請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78731
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳建彰 | zh_TW |
dc.contributor.advisor | Jian-Zhang Chen | en |
dc.contributor.author | 鄭亦辰 | zh_TW |
dc.contributor.author | Yi-Chen Cheng | en |
dc.date.accessioned | 2021-07-11T15:15:19Z | - |
dc.date.available | 2024-07-31 | - |
dc.date.copyright | 2019-07-31 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | [1] D. A. Lashof and D. R. Ahuja, "Relative contributions of greenhouse gas emissions to global warming," Nature, vol. 344, no. 6266, p. 529, 1990.
[2] S. Chu and A. Majumdar, "Opportunities and challenges for a sustainable energy future," nature, vol. 488, no. 7411, p. 294, 2012. [3] D. G. Nocera, "Living healthy on a dying planet," Chemical Society Reviews, vol. 38, no. 1, pp. 13-15, 2009. [4] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, "Dye-sensitized solar cells," Chemical reviews, vol. 110, no. 11, pp. 6595-6663, 2010. [5] A. Dillon, "Carbon nanotubes for photoconversion and electrical energy storage," Chemical reviews, vol. 110, no. 11, pp. 6856-6872, 2010. [6] E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazábal, and J. Pérez-Ramírez, "Status and perspectives of CO 2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes," Energy & environmental science, vol. 6, no. 11, pp. 3112-3135, 2013. [7] K. Christopher and R. Dimitrios, "A review on exergy comparison of hydrogen production methods from renewable energy sources," Energy & Environmental Science, vol. 5, no. 5, pp. 6640-6651, 2012. [8] Z. Yang et al., "Electrochemical energy storage for green grid," Chemical reviews, vol. 111, no. 5, pp. 3577-3613, 2011. [9] J. R. Miller and P. Simon, "Electrochemical capacitors for energy management," Science, vol. 321, no. 5889, pp. 651-652, 2008. [10] H. Wang and H. Dai, "Strongly coupled inorganic–nano-carbon hybrid materials for energy storage," Chemical Society Reviews, vol. 42, no. 7, pp. 3088-3113, 2013. [11] Y. Shao et al., "Design and mechanisms of asymmetric supercapacitors," Chemical reviews, vol. 118, no. 18, pp. 9233-9280, 2018. [12] A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, and W. Van Schalkwijk, "Nanostructured materials for advanced energy conversion and storage devices," in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group: World Scientific, 2011, pp. 148-159. [13] B. Dunn, H. Kamath, and J.-M. Tarascon, "Electrical energy storage for the grid: a battery of choices," Science, vol. 334, no. 6058, pp. 928-935, 2011. [14] L. Hu and K. Xu, "Nonflammable electrolyte enhances battery safety," Proceedings of the National Academy of Sciences, vol. 111, no. 9, pp. 3205-3206, 2014. [15] M. Lu, Supercapacitors: materials, systems, and applications. John Wiley & Sons, 2013. [16] X. Cheng et al., "Three-dimensional α-Fe 2 O 3/carbon nanotube sponges as flexible supercapacitor electrodes," Journal of Materials Chemistry A, vol. 3, no. 42, pp. 20927-20934, 2015. [17] S. Saha et al., "In-situ hydrothermal synthesis of MnO 2/NiO@ Ni hetero structure electrode for hydrogen evolution reaction and high energy asymmetric supercapacitor applications," Journal of Energy Storage, vol. 6, pp. 22-31, 2016. [18] V. Khomenko, E. Raymundo-Pinero, E. Frackowiak, and F. Beguin, "High-voltage asymmetric supercapacitors operating in aqueous electrolyte," Applied Physics A, vol. 82, no. 4, pp. 567-573, 2006. [19] F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, and Y. Wu, "Electrode materials for aqueous asymmetric supercapacitors," Rsc Advances, vol. 3, no. 32, pp. 13059-13084, 2013. [20] C. Zhou, Y. Zhang, Y. Li, and J. Liu, "Construction of high-capacitance 3D CoO@ polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor," Nano letters, vol. 13, no. 5, pp. 2078-2085, 2013. [21] H. Su et al., "High power supercapacitors based on hierarchically porous sheet-like nanocarbons with ionic liquid electrolytes," Chemical Engineering Journal, vol. 322, pp. 73-81, 2017. [22] A. R. Hsu et al., "Scan-Mode Atmospheric-Pressure Plasma Jet Processed Reduced Graphene Oxides for Quasi-Solid-State Gel-Electrolyte Supercapacitors," Coatings, vol. 8, no. 2, p. 52, 2018. [23] H. Zhang et al., "Roll-to-roll DBD plasma pretreated polyethylene web for enhancement of Al coating adhesion and barrier property," Applied Surface Science, vol. 388, pp. 539-545, 2016. [24] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," IEEE transactions on plasma science, vol. 26, no. 6, pp. 1685-1694, 1998. [25] U. Lommatzsch, D. Pasedag, A. Baalmann, G. Ellinghorst, and H. E. Wagner, "Atmospheric pressure plasma jet treatment of polyethylene surfaces for adhesion improvement," Plasma Processes and Polymers, vol. 4, no. S1, pp. S1041-S1045, 2007. [26] L. Cui, A. N. Ranade, M. A. Matos, G. Dubois, and R. H. Dauskardt, "Improved adhesion of dense silica coatings on polymers by atmospheric plasma pretreatment," ACS applied materials & interfaces, vol. 5, no. 17, pp. 8495-8504, 2013. [27] R. Mahlberg, H.-M. Niemi, F. Denes, and R. Rowell, "Application of AFM on the adhesion studies of oxygen-plasma-treated polypropylene and lignocellulosics," Langmuir, vol. 15, no. 8, pp. 2985-2992, 1999. [28] J. Petersen et al., "Enhanced adhesion over aluminum solid substrates by controlled atmospheric plasma deposition of amine-rich primers," ACS applied materials & interfaces, vol. 4, no. 2, pp. 1072-1079, 2012. [29] M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing. Wiley Online Library, 2005. [30] T. Chao, Introduction to semiconductor manufacturing technology. SPIE PRESS, 2001. [31] S. P. a. E. G. Ehlers. (2018). Phase. Available: https://www.britannica.com/science/phase-state-of-matter [32] L. Tonks and I. Langmuir, "Oscillations in Ionized Gases," Physical Review, vol. 33, no. 2, pp. 195-210, 02/01/ 1929. [33] K. L. Chopra and S. R. Das, "Why thin film solar cells?," in Thin film solar cells: Springer, 1983, pp. 1-18. [34] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing. Wiley, 2005. [35] B. Eliasson and U. Kogelschatz, "Nonequilibrium volume plasma chemical processing," (in English), IEEE Transactions on Plasma Science, vol. 19, no. 6, pp. 1063-1077, Dec 1991. [36] X. Hiao, Introduction to semiconductor manufacturing technology. Prentice Hall Upper Saddle River, 2000. [37] C. Laux, T. Spence, C. Kruger, and R. Zare, "Optical diagnostics of atmospheric pressure air plasmas," Plasma Sources Science and Technology, vol. 12, no. 2, p. 125, 2003. [38] G. Selwyn, H. Herrmann, J. Park, and I. Henins, "Materials processing using an atmospheric pressure, RF-generated plasma source," (in English), Contributions to Plasma Physics, vol. 41, no. 6, pp. 610-619, 2001. [39] A. Schutze, J. Y. Jeong, S. E. Babayan, P. Jaeyoung, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," (in English), IEEE Transactions on Plasma Science, vol. 26, no. 6, pp. 1685-1694, Dec 1998. [40] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," (in English), Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, no. 1, pp. 2-30, 1// 2006. [41] K. Tachibana, "Current status of microplasma research," (in English), IEEJ Transactions on Electrical and Electronic Engineering, vol. 1, no. 2, pp. 145-155, Aug 2006. [42] 徐逸明, "常壓電漿原理、技術與應用," Available: http://www.creating-nanotech.com/big5/download/20110520145713437.pdf. [43] J. Jeong et al., "Etching materials with an atmospheric-pressure plasma jet," Plasma Sources Science and Technology, vol. 7, no. 3, p. 282, 1998. [44] J. Jeong et al., "Etching polyimide with a nonequilibrium atmospheric-pressure plasma jet," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 17, no. 5, pp. 2581-2585, 1999. [45] I. Motrescu and M. Nagatsu, "Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure," ACS applied materials & interfaces, vol. 8, no. 19, pp. 12528-12533, 2016. [46] R. Foest, E. Kindel, A. Ohl, M. Stieber, and K. Weltmann, "Non-thermal atmospheric pressure discharges for surface modification," Plasma Physics and Controlled Fusion, vol. 47, no. 12B, p. B525, 2005. [47] H. Chang, Y.-J. Yang, H.-C. Li, C.-C. Hsu, I.-C. Cheng, and J.-Z. Chen, "Preparation of nanoporous TiO 2 films for DSSC application by a rapid atmospheric pressure plasma jet sintering process," Journal of Power Sources, vol. 234, pp. 16-22, 2013. [48] H. Chang et al., "Dye-sensitized solar cells with nanoporous TiO 2 photoanodes sintered by N 2 and air atmospheric pressure plasma jets with/without air-quenching," Journal of Power Sources, vol. 251, pp. 215-221, 2014. [49] C. Wang and J.-Z. Chen, "Atmospheric-pressure-plasma-jet sintered nanoporous SnO 2," Ceramics International, vol. 41, no. 4, pp. 5478-5483, 2015. [50] J.-Z. Chen et al., "Rapid atmospheric-pressure-plasma-jet processed porous materials for energy harvesting and storage devices," Coatings, vol. 5, no. 1, pp. 26-38, 2015. [51] A. P. H. C. Ltd. Plasma Spraying. Available: http://www.amphardchrome.co.uk/plasma-spraying.php [52] G. Fridman et al., "Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air," Plasma Chemistry and Plasma Processing, vol. 26, no. 4, pp. 425-442, 2006. [53] G. Fridman, A. Fridman, M. Peddinghaus, M. Balasubramanian, A. Gutsol, and G. Friedman, "From Plasma Biology to Plasma Medicine: Sterilization," in Tissue Engineering, Treatment of Surface Wounds and Skin Diseases. in The 58th Annual Gaseous Electronics Conference (GEC). San Jose, California, USA, 2005. [54] G. Fridman, M. Peddinghaus, A. Fridman, M. Balasubramanian, A. Gutsol, and G. Friedman, "Use of non-thermal atmospheric pressure plasma discharge for coagulation and sterilization of surface wounds," in 17th international Symposium on plasma chemistry. Toronto, 2005, pp. 1-2. [55] J. H. Choi et al., "Analysis of sterilization effect by pulsed dielectric barrier discharge," Journal of Electrostatics, vol. 64, no. 1, pp. 17-22, 2006. [56] W. Samaranayake, Y. Miyahara, T. Namihira, S. Katsuki, R. Hackam, and H. Akiyama, "Ozone production using pulsed dielectric barrier discharge in oxygen," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 7, no. 6, pp. 849-854, 2000. [57] B. Eliasson, M. Hirth, and U. Kogelschatz, "Ozone synthesis from oxygen in dielectric barrier discharges," Journal of Physics D: Applied Physics, vol. 20, no. 11, p. 1421, 1987. [58] S.-L. Park, J.-D. Moon, S.-H. Lee, and S.-Y. Shin, "Effective ozone generation utilizing a meshed-plate electrode in a dielectric-barrier discharge type ozone generator," Journal of Electrostatics, vol. 64, no. 5, pp. 275-282, 2006. [59] S. Pankaj, Z. Wan, and K. Keener, "Effects of cold plasma on food quality: A review," Foods, vol. 7, no. 1, p. 4, 2018. [60] J.-S. Chang, P. A. Lawless, and T. Yamamoto, "Corona discharge processes," IEEE Transactions on plasma science, vol. 19, no. 6, pp. 1152-1166, 1991. [61] O. Rouaud and M. Havet, "Assessment of the electrohydrodynamic drying process," Food and Bioprocess Technology, vol. 2, no. 3, pp. 240-247, 2009. [62] T. L. E. Company. How a Plasma Cutter Works. Available: https://www.lincolnelectric.com/en-us/equipment/plasma-cutters/process-and-theory/Pages/how-a-plasma-cutter-works.aspx [63] Q. Ke and J. Wang, "Graphene-based materials for supercapacitor electrodes – A review," Journal of Materiomics, vol. 2, no. 1, pp. 37-54, 3// 2016. [64] K. S. Novoselov et al., "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, no. 5696, pp. 666-669, Oct 22 2004. [65] L. L. Zhang, R. Zhou, and X. Zhao, "Graphene-based materials as supercapacitor electrodes," (in English), Journal of Materials Chemistry, vol. 20, no. 29, pp. 5983-5992, 2010. [66] 何世明. 石墨烯奈米帶的近期發展與應用. Available: http://www.ndl.org.tw/docs/publication/23_1/pdf/D1.pdf [67] A. A. Balandin et al., "Superior thermal conductivity of single-layer graphene," Nano letters, vol. 8, no. 3, pp. 902-907, 2008. [68] K. I. Bolotin et al., "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, no. 9-10, pp. 351-355, 2008. [69] R. P. Ojha, P. A. Lemieux, P. K. Dixon, A. J. Liu, and D. J. Durian, "Statistical mechanics of a gas-fluidized particle," Nature, vol. 427, no. 6974, pp. 521-3, Feb 05 2004. [70] M. J. Allen, V. C. Tung, and R. B. Kaner, "Honeycomb Carbon: A Review of Graphene," Chemical Reviews, vol. 110, no. 1, pp. 132-145, 2010/01/13 2010. [71] H. Mario, C. Wan-Yu, D. N. Tuân, and H. Ya-Ping, "Controlling the properties of graphene produced by electrochemical exfoliation," Nanotechnology, vol. 26, no. 33, p. 335607, 2015. [72] 蘇清源, "石墨烯量產技術與產業應用," 光連: 光電產業與技術情報, no. 108, pp. 61-71, 2013. [73] K. S. Kim et al., "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, 10.1038/nature07719 vol. 457, no. 7230, pp. 706-710, 02/05/print 2009. [74] Y. Wang et al., "Supercapacitor devices based on graphene materials," The Journal of Physical Chemistry C, vol. 113, no. 30, pp. 13103-13107, 2009. [75] A. Pandolfo and A. Hollenkamp, "Carbon properties and their role in supercapacitors," Journal of power sources, vol. 157, no. 1, pp. 11-27, 2006. [76] M. Winter and R. J. Brodd, "What are batteries, fuel cells, and supercapacitors?," ed: ACS Publications, 2004. [77] J. Hu, J. Liu, L. Gan, and M. Long, "Surface-Modified Graphene Oxide-Based Cotton Fabric by Ion Implantation for Enhancing Antibacterial Activity," ACS Sustainable Chemistry & Engineering, vol. 7, no. 8, pp. 7686-7692, 2019. [78] L. Halder et al., "Fabrication of an Advanced Asymmetric Supercapacitor Based on Three-Dimensional Copper–Nickel–Cerium–Cobalt Quaternary Oxide and GNP for Energy Storage Application," ACS Applied Electronic Materials, vol. 1, no. 2, pp. 189-197, 2019. [79] P. Iamprasertkun et al., "The Capacitance of Basal Plane and Edge-Oriented Highly-Ordered Pyrolytic Graphite: Specific Ion Effects," The journal of physical chemistry letters, 2019. [80] A. Sharifian, M. Baghani, J. Wu, G. M. Odegard, and M. Baniassadi, "Insight into Geometry-Controlled Mechanical Properties of Spiral Carbon-Based Nanostructures," The Journal of Physical Chemistry C, vol. 123, no. 5, pp. 3226-3238, 2019. [81] Y. Zhang, L. Liu, Y. Yu, Y. Zhang, S. Hou, and A. Chen, "Controlling the Inner Structure of Carbon Spheres via “Protective-Dissolution” Strategy for Supercapacitor," The Journal of Physical Chemistry C, vol. 123, no. 5, pp. 2801-2807, 2019. [82] B.-Y. Shi et al., "Asymmetric Growth of Tetragon-Shaped Single-Crystalline Graphene Flakes on Copper Foil by Annealing Treatment under Oxygen-Free Conditions," The Journal of Physical Chemistry C, vol. 123, no. 4, pp. 2642-2650, 2019. [83] Y. Liu et al., "Biobased Nitrogen-and Oxygen-Codoped Carbon Materials for High-Performance Supercapacitor," ACS Sustainable Chemistry & Engineering, vol. 7, no. 2, pp. 2763-2773, 2018. [84] A. Dixit, S. Middya, S. Mitra, S. Maity, M. Bhattacharjee, and D. Bandyopadhyay, "Unexplored Pathways To Charge Storage in Supercapacitors," The Journal of Physical Chemistry C, vol. 123, no. 1, pp. 195-204, 2018. [85] S. Witomska et al., "Graphene Oxide Hybrid with Sulfur–Nitrogen Polymer for High-Performance Pseudocapacitors," Journal of the American Chemical Society, vol. 141, no. 1, pp. 482-487, 2018. [86] S. Rudra, A. K. Nayak, S. Koley, R. Chakraborty, P. K. Maji, and M. Pradhan, "Redox-Mediated Shape Transformation of Fe3O4 Nanoflakes to Chemically Stable Au− Fe2O3 Composite Nanorods for a High-Performance Asymmetric Solid-State Supercapacitor Device," ACS Sustainable Chemistry & Engineering, vol. 7, no. 1, pp. 724-733, 2018. [87] R. Rao et al., "Carbon nanotubes and related nanomaterials: critical advances and challenges for synthesis toward mainstream commercial applications," ACS nano, vol. 12, no. 12, pp. 11756-11784, 2018. [88] M. Zhang, L. He, T. Shi, and R. Zha, "Nanocasting and direct synthesis strategies for mesoporous carbons as supercapacitor electrodes," Chemistry of Materials, vol. 30, no. 21, pp. 7391-7412, 2018. [89] D. T. Galhena, B. C. Bayer, J. C. Meyer, S. Hofmann, and G. A. Amaratunga, "Reduced Graphene Oxide as a Monolithic Multifunctional Conductive Binder for Activated Carbon Supercapacitors," ACS omega, vol. 3, no. 8, pp. 9246-9255, 2018. [90] C. H. Kim, J.-H. Kim, and S.-M. Lee, "Transformation of Solid Waste into Nanoporous Carbon via Carbothermic Reduction," ACS Omega, vol. 3, no. 7, pp. 7904-7910, 2018. [91] R. Yadav, A. Subhash, N. Chemmenchery, and B. Kandasubramanian, "Graphene and graphene oxide for fuel cell technology," Industrial & Engineering Chemistry Research, vol. 57, no. 29, pp. 9333-9350, 2018. [92] S. Kansara, S. K. Gupta, Y. Sonvane, T. Hussain, and R. Ahuja, "Theoretical investigation of metallic nanolayers for charge-storage applications," ACS Applied Energy Materials, vol. 1, no. 7, pp. 3428-3433, 2018. [93] A. González, E. Goikolea, J. A. Barrena, and R. Mysyk, "Review on supercapacitors: Technologies and materials," (in English), Renewable and Sustainable Energy Reviews, vol. 58, pp. 1189-1206, 5// 2016. [94] P. Sharma and T. S. Bhatti, "A review on electrochemical double-layer capacitors," (in English), Energy Conversion and Management, vol. 51, no. 12, pp. 2901-2912, 12// 2010. [95] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, "A review of electrolyte materials and compositions for electrochemical supercapacitors," Chemical Society Reviews, vol. 44, no. 21, pp. 7484-7539, 2015. [96] G. Wang, L. Zhang, and J. Zhang, "A review of electrode materials for electrochemical supercapacitors," Chemical Society Reviews, vol. 41, no. 2, pp. 797-828, 2012. [97] D. H. Doughty, Materials for electrochemical energy storage and conversion--batteries, capacitors, and fuel cells: symposium held April 17-19, 1995, San Francisco, California, USA. Materials Research Society, 1995. [98] R. Kötz and M. Carlen, "Principles and applications of electrochemical capacitors," (in English), Electrochimica Acta, vol. 45, no. 15–16, pp. 2483-2498, 5/3/ 2000. [99] B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media, 2013. [100] B. Babakhani and D. G. Ivey, "Improved capacitive behavior of electrochemically synthesized Mn oxide/PEDOT electrodes utilized as electrochemical capacitors," Electrochimica Acta, vol. 55, no. 12, pp. 4014-4024, 2010. [101] S. Sarangapani, B. Tilak, and C. P. Chen, "Materials for electrochemical capacitors theoretical and experimental constraints," Journal of the Electrochemical Society, vol. 143, no. 11, pp. 3791-3799, 1996. [102] V. Augustyn, P. Simon, and B. Dunn, "Pseudocapacitive oxide materials for high-rate electrochemical energy storage," Energy & Environmental Science, vol. 7, no. 5, pp. 1597-1614, 2014. [103] P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," in Nanoscience And Technology: A Collection of Reviews from Nature Journals: World Scientific, 2010, pp. 320-329. [104] J. Zheng, J. Huang, and T. Jow, "The limitations of energy density for electrochemical capacitors," Journal of the electrochemical Society, vol. 144, no. 6, pp. 2026-2031, 1997. [105] V. A. Krivchenko, Y. M. Maksimov, B. I. Podlovchenko, A. T. Rakhimov, N. V. Suetin, and M. A. Timofeev, "Electrochemical activation of carbon nanowalls," Mendeleev Communications, vol. 21, no. 5, pp. 264-265, 2011. [106] P. Sharma and T. Bhatti, "A review on electrochemical double-layer capacitors," Energy conversion and management, vol. 51, no. 12, pp. 2901-2912, 2010. [107] O. Barbieri, M. Hahn, A. Herzog, and R. Kötz, "Capacitance limits of high surface area activated carbons for double layer capacitors," Carbon, vol. 43, no. 6, pp. 1303-1310, 2005. [108] D. Qu and H. Shi, "Studies of activated carbons used in double-layer capacitors," Journal of Power Sources, vol. 74, no. 1, pp. 99-107, 1998. [109] J. Gamby, P. Taberna, P. Simon, J. Fauvarque, and M. Chesneau, "Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors," Journal of power sources, vol. 101, no. 1, pp. 109-116, 2001. [110] C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, and F. Béguin, "Electrochemical energy storage in ordered porous carbon materials," Carbon, vol. 43, no. 6, pp. 1293-1302, 2005. [111] J. Huang, B. G. Sumpter, and V. Meunier, "Theoretical model for nanoporous carbon supercapacitors," Angewandte Chemie International Edition, vol. 47, no. 3, pp. 520-524, 2008. [112] G. Feng, R. Qiao, J. Huang, B. G. Sumpter, and V. Meunier, "Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance," ACS nano, vol. 4, no. 4, pp. 2382-2390, 2010. [113] X. Zhao, B. M. Sánchez, P. J. Dobson, and P. S. Grant, "The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices," Nanoscale, vol. 3, no. 3, pp. 839-855, 2011. [114] B. E. Conway, V. Birss, and J. Wojtowicz, "The role and utilization of pseudocapacitance for energy storage by supercapacitors," Journal of Power Sources, vol. 66, no. 1-2, pp. 1-14, 1997. [115] I. E. Rauda, V. Augustyn, B. Dunn, and S. H. Tolbert, "Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials," Accounts of chemical research, vol. 46, no. 5, pp. 1113-1124, 2013. [116] M.-S. Wu and P.-C. J. Chiang, "Fabrication of nanostructured manganese oxide electrodes for electrochemical capacitors," Electrochemical and solid-state letters, vol. 7, no. 6, pp. A123-A126, 2004. [117] W. Sugimoto, H. Iwata, Y. Murakami, and Y. Takasu, "Electrochemical capacitor behavior of layered ruthenic acid hydrate," Journal of the Electrochemical Society, vol. 151, no. 8, pp. A1181-A1187, 2004. [118] X. Dong et al., "MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors," The Journal of Physical Chemistry B, vol. 110, no. 12, pp. 6015-6019, 2006. [119] E. Herrero, L. J. Buller, and H. D. Abruña, "Underpotential Deposition at Single Crystal Surfaces of Au, Pt, Ag and Other Materials," (in English), Chemical Reviews, vol. 101, no. 7, pp. 1897-1930, 2001/07/01 2001. [120] V. Sudha and M. Sangaranarayanan, "Underpotential deposition of metals: structural and thermodynamic considerations," The Journal of Physical Chemistry B, vol. 106, no. 10, pp. 2699-2707, 2002. [121] S. Trasatti and G. Buzzanca, "Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 29, no. 2, pp. A1-A5, 1971/02/01 1971. [122] N. A. Kumar, H.-J. Choi, Y. R. Shin, D. W. Chang, L. Dai, and J.-B. Baek, "Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors," ACS nano, vol. 6, no. 2, pp. 1715-1723, 2012. [123] L. Wang et al., "Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors," Scientific reports, vol. 3, p. 3568, 2013. [124] M. G. Hosseini and E. Shahryari, "A novel high-performance supercapacitor based on chitosan/graphene oxide-MWCNT/polyaniline," Journal of colloid and interface science, vol. 496, pp. 371-381, 2017. [125] A. Hobby. (1997). SCREEN PRINTING FOR THE INDUSTRIAL USER. Available: http://www.gwent.org/gem_screen_printing.html [126] A. Hsu et al., "Scan-mode atmospheric-pressure plasma jet processed reduced graphene oxides for quasi-solid-state gel-electrolyte supercapacitors," Coatings, vol. 8, no. 2, p. 52, 2018. [127] J. Ltd. Electron Beam Source for Electron Beam Deposition. Available: https://www.jeol.co.jp/en/science/eb.html [128] G. Meyer and N. M. Amer, "Novel optical approach to atomic force microscopy," Applied physics letters, vol. 53, no. 12, pp. 1045-1047, 1988. [129] A. P. GmbH. (2019 ). Atomic force microscopy (AFM). Available: https://wiki.anton-paar.com/en/atomic-force-microscopy-afm/ [130] B. N. Surfaces, "Using PeakForce Tapping Mode Atomic Force Microscopy to Image the DNA Double Helix," 2015. [131] F. Moreno-Herrero. Atomic Force Microscopy. Available: http://www.fernandomorenoherrero.com/cases/atomic-force-microscope/ [132] B. Corporation. Atomic Force Microscopy (AFM). Available: http://www.nanophys.kth.se/nanophys/facilities/nfl/afm/icon/bruker-help/Content/SPM%20Training%20Guide/Atomic%20Force%20Microscopy%20(AFM)/Atomic%20Force%20Microscopy%20(AFM).htm [133] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis. Springer, 2017. [134] J. ATTEBERRY. Available: https://science.howstuffworks.com/scanning-electron-microscope.htm/printable [135] L. Bruslind. (2019). Microscopes. Available: https://bio.libretexts.org/Bookshelves/Microbiology/Book%3A_Microbiology_(Bruslind)/02%3A_Microscopes [136] J. Irigoyen Otamendi, "Fabrication and characterization of multilayered assemblies based on polyelectrolytes and hybrid systems with carbon nanomaterials for applications in nanofiltration and as smart surfaces," 2016. [137] C. C. f. W. a. Joining, "Microscopy." [138] S.-. LABORATORY, "Snell’s Law, Dispersion, and the Prism," 2004, Available: https://www.cis.rit.edu/class/simg232/lab2-dispersion.pdf. [139] O. Corporation. QE Optical Bench Options. Available: http://www.oceanoptics.jp/products/benchoptions_qe.html [140] O. Ltd. Contact Angle: A Guide to Theory and Measurement. Available: https://www.ossila.com/pages/contact-angle-theory-measurement [141] H. O.-M. P. Ltd. Contact Angle Meter. Available: https://www.holmarc.com/contact_angle_meter.php [142] H. P. Klug and L. E. Alexander, "X-ray diffraction procedures: for polycrystalline and amorphous materials," X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition, by Harold P. Klug, Leroy E. Alexander, pp. 992. ISBN 0-471-49369-4. Wiley-VCH, May 1974., p. 992, 1974. [143] B. E. Warren, X-ray Diffraction. Courier Corporation, 1990. [144] C. Charpentier, "Investigation of deposition conditions and annealing treatments on sputtered ZnO: Al thin films: Material properties and application to microcristalline silicon solar cells," Ecole Polytechnique X, 2012. [145] Y. Li. Safinya Group Research Small Angle X-Ray Scattering and Diffraction. Available: http://www.mrl.ucsb.edu/~safinyaweb/XRD.htm [146] D. M. Klaus. ETA Diffractometer (WCR). Available: https://www.helmholtz-berlin.de/pubbin/igama_output?modus=einzel&sprache=en&gid=2114&typoid=68892 [147] T. Hirschfeld and B. Chase, "FT-Raman spectroscopy: development and justification," Applied spectroscopy, vol. 40, no. 2, pp. 133-137, 1986. [148] V. U. Brussel. RAMAN SPECTROSCOPY. Available: https://www.surfgroup.be/raman [149] R. A. Halvorson and P. J. Vikesland, "Surface-enhanced Raman spectroscopy (SERS) for environmental analyses," ed: ACS Publications, 2010. [150] J. Ltd. Photoelectron Spectrometer (ESCA). Available: https://www.jeol.co.jp/en/science/xps.html [151] B. Baruwati, "Studies on the Synthesis, Characterization, Surface Modification and Application of Nanocrystalline Nickel Ferrite," INDIAN INSTITUTE OF CHEMICAL TECHNOLOGY HYDERABAD, 2007. [152] P. Worsfold, A. Townshend, C. F. Poole, and M. Miró, Encyclopedia of analytical science. Elsevier, 2019. [153] T. Doi, I. D. Marinescu, and S. Kurokawa, Advances in CMP polishing technologies. William Andrew, 2011. [154] CAMECA. Introduction to EPMA. Available: https://www.cameca.com/products/epma/technique [155] S. M. Hunter, "Molybdenum nitrides: structural and reactivity studies," University of Glasgow, 2012. [156] H.-H. Perkampus, UV-VIS Spectroscopy and its Applications. Springer Science & Business Media, 2013. [157] High-Performance Liquid Chromatography (HPLC) Detectors. Available: http://quimica.udea.edu.co/~carlopez/cromatohplc/detectors.html [158] J. Wang, Analytical electrochemistry. John Wiley & Sons, 2006. [159] J. Wang, Y. Xu, X. Chen, and X. Du, "Electrochemical supercapacitor electrode material based on poly (3, 4-ethylenedioxythiophene)/polypyrrole composite," Journal of Power Sources, vol. 163, no. 2, pp. 1120-1125, 2007. [160] Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, and X. Duan, "Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films," ACS nano, vol. 7, no. 5, pp. 4042-4049, 2013. [161] A. Yu, V. Chabot, and J. Zhang, Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications. CRC Press, 2013. [162] P. A. Kilmartin, H. Zou, and A. L. Waterhouse, "A cyclic voltammetry method suitable for characterizing antioxidant properties of wine and wine phenolics," Journal of agricultural and food chemistry, vol. 49, no. 4, pp. 1957-1965, 2001. [163] Y. J. Kang, H. Chung, C.-H. Han, and W. Kim, "All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes," Nanotechnology, vol. 23, no. 6, p. 065401, 2012. [164] G. Stark. (08 September 2018). Light. Available: https://www.britannica.com/science/light [165] R. W. B. P. A. G. Gaydon. The Identification Of Molecular Spectra [Online]. Available: https://archive.org/details/in.ernet.dli.2015.212925/page/n163 [166] G. Porter. Progress in Reaction Kinetics [Online]. Available: https://books.google.com.tw/books?hl=zh-TW&lr=&id=8cZkDAAAQBAJ&oi=fnd&pg=PA1&dq=N2+2nd+positive+possible+reaction++&ots=p9fsNI6BhF&sig=J2N7c9YZ72RwF5h3I2hffuXrbr4&redir_esc=y#v=onepage&q&f=false [167] G. Dinescu, E. Aldea, M. De Giorgi, A. Luches, A. Perrone, and A. Zocco, "Optical emission spectroscopy of molecular species in plasma induced by laser ablation of carbon in nitrogen," Applied surface science, vol. 127, pp. 697-702, 1998. [168] D. Staack, B. Farouk, A. F. Gutsol, and A. A. Fridman, "Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air," Plasma sources science and technology, vol. 15, no. 4, p. 818, 2006. [169] F.-M. Wang, Y.-L. Kuo, L.-S. Huang, A. Ramar, and C.-H. Su, "Fabrication of in operando, self-growing, core-shell solid electrolyte interphase on LiFePO4 electrodes for preventing undesirable high-temperature effects in Li-ion batteries," Electrochimica Acta, vol. 268, pp. 260-267, 2018. [170] C. Wang and N. Srivastava, "OH number densities and plasma jet behavior in atmospheric microwave plasma jets operating with different plasma gases (Ar, Ar/N 2, and Ar/O 2)," The European Physical Journal D, vol. 60, no. 3, pp. 465-477, 2010. [171] S. Abdelli-Messaci, T. Kerdja, A. Bendib, and S. Malek, "Emission study of C2 and CN in laser-created carbon plasma under nitrogen environment," Journal of Physics D: Applied Physics, vol. 35, no. 21, p. 2772, 2002. [172] A. Ristanovic, A. Fernandez, and A. Fontijn, "Wide-Temperature Range Kinetics and CN (B− X) Violet Chemiluminescence of the C2 (a3Π)+ NO Reaction," The Journal of Physical Chemistry A, vol. 106, no. 36, pp. 8291-8295, 2002. [173] H. Reisler, M. Mangir, and C. Wittig, "The kinetics of free radicals generated by IR laser photolysis. I. Reactions of C2 (a 3Π u) with NO, vinyl cyanide, and ethylene," The Journal of Chemical Physics, vol. 71, no. 5, pp. 2109-2117, 1979. [174] K. Clay, S. Speakman, G. Amaratunga, and S. Silva, "Characterization of a‐C: H: N deposition from CH4/N2 rf plasmas using optical emission spectroscopy," Journal of applied physics, vol. 79, no. 9, pp. 7227-7233, 1996. [175] M. Šimek, "Optical diagnostics of streamer discharges in atmospheric gases," Journal of Physics D: Applied Physics, vol. 47, no. 46, p. 463001, 2014. [176] N. Srivastava, C. Wang, and T. Dibble, "A study of OH radicals in an atmospheric AC discharge plasma using near infrared diode laser cavity ringdown spectroscopy combined with optical emission spectroscopy," The European Physical Journal D, vol. 54, no. 1, pp. 77-86, 2009. [177] Y. Lau, K. Jayapalan, M. Pam, O. Chin, and C. Wong, "Dependence of dielectric barrier discharge jet length on gas flow rate and applied voltage," Journal of Science and Technology in the Tropics, vol. 10, no. 2, pp. 131-138, 2014. [178] K. Urabe, K. Yamada, and O. Sakai, "Discharge-mode transition in jet-type dielectric barrier discharge using argon/acetone gas flow ignited by small helium plasma jet," Japanese Journal of Applied Physics, vol. 50, no. 11R, p. 116002, 2011. [179] Q. Xiong, A. Nikiforov, X. Lu, and C. Leys, "High-speed dispersed photographing of an open-air argon plasma plume by a grating–ICCD camera system," Journal of Physics D: Applied Physics, vol. 43, no. 41, p. 415201, 2010. [180] A. Falahat, A. Ganjovi, M. Taraz, M. R. Ravari, and A. Shahedi, "Optical characteristics of a RF DBD plasma jet in various Ar/O mixtures," Pramana, vol. 90, no. 2, p. 27, 2018. [181] O. Jokiaho, N. Ivchenko, H. Dahlgren, D. Whiter, and M. Alaniz, "Auroral diagnostics for PoGOLite astrophysical balloon," ESA-SP, vol. 671, pp. 195-200, 2009. [182] C. Shuang, "Numerical analysis of quantitative measurement of hydroxyl radical concentration using laser-induced fluorescence in flame," Chinese Physics B. [183] R. Ghadawala, Advances in Spacecraft Systems and Orbit Determination. BoD–Books on Demand, 2012. [184] D. A. Staack, "Characterization and stabilization of atmospheric pressure DC microplasmas and their application to thin film deposition," 2009. [185] J. Cooper, "Plasma spectroscopy," Reports on Progress in Physics, vol. 29, no. 1, p. 35, 1966. [186] J. Van der Mullen, "On the atomic state distribution function in inductively coupled plasmas—I. Thermodynamic equilibrium considered on the elementary level," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 44, no. 11, pp. 1067-1080, 1989. [187] X. Zhang, Y. Huang, and T. Wang, "Surface analysis of plasma grafted carbon fiber," Applied Surface Science, vol. 253, no. 5, pp. 2885-2892, 2006. [188] H. Li, H. Liang, F. He, Y. Huang, and Y. Wan, "Air dielectric barrier discharges plasma surface treatment of three-dimensional braided carbon fiber reinforced epoxy composites," Surface and Coatings Technology, vol. 203, no. 10-11, pp. 1317-1321, 2009. [189] H. Peng, G. Zheng, Y. Sun, and R. Wang, "Surface modification of polysulfonamide fiber treated by air plasma," RSC Advances, vol. 5, no. 95, pp. 78172-78179, 2015. [190] J. Bijwe and M. Sharma, "Nano and micro PTFE for surface lubrication of carbon fabric reinforced polyethersulphone composites," in Tribology of Nanocomposites: Springer, 2012, pp. 19-39. [191] M. Sekar, M. Pandiaraj, S. Bhansali, N. Ponpandian, and C. Viswanathan, "Carbon fiber based electrochemical sensor for sweat cortisol measurement," Scientific reports, vol. 9, no. 1, p. 403, 2019. [192] S. Fu, Y. Wang, Y. Wang, C. Qu, F. Niu, and J. Liu, "A study of boron nitride coatings on carbon fibers by the powder immersion reaction method," Materials Research Express, vol. 5, no. 6, p. 066421, 2018. [193] Y. Li et al., "Carbon Cloth Supported Nano-Mg (OH) 2 for the Enrichment and Recovery of Rare Earth Element Eu (III) From Aqueous Solution," Frontiers in chemistry, vol. 6, p. 118, 2018. [194] M. Teli, K. K. Samanta, P. Pandit, S. Basak, and S. Chattopadhyay, "Low-temperature dyeing of silk fabric using atmospheric pressure helium/nitrogen plasma," Fibers and Polymers, vol. 16, no. 11, pp. 2375-2383, 2015. [195] L. B. Nohara, G. Petraconi Filho, E. L. Nohara, M. U. Kleinke, and M. C. Rezende, "Evaluation of carbon fiber surface treated by chemical and cold plasma processes," Materials Research, vol. 8, no. 3, pp. 281-286, 2005. [196] G. Sahoo, S. Ghosh, S. Polaki, T. Mathews, and M. Kamruddin, "Transfer of Vertical Graphene Nanosheets onto Flexible Substrates towards Supercapacitor Application," arXiv preprint arXiv:1704.03227, 2017. [197] A. C. Ferrari and D. M. Basko, "Raman spectroscopy as a versatile tool for studying the properties of graphene," Nature nanotechnology, vol. 8, no. 4, p. 235, 2013. [198] L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus, "Raman spectroscopy in graphene," Physics Reports, vol. 473, no. 5-6, pp. 51-87, 2009. [199] D. Mafra, J. Kong, K. Sato, R. Saito, M. Dresselhaus, and P. Araujo, "Using gate-modulated Raman scattering and electron-phonon interactions to probe single-layer graphene: A different approach to assign phonon combination modes," Physical Review B, vol. 86, no. 19, p. 195434, 2012. [200] L. Tang et al., "Bottom-up synthesis of large-scale graphene oxide nanosheets," Journal of Materials Chemistry, vol. 22, no. 12, pp. 5676-5683, 2012. [201] C. Wang and T. Liu, "Activated carbon materials derived from liquefied bark-phenol formaldehyde resins for high performance supercapacitors," RSC Advances, vol. 6, no. 107, pp. 105540-105549, 2016. [202] G. Sun, B. Li, J. Ran, X. Shen, and H. Tong, "Three-dimensional hierarchical porous carbon/graphene composites derived from graphene oxide-chitosan hydrogels for high performance supercapacitors," Electrochimica Acta, vol. 171, pp. 13-22, 2015. [203] J. Zhao et al., "Hydrophilic Hierarchical Nitrogen‐Doped Carbon Nanocages for Ultrahigh Supercapacitive Performance," Advanced materials, vol. 27, no. 23, pp. 3541-3545, 2015. [204] J. Han, G. Xu, B. Ding, J. Pan, H. Dou, and D. R. MacFarlane, "Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors," Journal of Materials Chemistry A, vol. 2, no. 15, pp. 5352-5357, 2014. [205] T. Lin et al., "Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage," Science, vol. 350, no. 6267, pp. 1508-1513, 2015. [206] S.-H. Chang et al., "Feasibility study of surface-modified carbon cloth electrodes using atmospheric pressure plasma jets for microbial fuel cells," Journal of Power Sources, vol. 336, pp. 99-106, 2016. [207] M. Ayad and S. Zaghlol, "Nanostructured crosslinked polyaniline with high surface area: Synthesis, characterization and adsorption for organic dye," Chemical engineering journal, vol. 204, pp. 79-86, 2012. [208] C. Yang et al., "Rational design of sandwiched polyaniline nanotube/layered graphene/polyaniline nanotube papers for high-volumetric supercapacitors," Chemical Engineering Journal, vol. 309, pp. 89-97, 2017. [209] M. Liu, Y. Shen, P. Ao, L. Dai, Z. Liu, and C. Zhou, "The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes," RSC Advances, vol. 4, no. 45, pp. 23540-23553, 2014. [210] P. Alves, J. Coelho, J. Haack, A. Rota, A. Bruinink, and M. Gil, "Surface modification and characterization of thermoplastic polyurethane," European Polymer Journal, vol. 45, no. 5, pp. 1412-1419, 2009. [211] S. Farris, L. Introzzi, P. Biagioni, T. Holz, A. Schiraldi, and L. Piergiovanni, "Wetting of biopolymer coatings: Contact angle kinetics and image analysis investigation," Langmuir, vol. 27, no. 12, pp. 7563-7574, 2011. [212] W. Xie, P. Xu, and Q. Liu, "Antioxidant activity of water-soluble chitosan derivatives," Bioorganic & Medicinal Chemistry Letters, vol. 11, no. 13, pp. 1699-1701, 2001. [213] C.-Y. Liao, "Flexible polyaniline/graphene nanocomposite supercapacitor," National Taiwan University, 2015. [214] F. Kittur, K. H. Prashanth, K. U. Sankar, and R. Tharanathan, "Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry," Carbohydrate polymers, vol. 49, no. 2, pp. 185-193, 2002. [215] G. Cardenas and S. P. Miranda, "FTIR and TGA studies of chitosan composite films," Journal of the Chilean Chemical Society, vol. 49, no. 4, pp. 291-295, 2004. [216] R. Hernández, V. Zamora-Mora, M. Sibaja-Ballestero, J. Vega-Baudrit, D. López, and C. Mijangos, "Influence of iron oxide nanoparticles on the rheological properties of hybrid chitosan ferrogels," Journal of colloid and interface science, vol. 339, no. 1, pp. 53-59, 2009. [217] M. Khalid, F. Agnely, N. Yagoubi, J. Grossiord, and G. Couarraze, "Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks," European Journal of Pharmaceutical Sciences, vol. 15, no. 5, pp. 425-432, 2002. [218] D. Hritcu, M. I. Popa, N. POPA, V. Badescu, and V. Balan, "Preparation and characterization of magnetic chitosan nanospheres," Turkish Journal of Chemistry, vol. 33, no. 6, pp. 785-796, 2009. [219] C. Sámano-Valencia et al., "Characterization and biocompatibility of chitosan gels with silver and gold nanoparticles," Journal of Nanomaterials, vol. 2014, p. 142, 2014. [220] C. d. T. Neto, J. Giacometti, A. Job, F. Ferreira, J. Fonseca, and M. Pereira, "Thermal analysis of chitosan based networks," Carbohydrate Polymers, vol. 62, no. 2, pp. 97-103, 2005. [221] Y. A. Ismail, J. Chang, S. R. Shin, R. S. Mane, S.-H. Han, and S. J. Kim, "Hydrogel-assisted polyaniline microfiber as controllable electrochemical actuatable supercapacitor," Journal of the Electrochemical Society, vol. 156, no. 4, pp. A313-A317, 2009. [222] X. Wang, H. Bai, Z. Yao, A. Liu, and G. Shi, "Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films," Journal of Materials Chemistry, vol. 20, no. 41, pp. 9032-9036, 2010. [223] A. G. Yavuz, A. Uygun, and V. R. Bhethanabotla, "Substituted polyaniline/chitosan composites: Synthesis and characterization," Carbohydrate Polymers, vol. 75, no. 3, pp. 448-453, 2009. [224] T. Thanpitcha, A. Sirivat, A. M. Jamieson, and R. Rujiravanit, "Preparation and characterization of polyaniline/chitosan blend film," Carbohydrate polymers, vol. 64, no. 4, pp. 560-568, 2006. [225] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, "Graphene-based ultracapacitors," Nano letters, vol. 8, no. 10, pp. 3498-3502, 2008. [226] S.-B. Yoon, E.-H. Yoon, and K.-B. Kim, "Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications," Journal of Power Sources, vol. 196, no. 24, pp. 10791-10797, 2011. [227] A. Śliwak, N. Díez, E. Miniach, and G. Gryglewicz, "Nitrogen-containing chitosan-based carbon as an electrode material for high-performance supercapacitors," Journal of Applied Electrochemistry, vol. 46, no. 6, pp. 667-677, 2016. [228] D.-W. Wang et al., "Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode," ACS nano, vol. 3, no. 7, pp. 1745-1752, 2009. [229] Y. G. Wang, H. Q. Li, and Y. Y. Xia, "Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance," Advanced Materials, vol. 18, no. 19, pp. 2619-2623, 2006. [230] V. H. R. de Souza, M. M. Oliveira, and A. J. G. Zarbin, "Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid–liquid interfaces," Journal of Power Sources, vol. 260, pp. 34-42, 2014. [231] J. Chang et al., "Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes," Electrochimica Acta, vol. 157, pp. 290-298, 2015. [232] F. Yang, M. Xu, S.-J. Bao, H. Wei, and H. Chai, "Self-assembled hierarchical graphene/polyaniline hybrid aerogels for electrochemical capacitive energy storage," Electrochimica Acta, vol. 137, pp. 381-387, 2014. [233] S. Min, C. Zhao, Z. Zhang, G. Chen, X. Qian, and Z. Guo, "Synthesis of Ni (OH) 2/RGO pseudocomposite on nickel foam for supercapacitors with superior performance," Journal of Materials Chemistry A, vol. 3, no. 7, pp. 3641-3650, 2015. [234] Wikipedia. Dielectric barrier discharge. Available: https://en.wikipedia.org/wiki/Dielectric_barrier_discharge [235] L. Gu, Y. Wang, R. Lu, L. Guan, X. Peng, and J. Sha, "Anodic electrodeposition of a porous nickel oxide–hydroxide film on passivated nickel foam for supercapacitors," Journal of Materials Chemistry A, vol. 2, no. 20, pp. 7161-7164, 2014. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78731 | - |
dc.description.abstract | 本研究主要是使用氮氣電弧式常壓噴射電漿,及氬氣介電質放電噴射電漿對碳纖維布進行改質,並將還原氧化石墨烯-聚苯胺-殼聚醣奈米複合材料,網印在處理過之碳纖維布上,作為軟性超級電容電極。氮氣電弧式常壓電漿處理時的基板溫度峰值在約500°C,而氬氣介電質放電噴射電漿處理時基板溫度約在40°C。在碳纖維布經電漿改質前後方面,由電子顯微鏡 (SEM) 與原子力顯微鏡 (AFM) 的觀察,發現處理過後之碳纖維布表面皆變粗糙,由水接觸角 (WCA) 發現改質後的碳纖維布皆呈現親水性,但兩者電漿處理後的碳纖維布在空氣中貯存則有相當不同的反應。氮氣電弧式常壓電漿所處理之碳布親水性可以維持20週以上,但氬氣介電質放電噴射電漿處理之碳布親水性在12小時後開始往疏水轉變。由X-射線繞射儀 (XRD) 與拉曼光譜儀 (Raman spectrometer) 發現處理後之碳纖維布皆無結構上之明顯改變,由電子微探儀 (EPMA) 與X-射線光電子能譜儀 (XPS),發現處理過後之碳纖維布皆有氧摻雜的作用,而氮氣電弧式電漿則有強烈之氮摻雜反應。在超級電容應用方面,發現兩種常壓電漿皆有效地提升超級電容之電容值,並以電化學阻抗頻譜分析 (EIS) 結果可得知,改質後的碳纖維布皆具有較小之電荷轉移電阻,且具有較高之電雙層電容與法拉第電容。從此研究證實了電漿之高反應性粒子具有碳纖維布表面改質功能,增加親水官能基於碳纖維,增加碳布的親水性,進而提升超級電容的性能。溫度則具有協同的碳布改質效果,因此電弧式常壓噴射電漿 (氣體溫度較高) 所處理之碳布在空氣中儲存能維持較長時間之親水性。 | zh_TW |
dc.description.abstract | This study investigates the carbon cloth modified by nitrogen arc atmospheric pressure plasma jet (APPJ) and Ar dielectric barrier discharge jet (DBD jet). The carbon cloth is then used as the collecting electrode for reduced graphene oxide (rGO)-polyaniline (PANI)-chitosan (CS) nanocomposite flexible supercapacitor. The peak temperature of substrate under nitrogen arc APPJ processing is ~500°C whereas that under Ar DBD jet is ~40°C. The roughness of carbon fibers increases upon plasma treatment, as evidenced by scanning electron microscopy (SEM) and atomic force microscopy (AFM).
Water contact angle measurements indicate the improvement in the hydrophilicity of carbon cloth after nitrogen arc APPJ and Ar DBD jet treatments. However, the hydrophilicity to hydrophobicity recovering rate is very different with these two types of plasma treatment. Upon storage in normal environment, carbon cloth treated by nitrogen arc APPJ can maintain the hydrophilicity for more than 20 weeks, however, that treated by Ar DBD jet starts to recover to hydrophobicity after 12 h. X-ray diffraction (XRD) and the Raman spectrometry analyses show no significant structural alternation upon plasma treatment. X-ray photoelectron spectroscopy (XPS) and electron probe microanalyzer (EPMA) indicates the introduction of oxygen- functional groups to the carbon fibers of the carbon cloth by both nitrogen arc APPJ and Ar DBD jet treatments. Moreover, nitrogen arc APPJ treatment also introduce nitrogen doping on carbon fibers. Both nitrogen arc APPJ and Ar DBD jet treatments on carbon cloth can improve the capacitance value of the supercapacitor. Electrochemical impedance spectroscopy (EIS) show lower charge transfer resistance upon both plasma treatments. Our results suggest that reactive plasma species can modify the surface properties of carbon cloth by introduction oxygen-containing functional groups and increase the surface roughness. Temperature has additional effect on surface modification of carbon fibers such that carbon cloth treated by nitrogen arc APPJ can maintain the hydrophilicity for a much longer period. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:15:19Z (GMT). No. of bitstreams: 1 ntu-108-R06543006-1.pdf: 15325683 bytes, checksum: 6eaf187b03f1cc11f7c1dad1fdd2678a (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT III 總目錄 V 圖目錄 X 表目錄 XVII 第一章 緒論 1 1.1前言 1 1.2研究動機 3 1.3論文架構 4 第二章 實驗理論及文獻回顧 5 2.1常壓電漿 (Atmospheric pressure plasma, APP) 5 2.1.1電漿簡介 [29, 30] 5 2.1.2常壓電漿工作原理與種類 11 2.1.3常壓電漿種類與應用 [42] 13 2.2石墨烯 (Graphene)之特性 17 2.2.1石墨烯之材料性質與結構簡介 [63] 17 2.2.2石墨烯之製備方式 18 2.3聚苯胺 (Polyaniline)之特性 22 2.3.1聚苯胺之材料性質與結構簡介 22 2.3.2聚苯胺之製備方式 24 2.4超級電容 (Supercapacitor)之簡介 25 2.4.1超級電容之特性 [74] 25 2.4.2超級電容之儲能機制 [11, 95] 33 2.4.3商業超級電容 39 第三章 實驗方法及流程 40 3.1實驗藥品及儀器 40 3.2實驗規劃 44 3.3實驗流程 45 3.3.1玻璃樣本瓶與無鹼玻璃之清洗 45 3.3.2殼聚醣膠體溶液製備 46 3.3.3還原氧化石墨烯-聚苯胺-殼聚醣漿料製備 47 3.3.4還原氧化石墨烯-聚苯胺-殼聚醣電極之製備 47 3.3.5凝膠態電解液製備 50 3.3.6液態電解液及凝膠態電解液超級電容之製備 50 3.3.7電性量測試片之製作 51 3.4製程儀器與原理 52 3.4.1網版印刷機 (Screen print machine) 52 3.4.2常壓噴射電漿 (Atmospheric pressure plasma jet) 53 3.4.3電子束蒸鍍機 (E-beam evaporation) 56 3.5量測儀器與原理 57 3.5.1原子力顯微鏡 (Atomic force microscopy) [128, 129] 57 3.5.2掃描式電子顯微鏡 (Scanning electron microscopy) [133, 134] 60 3.5.3光放射光譜儀 (Optical emission spectroscopy) [138, 139] 62 3.5.4接觸角儀 (Contact angle instrument) [140] 64 3.5.5 X光繞射儀 (X-ray diffraction) [142, 143] 66 3.5.6拉曼光譜儀 (Raman spectrometer) [147] 68 3.5.7 X射線光電子能譜儀 (X-ray photoelectron spectroscopy) [150] 69 3.5.8電子微探針試驗儀 (Electron probe microanalyzer,EPMA) [152, 153] 71 3.5.9熱重分析儀 (Thermogavimetric analysis) [155] 73 3.5.10紫外光-可見光光譜儀 (UV-Visible spectrometer) [156] 73 3.5.11電性量測 (Electrical measurement) 75 3.5.12電化學量測 (Electrochemical measurement) [158] 75 3.6 實驗流程示意圖 80 第四章 實驗結果與討論 81 4.1常壓噴射電漿掃描處理碳纖維布之溫度變化圖 81 4.1.1 氮氣電弧式常壓噴射電漿掃描製程之溫度變化圖 81 4.1.2 氬氣介電質放電常壓噴射電漿掃描製程之溫度變化圖 82 4.2常壓噴射電漿掃描處理碳纖維布之光發射光譜圖 84 4.2.1 氮氣電弧式常壓噴射電漿之光發射光譜圖 84 4.2.2 氬氣介電質放電噴射電漿之光發射光譜圖 90 4.3常壓噴射電漿掃描掃描處理碳纖維布之溫度模擬 95 4.4常壓噴射電漿掃描處理碳纖維布之表面型態 99 4.5常壓噴射電漿掃描處理碳纖維布之表面親疏水特性分析 104 4.6常壓噴射電漿掃描處理碳纖維布之晶體結構分析 106 4.7常壓噴射電漿掃描處理碳纖維布之拉曼光譜分析 108 4.8常壓噴射電漿掃描處理碳纖維布之表面化學型態分析 109 4.8.1 氮氣電弧式常壓噴射電漿之表面化學型態分析 109 4.8.2 氬氣介電質放電常壓噴射電漿之表面化學型態分析 112 4.9常壓噴射電漿掃描處理碳纖維布之成分分析 115 4.10常壓噴射電漿掃描處理碳纖維布之電化學分析 116 4.10.1常壓噴射電漿掃描處理碳纖維布之循環伏安法量測 116 4.10.2常壓噴射電漿掃描處理碳纖維布之電化學阻抗分析 118 4.11還原氧化石墨烯-聚苯胺-殼聚醣之表面型態與親疏水特性分析 119 4.12還原氧化石墨烯-聚苯胺-殼聚醣之熱重、光學穿透與電性分析 123 4.13凝膠態電解液軟性超級電容之電化學分析 127 4.13.1還原氧化石墨烯-聚苯胺-殼聚醣電極之循環伏安法量測 127 4.13.2還原氧化石墨烯-聚苯胺-殼聚醣凝膠態電解液超級電容之恆電流充放電量測 130 4.14液態電解質超級電容之電化學分析 132 4.14.1還原氧化石墨烯-聚苯胺-殼聚醣電極之循環伏安法量測 132 4.14.2還原氧化石墨烯-聚苯胺-殼聚醣電極液態電解液超級電容之恆電流充放電量測 134 4.14.3還原氧化石墨烯-聚苯胺-殼聚醣電極之電化學阻抗分析 137 4.15凝膠態電解液超級電容LED實用性測試 139 第五章 結論與未來展望 140 附錄 實驗A 表面擴散式介電質放電常壓電漿處理還原氧化石墨烯-聚苯胺超級電容之應用 142 A.1前言 142 A.2實驗方法 143 A.2.1實驗儀器架設 143 A.2.2實驗步驟 144 A.3實驗結果與討論 145 A.3.1表面擴散式介電質放電電漿溫度變化圖 145 A.3.2表面擴散式介電質放電電漿處理電極之水接觸角變化 146 A.3.3凝膠態電解質超級電容之電化學分析 147 附錄 實驗B 氮氣電弧式常壓噴射電漿處理發泡鎳基板之材料分析 149 B.1前言 149 B.2實驗方法 150 B.3實驗結果與討論 150 B.3.1發泡鎳之水接觸角變化 150 B.3.2發泡鎳之SEM影像圖 151 B.3.3發泡鎳之XPS量測分析 152 B.3.4發泡鎳之EPMA量測結果 155 B.3.5發泡鎳之XRD量測結果 156 附錄 實驗C 氦氣介電質放電常壓噴射電漿之溫度與光譜分析 157 C.1實驗結果與討論 157 C.1.1氦氣介電質放電常壓噴射電漿溫度變化圖 157 C.1.2氦氣介電質放電常壓噴射電漿之光發射光譜圖 158 C.1.3氦氣介電質放電常壓噴射電漿溫度模擬 159 參考文獻 160 | - |
dc.language.iso | zh_TW | - |
dc.title | 介電質放電及電弧式常壓噴射電漿掃描製成於氧化還原石墨烯-聚苯胺-殼聚醣超級電容之應用 | zh_TW |
dc.title | Application of scan-mode dielectric barrier discharge and arc atmospheric pressure plasma jet (APPJ) processes to reduce graphene oxide (rGO)-polyaniline (PANI)-chitosan (CS) supercapacitors | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳奕君;徐振哲;王孟菊 | zh_TW |
dc.contributor.oralexamcommittee | I-Chun Cheng;Cheng-Che Hsu;Meng-Jiy Wang | en |
dc.subject.keyword | 常壓噴射電漿,介電質放電,介電質放電噴射電漿,大氣電漿,碳纖維布,還原氧化石墨烯,聚苯胺,殼聚醣,奈米複合材料,表面改質,軟性超級電容, | zh_TW |
dc.subject.keyword | atmospheric pressure plasma jet,dielectric barrier discharge,dielectric barrier discharge jet,atmospheric pressure plasma,carbon cloth,reduced graphene oxide,polyaniline,chitosan,nanocomposite,surface modification,flexible supercapacitor, | en |
dc.relation.page | 178 | - |
dc.identifier.doi | 10.6342/NTU201901917 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-07-26 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 應用力學研究所 | - |
dc.date.embargo-lift | 2024-07-31 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 14.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。