco MC. Overview: affirmation of nanotechnology between 2000 and 2030. In: Mensah TO, Wang B, Bothun G, Winter J, Davis V, editors. Nanotechnology commercialization: manufacturing processes and products. 1st ed. Hoboken: John Wiley & Sons; 2018, p. 1-23.
Rousseau M, Guénard F, Garneau V, Allam-Ndoul B, Lemieux S, Pérusse L, et al. Associations between dietary protein sources, plasma BCAA and short-chain acylcarnitine levels in adults. Nutrients 2019;11(1):E173.
Ruiz M, Labarthe F, Fortier A, Bouchard B, Thompson Legault J, Bolduc V, et al. Circulating acylcarnitine profile in human heart failure: a surrogate of fatty acid metabolic dysregulation in mitochondria and beyond. Am J Physiol Heart Circ Physiol 2017;313(4):H768-H781.
Sainz V, Conniot J, Matos AI, Peres C, Zupančič E, Moura L, et al. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun 2015;468(3):504-510.
Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest 2010;120(1):142-156.
Sánchez-Alcázar JA, Khodjakov A, Schneider E. Anticancer drugs induce increased mitochondrial cytochrome c expression that precedes cell death. Cancer Res 2001;61(3):1038-1044.
Satalkar P, Elger BS, Shaw DM. Defining nano, nanotechnology and nanomedicine: why should it matter? Sci Eng Ethics 2016;22(5):1255-1276.
Sauer SW, Okun JG, Hoffmann GF, Koelker S, Morath MA. Impact of short- and medium-chain organic acids, acylcarnitines, and acyl-CoAs on mitochondrial energy metabolism. Biochim Biophys Acta 2008;1777(10):1276-1282.
Schneider L, Giordano S, Zelickson BR, Johnson MS, Benavides GA, Ouyang X, et al. Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress. Free Radic Biol Med 2011;51(11):2007-2017.
Schönfeld P, Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res 2016;57(6):943-54.
Schooneman MG, Vaz FM, Houten SM, Soeters MR. Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes 2013;62(1):1-8.
Shakeel M, Jabeen F, Shabbir S, Asghar MS, Khan MS, Chaudhry AS. Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review. Biol Trace Elem Res 2016;172(1):1-36.
Shao H, Tang H, Salavaggione OE, Yu C, Hylander B, Tan W, et al. Improved response to nab-paclitaxel compared with cremophor-solubilized paclitaxel is independent of secreted protein acidic and rich in cysteine expression in non-small cell lung cancer. J Thorac Oncol 2011;6(6):998-1005.
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 2017;17(1):20-37.
Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 2015;7(3):219-242.
Steininger PA, Strasser EF, Ziehe B, Eckstein R, Rauh M. Change of the metabolomic profile during short-term mononuclear cell storage. Vox Sang 2017;112(2):163-172.
Stinchcombe TE. Nanoparticle albumin-bound paclitaxel: a novel Cremphor-EL®-free formulation of paclitaxel. Nanomedicine (Lond) 2007;2(4):415-423.
Sturla SJ, Boobis AR, FitzGerald RE, Hoeng J, Kavlock RJ, Schirmer K, et al. Systems toxicology: from basic research to risk assessment. Chem Res Toxicol 2014;27(3):314-329.
Taiwan Food and Drug Administration (TFDA). Labeling for ABRAXANE®. https://www.fda.gov.tw/mlms/H0001D.aspx?Type=Lic&LicId=52026484. Published June 7, 2017. Accessed February 23, 2019.
Tekade RK, Maheshwari R, Soni N, Tekade M, Chougule MB. Nanotechnology for the development of nanomedicine. In: Mishra V, Kesharwani P, Amin MCIM, Iyer A, editors. Nanotechnology-based approaches for targeting and delivery of drugs and genes. 1st ed. Cambridge: Academic Press; 2017, p. 3-61.
Teleanu DM, Negut I, Grumezescu V, Grumezescu AM, Teleanu RI. Nanomaterials for drug delivery to the central nervous system. Nanomaterials (Basel) 2019;9(3):371.
Tinkle S, McNeil SE, Mühlebach S, Bawa R, Borchard G, Barenholz YC, et al. Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci 2014;1313:35-56.
Vader P, Fens MHAM, Sachini N, van Oirschot BA, Andringa G, Egberts ACG, et al. Taxol®-induced phosphatidylserine exposure and microvesicle formation in red blood cells is mediated by its vehicle Cremophor® EL. Nanomedicine (Lond) 2013;8(7):1127-1135.
Veruscka L, Fontana L, Mauriello MC, Iavicoli I. Occupational risk assessment of engineered nanomaterials: limits, challenges and opportunities. Curr Nanosci 2017;13:55-78.
Violante S, Ijlst L, te Brinke H, Tavares de Almeida I, Wanders RJA, Ventura FV, et al. Carnitine palmitoyltransferase 2 and carnitine/acylcarnitine translocase are involved in the mitochondrial synthesis and export of acylcarnitines. FASEB J 2013;27(5):2039-2044.
Virmani A, Pinto L, Bauermann O, Zerelli S, Binienda Z, Ali S, et al. Neuronal carnitine palmitoyl transferase1c in the central nervous system: current visions and perspectives. J Alzheimers Dis Parkinsonism 2013;3(5):132.
Voigt W. Sulforhodamine B assay and chemosensitivity. In: Blumenthal RD, editor. Methods in molecular medicine™. Volume 110: Chemosensitivity: Volume 1: In vitro assays. Totowa: Humana Press; 2005, p. 39-48.
Wang Y, Chen Y, Guan L, Zhang H, Huang Y, Johnson CH, et al. Carnitine palmitoyltransferase 1C regulates cancer cell senescence through mitochondria-associated metabolic reprograming. Cell Death Differ 2018;25(4):733-746.
Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 2016;15(7):473-484.
Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, et al. HMDB 4.0-the human metabolome database for 2018. Nucleic Acids Res 2018;46(D1):D608-D617.
Wolfgang MJ, Kurama T, Dai Y, Suwa A, Asaumi M, Matsumoto S, et al. The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. Proc Natl Acad Sci U S A 2006;103(19):7282-7287.
Woźniak A, Malankowska A, Nowaczyk G, Grześkowiak BF, Tuśnio K, Słomski R, et al. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J Mater Sci Mater Med 2017;28(6):92.
Wu J, Wang Y, Liu G, Jia Y, Yang J, Shi J, et al. Characterization of air-liquid interface culture of A549 alveolar epithelial cells. Braz J Med Biol Res 2018;51(2):e6950.
Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, et al. Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell 2014;158(6):1415-1430.
Xie HR, Hu LS, Li GY. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin Med J (Engl) 2010;123(8):1086-1092.
Yan G, Huang Y, Bu Q, Lv L, Deng P, Zhou J, et al. Zinc oxide nanoparticles cause nephrotoxicity and kidney metabolism alterations in rats. J Environ Sci Health A Tox Hazard Subst Environ Eng 2012;47(4):577-588.
Yang Y, Niu X, Zhang Q, Hao L, Ding Y, Xu H. The efficacy of abraxane on osteosarcoma xenografts in nude mice and expression of secreted protein, acidic and rich in cysteine. Am J Med Sci 2012;344(3):199-205.
Zamboni N, Saghatelian A, Patti GJ. Defining the metabolome: size, flux, and regulation. Mol Cell 2015;58(4):699-706.
Zelezniak A, Sheridan S, Patil KR. Contribution of network connectivity in determining the relationship between gene expression and metabolite concentration changes. PLoS Comput Biol 2014;10(4):e1003572.
Zhang A, Sun H, Xu H, Qiu S, Wang X. Cell metabolomics. OMICS 2013;17(10):495-501.
Zhang W, Zhao Y, Li F, Li L, Feng Y, Min L, et al. Zinc oxide nanoparticle caused plasma metabolomic perturbations correlate with hepatic steatosis. Front Pharmacol 2018;9:57.
Zhao M, Li H, Ma Y, Gong H, Yang S, Fang Q, et al. Nanoparticle abraxane possesses impaired proliferation in A549 cells due to the underexpression of glucosamine 6-phosphate N-acetyltransferase I (GNPNAT I/GNAI). Int J Nanomedicine 2017;12:1685-1697.
Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol 2019. doi:10.1038/s41580-019-0123-5.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78750-
dc.description.abstract紫杉醇 (paclitaxel) 常用於治療非小細胞肺癌、乳癌、與卵巢癌等,由於溶解度低,傳統劑型以polyoxyl 35 castor oil為主要溶媒,可能引起嚴重的過敏反應與周邊神經病變。以白蛋白包覆紫杉醇製成奈米劑型 (nab-paclitaxel),除了減少過敏反應,亦提升療效,但對周邊神經病變的影響尚無定論。為了解奈米劑型對療效及安全性影響之潛在原因,本研究以人類非小細胞肺癌細胞株 (A549細胞株) 及神經母細胞瘤細胞株 (SH-SY5Y 細胞株) 為研究對象,利用質譜儀分析比較奈米劑型 (Abraxane®) 與傳統劑型 (Phyxol) 對細胞代謝物之影響,並探討影響代謝物含量變化之機轉。
Sulforhodamine B (SRB) assay結果顯示paclitaxel、Phyxol、及Abraxane®於本研究測試條件下,對A549細胞存活率之影響未有顯著差異。考量臨床使用下之血中濃度範圍及致使大約50%細胞存活率之濃度,選擇給藥時間為24小時且投予濃度為100 nM的條件進行後續研究。以質譜儀分析代謝物含量,Phyxol及Abraxane®對A549細胞carnitine及部分acylcarnitines的含量影響具顯著差異 (P < 0.05)。由於carnitine及acylcarnitines與長鏈脂肪酸氧化相關,故分析長鏈脂肪酸含量變化。結果顯示palmitic acid與linoleic acid含量在Abraxane®處理的A549細胞中較以Phyxol處理者上升幅度較高 (P < 0.05)。由於carnitine和長鏈脂肪酸為carnitine palmitoyltransferase 1 (CPT1) 的受質,而acylcarnitines為產物,因此利用西方點墨法檢測A549細胞株表現之兩種CPT1亞型的含量變化。雖然蛋白質表現量變化於加藥組間並無顯著差異,然而,給予Phyxol者之CPT1活性較其他加藥組低,可能與其acylcarnitines上升幅度較其他加藥組低相關。給予Phyxol者之medium-chain acyl-CoA dehydrogenase (MCAD) 之表現量較其他加藥組低,可能因此使其octanoylcarnitine含量上升幅度較其他加藥組大。
SRB assay結果顯示以paclitaxel、Phyxol、及Abraxane® 濃度100 nM給藥24小時,對分化或未分化SH-SY5Y細胞存活率之影響皆未有顯著差異。以質譜儀分析代謝物含量,Phyxol及Abraxane®對未分化SH-SY5Y細胞carnitine及部分acylcarnitines的含量影響具顯著差異,但對分化SH-SY5Y細胞僅少數acylcarnitines含量變化具顯著差異。分析長鏈脂肪酸結果顯示,未分化SH-SY5Y細胞中具顯著變化差異的長鏈脂肪酸數目比分化SH-SY5Y細胞多,且於未分化SH-SY5Y細胞中,以Abraxane®處理者之長鏈脂肪酸含量較以Phyxol處理者高。由西方點墨法結果顯示,以Abraxane®及Phyxol處理分化或未分化SH-SY5Y細胞,CPT1C含量皆無顯著差異。
Carnitine之重要功能為促使長鏈脂肪酸進入粒線體進行氧化,此氧化過程為癌細胞生存之關鍵。研究結果顯示,紫杉醇奈米劑型,不僅避免使用與過敏反應相關之油性溶劑,其影響A549細胞及SH-SY5Y細胞能量代謝之程度,亦與傳統劑型相異。奈米劑型臨床療效較傳統劑型提升,可能與此能量代謝之影響差異相關。由分化與未分化SH-SY5Y細胞之代謝物含量變化差異,推測紫杉醇奈米劑型與傳統劑型於神經分化程度不同時影響程度相異。
綜上所述,由紫杉醇奈米劑型與傳統劑型對A549細胞與分化或未分化SH-SY5Y細胞造成的影響顯示,兩者脂肪酸氧化程度不同,且因細胞而異。相關詳細機制及此能量代謝途徑對療效和安全性之影響,值得進一步研究探討。
zh_TW
dc.description.abstractPaclitaxel is commonly used for the treatment of non-small cell lung cancer, ovarian cancer, and breast cancer. Due to low solubility of paclitaxel, polyoxyl 35 castor oil is utilized as the main solvent in the traditional formulation, which may induce severe hypersensitivity reactions and peripheral neuropathy. The paclitaxel formulated as albumin-bound nanoparticles (nab-paclitaxel) was developed for mitigating hypersensitivity reactions related to the solvent. Improved efficacy has also been reported, however, diverse findings regarding peripheral neuropathy were presented. In order to investigate the potential reasons of the impact on efficacy and safety exerted by nanoparticle formulations, the human non-small cell lung cancer cell line, A549 cells, and the human neuroblastoma cell line, SH-SY5Y cells, were used in the present study. The mass spectrometry study was conducted for the comparison between the nanoparticle formulation, Abraxane®, and the traditional formulation, Phyxol, with respect to altered levels of cell metabolites, and the related mechanisms were further investigated.
No significant difference of cell viability evaluated by sulforhodamine B (SRB) assay was found in paclitaxel, Phyxol, and Abraxane®-treated A549 cells at the test conditions of the present study. Considering the range of serum concentrations of paclitaxel in clinical use and the concentration resulting in approximately 50% of cell growth inhibition, the concentration of 100 nM and the treatment period of 24 hours were selected for subsequent studies. Fold changes normalized to the control group for the levels of carnitine and some acylcarnitines were significantly different (P < 0.05) between A549 cells treated with Phyxol and Abraxane® analyzed by mass spectrometry. Since carnitine and acylcarnitines are related to long-chain fatty acid oxidation, levels of long-chain fatty acids were analyzed. The increase in the levels of palmitic acid and linoleic acid in A549 cells treated with Abraxane® were significantly higher (P < 0.05) than that treated with Phyxol. Carnitine and long-chain fatty acids are the substrates of carnitine palmitoyltransferase 1 (CPT1), and acylcarnitines are the products. Therefore, western blots were utilized to test the level changes of the two subtypes of CPT1 expressed in A549 cells. Although no significant difference was found in the protein level changes between treatment groups, the CPT1 activity was lower in A549 cells treated with Phyxol in comparison with other treatment groups, which might be related to the less increase in the levels of acylcarnitines. Moreover, the protein level of medium-chain acyl-CoA dehydrogenase (MCAD) was lower in A549 cells treated with Phyxol in comparison with other treatment groups, which might contribute to the greater increase in the level of octanoylcarnitine.
SRB assay results revealed no significant difference in undifferentiated and differentiated SH-SY5Y cells between treatments of 100 nM of paclitaxel, Phyxol, and Abraxane® for 24 hours. Levels of carnitine and some acylcarnitines were significantly affected in undifferentiated SH-SY5Y cells due to Phyxol and Abraxane® treatments analyzed by mass spectrometry. However, for differentiated SH-SY5Y cells, few acylcarnitines were significantly influenced. The number of long-chain fatty acids with significantly altered levels in undifferentiated SH-SY5Y cells was higher than that in differentiated SH-SY5Y cells. Levels of long-chain fatty acids in undifferentiated SH-SY5Y cells treated with Abraxane® were higher than that treated with Phyxol. Western blots showed that levels of CPT1C were not significantly different between SH-SY5Y cells treated with Phyxol and that with Abraxane®, either undifferentiated and differentiated.
The important function of carnitine is to promote the entry of long-chain fatty acids into mitochondria for oxidation, which is a key to survival for cancer cells. Results demonstrated that nab-paclitaxel not only eliminates the use of the lipophilic solvent related to hypersensitivity, but also affects energy metabolism in A549 cells and SH-SY5Y cells to an extent different from that induced by the traditional formulation. The higher clinical efficacy of nab-paclitaxel may be due to the different effects on energy metabolism. The varied levels of metabolites in differentiated and undifferentiated SH-SY5Y cells suggested the different impact of nab-paclitaxel and the traditional formulation on SH-SY5Y cells with diverse differentiation extents.
In summary, the effects of nab-paclitaxel and the traditional formulation on A549 cells and undifferentiated or differentiated SH-SY5Y cells revealed the difference in the extent of fatty acid oxidation between the two formulations, which was also dependent on cell lines. The related detailed mechanisms and the influence of the pathways of energy metabolism on efficacy and safety are worth further investigation.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:16:44Z (GMT). No. of bitstreams: 1
ntu-108-R06423008-1.pdf: 3584313 bytes, checksum: d64633e345e6f115ced52d9893941278 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 ⅰ
致謝 ii
中文摘要 iv
Abstract vi
第一章 簡介 1
1.1 奈米科技發展現況 1
1.2 奈米科技在醫學發展的應用 2
1.2.1 奈米醫學 2
1.2.2 奈米藥物發展的挑戰 2
1.3 奈米劑型改變的影響 4
1.4 體學 (omics) 於評估奈米粒子對生物體影響的應用 5
1.5 代謝體學 6
1.5.1 代謝體學簡介 6
1.5.2 代謝體學技術平台 7
1.5.3 細胞代謝體學 7
1.5.4 細胞代謝體學操作流程 8
1.6 紫杉醇與其製劑 9
1.6.1 紫杉醇與傳統製劑 9
1.6.2 紫杉醇奈米製劑 9
1.6.3 現今研究中紫杉醇與其製劑之比較 10
1.7 A549細胞株與SH-SY5Y細胞株 11
1.8 使用生化方法驗證代謝體學結果 12
第二章 研究目的 14
第三章 材料與實驗方法 15
3.1 實驗藥品與試劑 15
3.2 細胞培養 21
3.2.1 人類非小細胞肺癌細胞株 (A549細胞株) 21
3.2.2 人類神經母細胞瘤細胞株 (SH-SY5Y細胞株) 21
3.2.2.1 繼代培養 22
3.2.2.2 分化 22
3.3 細胞存活率試驗 22
3.4 Abraxane®的粒徑及Z界面電位分析 23
3.5 以質譜儀進行細胞代謝體分析實驗 24
3.5.1 樣品準備 24
3.5.2 樣品萃取 24
3.5.3 樣品濃度標準化 25
3.5.4 利用液相層析四極飛行時間質譜儀進行細胞代謝體輪廓分析 25
3.5.5 利用液相層析三段四極質譜儀進行目標代謝物定量分析 26
3.5.6 資料處理 27
3.6 利用西方點墨法進行蛋白質含量分析 27
3.6.1 樣品準備 27
3.6.2 蛋白質濃度檢測 28
3.6.3 蛋白質電泳分析 28
3.6.4 蛋白質轉漬 29
3.6.5 免疫顯色 30
3.7 脂肪酸分析實驗 30
3.7.1 樣品準備 30
3.7.2 樣品萃取 31
3.7.3 樣品濃度標準化 31
3.7.4 利用液相層析四極飛行時間質譜儀分析長鏈脂肪酸 32
3.7.5 資料處理 33
3.8 粒線體樣品製備及carnitine palmitoyltransferase 1 (CPT1) 活性測試 33
3.8.1 樣品準備 33
3.8.2 粒線體分離萃取 33
3.8.3 CPT1活性測定 34
3.8.4 蛋白質濃度檢測 35
3.9 統計分析 35
第四章 實驗結果 36
4.1 第一部分、以人類非小細胞肺癌細胞株 (A549細胞株) 為研究對象 36
4.1.1 Paclitaxel、Phyxol、及Abraxane®對A549細胞株的細胞存活率影響 36
4.1.2 Abraxane®於各測試條件下之粒徑、多分散性指數、及Z界面電位 37
4.1.3 Paclitaxel、Phyxol、及Abraxane®對A549細胞株代謝物之影響 37
4.1.3.1 細胞樣品濃度標準化 38
4.1.3.2 以UHPLC-QTOFMS質譜儀分析代謝物變化 38
4.1.3.3 以UHPLC-QqQMS質譜儀分析carnitine及acylcarnitines類之代謝物變化 39
4.1.4 Paclitaxel、Phyxol、及Abraxane®對A549細胞株的carnitine palmitoyltransferase 1C (CPT1C) 表現量之影響 40
4.1.5 Paclitaxel、Phyxol、及Abraxane®對A549細胞株的carnitine palmitoyltransferase 1A (CPT1A) 表現量之影響 40
4.1.6 Paclitaxel、Phyxol、及Abraxane®對A549細胞株的長鏈脂肪酸代謝物影響 40
4.1.6.1 細胞樣品濃度標準化 41
4.1.6.2 以UHPLC-QTOFMS質譜儀分析長鏈脂肪酸代謝物變化 41
4.1.7 Paclitaxel、Phyxol、及Abraxane®對A549細胞株的medium-chain acyl-CoA dehydrogenase (MCAD) 表現量之影響 42
4.1.8 Paclitaxel、Phyxol、及Abraxane®對A549細胞株粒線體的cytochrome c表現量之影響 42
4.1.9 A549細胞株粒線體中的carnitine palmitoyltransferase 1 (CPT1) 於投予paclitaxel、Phyxol、或Abraxane®後活性的變化 43
4.1.10 Paclitaxel、Phyxol、及Abraxane®對A549細胞株粒線體的medium-chain acyl-CoA dehydrogenase (MCAD) 表現量之影響 44
4.1.11 Paclitaxel、Phyxol、及Abraxane®對A549細胞株粒線體的carnitine palmitoyltransferase 1A (CPT1A) 表現量之影響 44
4.2 第二部分、以SH-SY5Y人類神經母細胞瘤細胞株 (SH-SY5Y細胞株) 為研究對象 45
4.2.1 未分化的SH-SY5Y細胞株 45
4.2.1.1 Paclitaxel、Phyxol、及Abraxane®對未分化的SH-SY5Y細胞株的細胞存活率影響 45
4.2.1.2 Paclitaxel、Phyxol、及Abraxane®對未分化的SH-SY5Y細胞株代謝物之影響 45
4.2.1.2.1 細胞樣品濃度標準化 46
4.2.1.2.2 以UHPLC-QTOFMS質譜儀分析代謝物變化 46
4.2.1.2.3 以UHPLC-QqQMS質譜儀分析carnitine及acylcarnitines類之代謝物變化 47
4.2.1.3 Paclitaxel、Phyxol、及Abraxane®對未分化的SH-SY5Y細胞株的carnitine palmitoyltransferase 1C (CPT1C) 表現量之影響 48
4.2.1.4 Paclitaxel、Phyxol、及Abraxane®對未分化的SH-SY5Y細胞株的長鏈脂肪酸代謝物影響 48
4.2.1.4.1 細胞樣品濃度標準化 49
4.2.1.4.2 以UHPLC-QTOFMS質譜儀分析長鏈脂肪酸代謝物變化 49
4.2.2 已分化的SH-SY5Y細胞株 50
4.2.2.1 Paclitaxel、Phyxol、及Abraxane®對已分化的SH-SY5Y細胞株的細胞存活率影響 50
4.2.2.2 Paclitaxel、Phyxol、及Abraxane®對已分化的SH-SY5Y細胞株代謝物之影響 50
4.2.2.2.1 細胞樣品濃度標準化 50
4.2.2.2.2 以UHPLC-QTOFMS質譜儀分析代謝物變化 51
4.2.2.2.3 以UHPLC-QqQMS質譜儀分析carnitine及acylcarnitines類之代謝物變化 51
4.2.2.3 Paclitaxel、Phyxol、及Abraxane®對已分化的SH-SY5Y細胞株的carnitine palmitoyltransferase 1C (CPT1C) 表現量之影響 52
4.2.2.4 Paclitaxel、Phyxol、及Abraxane®對已分化的SH-SY5Y細胞株的長鏈脂肪酸代謝物影響 53
4.2.2.4.1 細胞樣品濃度標準化 53
4.2.2.4.2 以UHPLC-QTOFMS質譜儀分析長鏈脂肪酸代謝物變化 54
第五章 討論 55
5.1 紫杉醇 (paclitaxel) (以DMSO溶解)、含Cremophor® EL的紫杉醇傳統製劑 (Phyxol) 及Abraxane® (紫杉醇奈米劑型) 對A549細胞株及未分化與有分化的SH-SY5Y細胞株細胞存活率之影響 55
5.2 紫杉醇、含Cremophor® EL的紫杉醇傳統製劑、及Abraxane® (紫杉醇奈米劑型) 對已分化的SH-SY5Y細胞株細胞存活率幾無影響 55
5.3 A549細胞株、未分化與分化的SH-SY5Y細胞株在給予紫杉醇、含Cremophor® EL的紫杉醇傳統製劑、及Abraxane® (紫杉醇奈米劑型) 後的carnitine、acylcarnitines、及長鏈脂肪酸代謝物含量變化 56
5.3.1 肉鹼 (carnitine) 及短鏈acylcarnitines 56
5.3.2 中鏈acylcarnitines 57
5.3.3 長鏈acylcarnitines與長鏈脂肪酸 58
5.4 A549細胞株、未分化與有分化的SH-SY5Y細胞株在給予紫杉醇、含Cremophor® EL的紫杉醇傳統製劑、及Abraxane® (紫杉醇奈米劑型) 後的carnitine palmitoyltransferase 1 (CPT1) 表現量之影響 60
5.5 整體結果的綜合討論 61
5.6 本研究的限制 62
第六章 結論 63
參考文獻 122
dc.language.isozh-TW
dc.title奈米劑型紫杉醇對非小細胞肺癌與神經母細胞瘤細胞株的代謝影響研究zh_TW
dc.titleStudy on the Impact of Nab-Paclitaxel on the Metabolic Profiles of Non-Small Cell Lung Cancer Cells and Neuroblastoma Cellsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor郭錦樺(Ching-Hua Kuo)
dc.contributor.oralexamcommittee孔繁璐,施金元
dc.subject.keyword肉鹼,細胞代謝體學,長鏈脂肪酸,奈米粒子,紫杉醇,zh_TW
dc.subject.keywordcarnitine,cell metabolomics,long-chain fatty acids,nanoparticles,paclitaxel,en
dc.relation.page139
dc.identifier.doi10.6342/NTU201901870
dc.rights.note有償授權
dc.date.accepted2019-07-24
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
dc.date.embargo-lift2024-08-28-
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-108-R06423008-1.pdf
  目前未授權公開取用
3.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved