Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78742
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳光超zh_TW
dc.contributor.advisorGuang-Chao Chenen
dc.contributor.author歐陽嘉璟zh_TW
dc.contributor.authorCHIA-CHING OU YANGen
dc.date.accessioned2021-07-11T15:16:07Z-
dc.date.available2024-08-01-
dc.date.copyright2019-08-05-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citationAdeva-Andany, M.M., Gonzalez-Lucan, M., Donapetry-Garcia, C., Fernandez-Fernandez, C., and Ameneiros-Rodriguez, E. (2016). Glycogen metabolism in humans. BBA Clin 5, 85-100.
Amick, J., Roczniak-Ferguson, A., and Ferguson, S.M. (2016). C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling. Mol Biol Cell 27, 3040-3051.
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25, 25-29.
Bar-Peled, L., Schweitzer, L.D., Zoncu, R., and Sabatini, D.M. (2012). Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196-1208.
Behnia, R., and Munro, S. (2005). Organelle identity and the signposts for membrane traffic. Nature 438, 597-604.
Bonifacino, J.S., and Rojas, R. (2006). Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol 7, 568-579.
Branon, T.C., Bosch, J.A., Sanchez, A.D., Udeshi, N.D., Svinkina, T., Carr, S.A., Feldman, J.L., Perrimon, N., and Ting, A.Y. (2018). Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol 36, 880-887.
Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., Clark, N.R., and Ma'ayan, A. (2013). Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128.
Cho, C.Y., Koo, S.H., Wang, Y., Callaway, S., Hedrick, S., Mak, P.A., Orth, A.P., Peters, E.C., Saez, E., Montminy, M., et al. (2006). Identification of the tyrosine phosphatase PTP-MEG2 as an antagonist of hepatic insulin signaling. Cell Metab 3, 367-378.
Corrionero, A., and Horvitz, H.R. (2018). A C9orf72 ALS/FTD Ortholog Acts in Endolysosomal Degradation and Lysosomal Homeostasis. Curr Biol 28, 1522-1535 e1525.
De Leo, M.G., Staiano, L., Vicinanza, M., Luciani, A., Carissimo, A., Mutarelli, M., Di Campli, A., Polishchuk, E., Di Tullio, G., Morra, V., et al. (2016). Autophagosome-lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCRL. Nat Cell Biol 18, 839-850.
De Matteis, M.A., Staiano, L., Emma, F., and Devuyst, O. (2017). The 5-phosphatase OCRL in Lowe syndrome and Dent disease 2. Nat Rev Nephrol 13, 455-470.
Dibble, C.C., Elis, W., Menon, S., Qin, W., Klekota, J., Asara, J.M., Finan, P.M., Kwiatkowski, D.J., Murphy, L.O., and Manning, B.D. (2012). TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 47, 535-546.
Du, W.W., Fang, L., Li, M., Yang, X., Liang, Y., Peng, C., Qian, W., O'Malley, Y.Q., Askeland, R.W., Sugg, S.L., et al. (2013). MicroRNA miR-24 enhances tumor invasion and metastasis by targeting PTPN9 and PTPRF to promote EGF signaling. J Cell Sci 126, 1440-1453.
Ghosh, P., Dahms, N.M., and Kornfeld, S. (2003). Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 4, 202-212.
Harterink, M., Port, F., Lorenowicz, M.J., McGough, I.J., Silhankova, M., Betist, M.C., van Weering, J.R.T., van Heesbeen, R., Middelkoop, T.C., Basler, K., et al. (2011). A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol 13, 914-923.
Hesketh, G.G., Perez-Dorado, I., Jackson, L.P., Wartosch, L., Schafer, I.B., Gray, S.R., McCoy, A.J., Zeldin, O.B., Garman, E.F., Harbour, M.E., et al. (2014). VARP is recruited on to endosomes by direct interaction with retromer, where together they function in export to the cell surface. Dev Cell 29, 591-606.
Hong, Y., Liang, H., Uzair Ur, R., Wang, Y., Zhang, W., Zhou, Y., Chen, S., Yu, M., Cui, S., Liu, M., et al. (2016). miR-96 promotes cell proliferation, migration and invasion by targeting PTPN9 in breast cancer. Sci Rep 6, 37421.
Huynh, H., Bottini, N., Williams, S., Cherepanov, V., Musumeci, L., Saito, K., Bruckner, S., Vachon, E., Wang, X., Kruger, J., et al. (2004). Control of vesicle fusion by a tyrosine phosphatase. Nat Cell Biol 6, 831-839.
Huynh, H., Wang, X., Li, W., Bottini, N., Williams, S., Nika, K., Ishihara, H., Godzik, A., and Mustelin, T. (2003). Homotypic secretory vesicle fusion induced by the protein tyrosine phosphatase MEG2 depends on polyphosphoinositides in T cells. J Immunol 171, 6661-6671.
Ishikawa, H., and Marshall, W.F. (2011). Ciliogenesis: building the cell's antenna. Nat Rev Mol Cell Biol 12, 222-234.
Itoh, T., Kanno, E., Uemura, T., Waguri, S., and Fukuda, M. (2011). OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J Cell Biol 192, 839-853.
Jia, D., Zhang, J.S., Li, F., Wang, J., Deng, Z., White, M.A., Osborne, D.G., Phillips-Krawczak, C., Gomez, T.S., Li, H., et al. (2016). Structural and mechanistic insights into regulation of the retromer coat by TBC1d5. Nat Commun 7, 13305.
Jiang, S., Heller, B., Tagliabracci, V.S., Zhai, L., Irimia, J.M., DePaoli-Roach, A.A., Wells, C.D., Skurat, A.V., and Roach, P.J. (2010). Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. J Biol Chem 285, 34960-34971.
Jiang, S., Wells, C.D., and Roach, P.J. (2011). Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem Biophys Res Commun 413, 420-425.
Jimenez-Orgaz, A., Kvainickas, A., Nagele, H., Denner, J., Eimer, S., Dengjel, J., and Steinberg, F. (2018). Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. EMBO J 37, 235-254.
Johannes, L., and Popoff, V. (2008). Tracing the retrograde route in protein trafficking. Cell 135, 1175-1187.
Jung, J., Nayak, A., Schaeffer, V., Starzetz, T., Kirsch, A.K., Muller, S., Dikic, I., Mittelbronn, M., and Behrends, C. (2017). Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator. Elife 6.
Kaewsapsak, P., Shechner, D.M., Mallard, W., Rinn, J.L., and Ting, A.Y. (2017). Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking. Elife 6.
Kim, D.I., Jensen, S.C., Noble, K.A., Kc, B., Roux, K.H., Motamedchaboki, K., and Roux, K.J. (2016). An improved smaller biotin ligase for BioID proximity labeling. Mol Biol Cell 27, 1188-1196.
Kim, D.I., and Roux, K.J. (2016). Filling the Void: Proximity-Based Labeling of Proteins in Living Cells. Trends Cell Biol 26, 804-817.
Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S.L., Jagodnik, K.M., Lachmann, A., et al. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44, W90-97.
Lam, S.S., Martell, J.D., Kamer, K.J., Deerinck, T.J., Ellisman, M.H., Mootha, V.K., and Ting, A.Y. (2015). Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods 12, 51-54.
Liu, Z., Sun, F., Hong, Y., Liu, Y., Fen, M., Yin, K., Ge, X., Wang, F., Chen, X., and Guan, W. (2017). MEG2 is regulated by miR-181a-5p and functions as a tumour suppressor gene to suppress the proliferation and migration of gastric cancer cells. Mol Cancer 16, 133.
Lobingier, B.T., Huttenhain, R., Eichel, K., Miller, K.B., Ting, A.Y., von Zastrow, M., and Krogan, N.J. (2017). An Approach to Spatiotemporally Resolve Protein Interaction Networks in Living Cells. Cell 169, 350-360 e312.
Longatti, A., Lamb, C.A., Razi, M., Yoshimura, S., Barr, F.A., and Tooze, S.A. (2012). TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J Cell Biol 197, 659-675.
Lu, Q., Insinna, C., Ott, C., Stauffer, J., Pintado, P.A., Rahajeng, J., Baxa, U., Walia, V., Cuenca, A., Hwang, Y.S., et al. (2015). Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat Cell Biol 17, 531.
Lucas, M., Gershlick, D.C., Vidaurrazaga, A., Rojas, A.L., Bonifacino, J.S., and Hierro, A. (2016). Structural Mechanism for Cargo Recognition by the Retromer Complex. Cell 167, 1623-1635 e1614.
Luo, N., West, C.C., Murga-Zamalloa, C.A., Sun, L., Anderson, R.M., Wells, C.D., Weinreb, R.N., Travers, J.B., Khanna, H., and Sun, Y. (2012). OCRL localizes to the primary cilium: a new role for cilia in Lowe syndrome. Hum Mol Genet 21, 3333-3344.
Malicki, J.J., and Johnson, C.A. (2017). The Cilium: Cellular Antenna and Central Processing Unit. Trends Cell Biol 27, 126-140.
Mao, Y., Balkin, D.M., Zoncu, R., Erdmann, K.S., Tomasini, L., Hu, F., Jin, M.M., Hodsdon, M.E., and De Camilli, P. (2009). A PH domain within OCRL bridges clathrin-mediated membrane trafficking to phosphoinositide metabolism. EMBO J 28, 1831-1842.
Martell, J.D., Deerinck, T.J., Sancak, Y., Poulos, T.L., Mootha, V.K., Sosinsky, G.E., Ellisman, M.H., and Ting, A.Y. (2012). Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol 30, 1143-1148.
Nachury, M.V., Loktev, A.V., Zhang, Q., Westlake, C.J., Peranen, J., Merdes, A., Slusarski, D.C., Scheller, R.H., Bazan, J.F., Sheffield, V.C., et al. (2007). A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201-1213.
Paek, J., Kalocsay, M., Staus, D.P., Wingler, L., Pascolutti, R., Paulo, J.A., Gygi, S.P., and Kruse, A.C. (2017). Multidimensional Tracking of GPCR Signaling via Peroxidase-Catalyzed Proximity Labeling. Cell 169, 338-349 e311.
Popovic, D., Akutsu, M., Novak, I., Harper, J.W., Behrends, C., and Dikic, I. (2012). Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol Cell Biol 32, 1733-1744.
Popovic, D., and Dikic, I. (2014). TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep 15, 392-401.
Qi, Y., Zhao, R., Cao, H., Sui, X., Krantz, S.B., and Zhao, Z.J. (2002). Purification and characterization of protein tyrosine phosphatase PTP-MEG2. J Cell Biochem 86, 79-89.
Reinhard, J., Wiemann, S., Joachim, S.C., Palmhof, M., Woestmann, J., Denecke, B., Wang, Y., Downey, G.P., and Faissner, A. (2019). Heterozygous Meg2 Ablation Causes Intraocular Pressure Elevation and Progressive Glaucomatous Neurodegeneration. Mol Neurobiol 56, 4322-4345.
Roux, K.J., Kim, D.I., Raida, M., and Burke, B. (2012). A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196, 801-810.
Roy, S., Leidal, A.M., Ye, J., Ronen, S.M., and Debnath, J. (2017). Autophagy-Dependent Shuttling of TBC1D5 Controls Plasma Membrane Translocation of GLUT1 and Glucose Uptake. Mol Cell 67, 84-95 e85.
Saito, K., Williams, S., Bulankina, A., Honing, S., and Mustelin, T. (2007). Association of protein-tyrosine phosphatase MEG2 via its Sec14p homology domain with vesicle-trafficking proteins. J Biol Chem 282, 15170-15178.
Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A.L., Nada, S., and Sabatini, D.M. (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303.
Seaman, M.N., Harbour, M.E., Tattersall, D., Read, E., and Bright, N. (2009). Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. J Cell Sci 122, 2371-2382.
Sellier, C., Campanari, M.L., Julie Corbier, C., Gaucherot, A., Kolb-Cheynel, I., Oulad-Abdelghani, M., Ruffenach, F., Page, A., Ciura, S., Kabashi, E., et al. (2016). Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO J 35, 1276-1297.
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498-2504.
Shin, J.J.H., Gillingham, A.K., Begum, F., Chadwick, J., and Munro, S. (2017). TBC1D23 is a bridging factor for endosomal vesicle capture by golgins at the trans-Golgi. Nat Cell Biol 19, 1424-1432.
Steinberg, F., Gallon, M., Winfield, M., Thomas, E.C., Bell, A.J., Heesom, K.J., Tavare, J.M., and Cullen, P.J. (2013). A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat Cell Biol 15, 461-471.
Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10, 513-525.
Su, F., Ren, F., Rong, Y., Wang, Y., Geng, Y., Wang, Y., Feng, M., Ju, Y., Li, Y., Zhao, Z.J., et al. (2012). Protein tyrosine phosphatase Meg2 dephosphorylates signal transducer and activator of transcription 3 and suppresses tumor growth in breast cancer. Breast Cancer Res 14, R38.
Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., et al. (2015). STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43, D447-452.
Ugolino, J., Ji, Y.J., Conchina, K., Chu, J., Nirujogi, R.S., Pandey, A., Brady, N.R., Hamacher-Brady, A., and Wang, J. (2016). Loss of C9orf72 Enhances Autophagic Activity via Deregulated mTOR and TFEB Signaling. PLoS Genet 12, e1006443.
Uhlen, M., Oksvold, P., Fagerberg, L., Lundberg, E., Jonasson, K., Forsberg, M., Zwahlen, M., Kampf, C., Wester, K., Hober, S., et al. (2010). Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 28, 1248-1250.
Vicinanza, M., Di Campli, A., Polishchuk, E., Santoro, M., Di Tullio, G., Godi, A., Levtchenko, E., De Leo, M.G., Polishchuk, R., Sandoval, L., et al. (2011). OCRL controls trafficking through early endosomes via PtdIns4,5P(2)-dependent regulation of endosomal actin. EMBO J 30, 4970-4985.
Wang, X., Huynh, H., Gjorloff-Wingren, A., Monosov, E., Stridsberg, M., Fukuda, M., and Mustelin, T. (2002). Enlargement of secretory vesicles by protein tyrosine phosphatase PTP-MEG2 in rat basophilic leukemia mast cells and Jurkat T cells. J Immunol 168, 4612-4619.
Wang, Y., Vachon, E., Zhang, J., Cherepanov, V., Kruger, J., Li, J., Saito, K., Shannon, P., Bottini, N., Huynh, H., et al. (2005). Tyrosine phosphatase MEG2 modulates murine development and platelet and lymphocyte activation through secretory vesicle function. J Exp Med 202, 1587-1597.
Yang, M., Liang, C., Swaminathan, K., Herrlinger, S., Lai, F., Shiekhattar, R., and Chen, J.F. (2016). A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy. Sci Adv 2, e1601167.
Ying, D., Ruan, Y., and Zhou, X. (2019). MEG2 inhibits the growth and metastasis of hepatocellular carcinoma by inhibiting AKT pathway. Gene 687, 1-8.
Yuan, T., Wang, Y., Zhao, Z.J., and Gu, H. (2010). Protein-tyrosine phosphatase PTPN9 negatively regulates ErbB2 and epidermal growth factor receptor signaling in breast cancer cells. J Biol Chem 285, 14861-14870.
Zhang, D., Marlin, M.C., Liang, Z., Ahmad, M., Ashpole, N.M., Sonntag, W.E., Zhao, Z.J., and Li, G. (2016). The Protein Tyrosine Phosphatase MEG2 Regulates the Transport and Signal Transduction of Tropomyosin Receptor Kinase A. J Biol Chem 291, 23895-23905.
Zhang, S., Liu, S., Tao, R., Wei, D., Chen, L., Shen, W., Yu, Z.H., Wang, L., Jones, D.R., Dong, X.C., et al. (2012). A highly selective and potent PTP-MEG2 inhibitor with therapeutic potential for type 2 diabetes. J Am Chem Soc 134, 18116-18124.
Zirin, J., Nieuwenhuis, J., and Perrimon, N. (2013). Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. PLoS Biol 11, e1001708.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78742-
dc.description.abstractPTPN9是一種非受體型蛋白酪氨酸磷酸酶。PTPN9和其他蛋白酪氨酸磷酸酶最大的不同在於PTPN9擁有一個CRAL-TRIO脂質結合結構域。之前的研究指出,PTPN9能夠調控生物體對於胰島素的反應性,或者是在免疫系統中扮演一個重要的角色。儘管如此,PTPN9的生理地位仍未被定義清楚,因為PTPN9的受質並沒有被好好地探索。鄰近標記的發明是為了提供一個更好的,來取代傳統上用來解析某個特定空間中的蛋白質體或是研究蛋白質相互作用的方法,像是共免疫沈澱法。在這篇研究中,我們利用BioID2去做鄰近標記來找尋PTPN9的潛在相互作用者。PTPN9和非專一性生物素連接酶BioID2融合之後,位在PTPN9周圍的蛋白就能被BioID2標記上生物素。並利用鏈霉親和素蛋白來分離被標記上生物素的蛋白,再用質譜法去辨認在PTPN9周圍的是哪些種類的蛋白。最重要的是,根據我們實驗結果的生物資訊分析進一步證明PTPN9在膜運輸中扮演著重要的角色。此外,我們還找到了幾種PTPN9的受質,例如TBC1D5,並指出PTPN9可能參與高基式體和胞內體系統間物質的運輸,纖毛和Retromer調控的胞內物質分選。zh_TW
dc.description.abstractPTPN9, one of non-receptor type protein tyrosine phosphatases (PTPs), is distinct from other PTPs due to the CRAL-TRIO lipid binding domain at the N terminus. This tyrosine phosphatase was reported to be involved in insulin responsiveness and immune system.Despite these, the physiological roles of PTPN9 have remained poorly characterized because the substrates of PTPN9 have not yet been explored well. Proximity labeling has emerged as an alternative to traditional approaches for the investigation of spatially resolved proteomes or protein-protein interactions (PPIs) in living cells. Here we exploit BioID2-dependent proximity labeling to investigate the potential interactors of PTPN9. The proteins in the proximity of PTPN9 are labeled with biotin by fusing PTPN9 with the promiscuous biotin ligase, BioID2. These biotinylated proteins could be captured by streptavidin and identified using mass spectrometry. Most importantly, bioinformatic analysis based on our proximity labeling data further reveals that PTPN9 plays a pivotal role in membrane trafficking.
Additionally, we also validated several PTPN9 substrates, such as TBC1D5 and indicated that PTPN9 may be involved in Golgi-endosomal system transport, cilia and retromer-dependent cargo sorting.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:16:07Z (GMT). No. of bitstreams: 1
ntu-108-R06b46009-1.pdf: 3703407 bytes, checksum: 6306b4083a86e98f58d633b0b153f871 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents中文摘要 I
ABSTRACT II
1. INTRODUCTION 3
1.1 Proximity labeling 3
1.2 BioID2 4
1.3 PTPN9 5
1.4 Enrichr 7
1.5 Membrane trafficking 8
1.6 Motivation 9
2. MATERIAL AND METHOD 10
3. RESULTS 16
3.1 BioID2 allows of specific biotin labeling to proximate proteins of PTPN9 16
3.2 BioID2 proximity labeling reveals the involvement of PTPN9 in membrane trafficking 17
3.3 TBC1D5 is one substrate of PTPN9 18
3.4 Several lysosome-related proteins are potential substrates of PTPN9 19
3.5 PTPN9 may be involved in Golgi-endosomal system transport 21
3.6 PTPN9 may mediate ciliary trafficking during ciliogenesis 22
3.7 PTPN9 may inhibit GLUT1 translocalization under glucose depletion 23
4. DISCUSSION 24
5. FIGURES 29
Figure 1. BioID2 allows of specific biotin labeling to proximate proteins of PTPN9 29
Figure 2. Investigation of PTPN9 interactome by BioID2-dependent proximity labeling 31
Figure 3. Bioinformatic analysis reveals the involvement of PTPN9 in vesicle-mediated transport 32
Figure 4. TBC1D5 is the substrate of PTPN9 35
Figure 5. Several lysosome-related proteins are potential substrates of PTPN9 40
Figure 6. PTPN9 may be involved in Golgi-endosomal system transport 44
Figure 7. The translocation of PTPN9 to cilia during ciliogenesis 46
Figure 8. PTPN9 contributes the accumulation of GLUT1 in cytosol upon glucose depletion 48
6. SUPPLEMENTARY 50
7. REFERENCES 51
-
dc.language.isoen-
dc.subjectTBC1D5zh_TW
dc.subject膜運輸zh_TW
dc.subjectBioID2zh_TW
dc.subjectPTPN9zh_TW
dc.subject鄰近標記zh_TW
dc.subjectproximity labelingen
dc.subjectPTPN9en
dc.subjectBioID2en
dc.subjectmembrane traffickingen
dc.subjectTBC1D5en
dc.title利用鄰近標記探討 PTPN9 的生理地位zh_TW
dc.titleUtilizing a Proximity-based Labeling Approach to Decipher the Physiological Role of PTPN9en
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王琬菁;劉雅雯zh_TW
dc.contributor.oralexamcommitteeWon-Jing Wang;Ya-Wen Liuen
dc.subject.keywordPTPN9,鄰近標記,BioID2,膜運輸,TBC1D5,zh_TW
dc.subject.keywordPTPN9,proximity labeling,BioID2,membrane trafficking,TBC1D5,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU201901944-
dc.rights.note未授權-
dc.date.accepted2019-07-25-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科學研究所-
dc.date.embargo-lift2024-08-05-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
3.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved