請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78723完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李水盛(Shoei-Sheng Lee) | |
| dc.contributor.author | Hsun-Yu Wei | en |
| dc.contributor.author | 魏辛羽 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:14:45Z | - |
| dc.date.available | 2022-08-28 | |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-29 | |
| dc.identifier.citation | 1. 陳祝安; 李增智; 陳以平, 金蟬花 實現一個民族健康的偉大夢想. 第一版; 中醫古籍出版社, 2014.
2. Hibbett, D. S.; Binder, M.; Bischoff, J. F.; Blackwell, M.; Cannon, P. F.; Eriksson, O. E.; Huhndorf, S.; James, T.; Kirk, P. M.; Lucking, R.; Thorsten Lumbsch, H.; Lutzoni, F.; Matheny, P. B.; McLaughlin, D. J.; Powell, M. J.; Redhead, S.; Schoch, C. L.; Spatafora, J. W.; Stalpers, J. A.; Vilgalys, R.; Aime, M. C.; Aptroot, A.; Bauer, R.; Begerow, D.; Benny, G. L.; Castlebury, L. A.; Crous, P. W.; Dai, Y. C.; Gams, W.; Geiser, D. M.; Griffith, G. W.; Gueidan, C.; Hawksworth, D. L.; Hestmark, G.; Hosaka, K.; Humber, R. A.; Hyde, K. D.; Ironside, J. E.; Koljalg, U.; Kurtzman, C. P.; Larsson, K. H.; Lichtwardt, R.; Longcore, J.; Miadlikowska, J.; Miller, A.; Moncalvo, J. M.; Mozley-Standridge, S.; Oberwinkler, F.; Parmasto, E.; Reeb, V.; Rogers, J. D.; Roux, C.; Ryvarden, L.; Sampaio, J. P.; Schussler, A.; Sugiyama, J.; Thorn, R. G.; Tibell, L.; Untereiner, W. A.; Walker, C.; Wang, Z.; Weir, A.; Weiss, M.; White, M. M.; Winka, K.; Yao, Y. J.; Zhang, N., A higher-level phylogenetic classification of the fungi. Mycological Research 2007, 111, 509-547. 3. Fukuda, T.; Arai, M.; Tomoda, H.; Omura, S., New beauvericins, potentiators of antifubgal miconazole activity, produced by Beauveria sp. FKI-1366 I. The Journal of Antibiotics 2004, 57, 110-116. 4. Fukuda, T.; Arai, M.; Tomoda, H.; Omura, S., New beauvericins, potentiators of antifubgal miconazole activity, produced by Beauveria sp. FKI-1366 II. The Journal of Antibiotics 2004, 57, 117-124. 5. Wang, J.; Zhang, D. M.; Jia, J. F.; Peng, Q. L.; Tian, H. Y.; Wang, L.; Ye, W. C., Cyclodepsipeptides from the ascocarps and insect-body portions of fungus Cordyceps cicadae. Fitoterapia 2014, 97, 23-27. 6. He, Y.; Zhang, W.; Peng, F.; Lu, R.; Zhou, H.; Bao, G.; Wang, B.; Huang, B.; Li, Z.; Hu, F., Metabolomic variation in wild and cultured cordyceps and mycelia of Isaria cicadae. Biomedical Chromatography 2019, 33, 4478-4492. 7. Zhang, S. W.; Xuan, L. J., Five aromatics bearing a 4-O-methylglucose unit from Cordyceps cicadae. Helvetica Chimica Acta 2007, 90, 404-410. 8. Wang, J. H.; Zhang, Z. L.; Wang, Y. Q.; MinYang; Wang, C. H.; Li, X. W.; Guo, Y. W., Chemical constituents from mycelia and spores of fungus Cordyceps cicadae. Chinese Herbal Medicines 2017, 9, 188-192. 9. He, L. F.; Shi, W. J.; Liu, X. C.; Zhao, X. H.; Zhang, Z. C., Anticancer action and mechanism of ergosterol peroxide from Paecilomyces cicadae fermentation broth. International Journal of Molecular Sciences 2018, 19, 3935-3947. 10. Zhu, R.; Zheng, R.; Deng, Y.; Chen, Y.; Zhang, S., Ergosterol peroxide from Cordyceps cicadae ameliorates TGF-beta1-induced activation of kidney fibroblasts. Phytomedicine 2014, 21, 372-378. 11. Li, i. C.; Lin, S.; Tsai, Y. T.; Hsu, J. H.; Chen, Y. L.; Lin, W. H.; Chen, C. C., Cordyceps cicadae mycelia and its active compound HEA exert beneficial effects on blood glucose in type 2 diabetic db/db mice. Jonrnal of the Science of Food and Agriculture 2019, 99, 606-612. 12. Zheng, R.; Zhu, R.; Li, X.; Li, X.; Shen, L.; Chen, Y.; Zhong, Y.; Deng, Y., N6-(2-hydroxyethyl) adenosine from Cordyceps cicadae ameliorates renal interstitial fibrosis and prevents inflammation via TGF-beta1/Smad and NF-kappaB signaling pathway. Frontiers in Physiology 2018, 9, 1229-1243. 13. Wang, X.; Qin, A.; Xiao, F.; Olatunji, O. J.; Zhang, S.; Pan, D.; Han, W.; Wang, D.; Ni, Y., N6-(2-hydroxyethyl)-adenosine from Cordyceps cicadae protects against diabetic kidney disease via alleviation of oxidative stress and inflammation. Journal of Food Biochemistry 2019, 43, 12727-12736. 14. Zhang, S. W.; Xuan, L. J., Cyclopentenone and furan derivative from the mycelia of Cordyceps cicadae. The Journal of Antibiotics 2008, 61, 43-45. 15. Yu, J. W.; Zhao, J.; Xiao, Q.; Yang, F. Q.; Mao, X. B., Simultaneous determination of myriocin-like long-chain bases in Cordyceps by HPLC-UV with pre-column derivatization. Analytical Methods 2012, 4, 2134-2140. 16. Lucke, D.; Dalton, T.; Ley, S. V.; Wilson, Z. E., Synthesis of natural and unnatural cyclooligomeric depsipeptides enabled by flow chemistry. Chemistry 2016, 22, 4206-4217. 17. Isaka, M.; Yangchum, A.; Sappan, M.; Suvannakad, R.; Srikitikulchai, P., Cyclohexadepsipeptides from Acremonium sp. BCC 28424. Tetrahedron 2011, 67, 7929-7935. 18. Ola, A. R. B.; Aly, A. H.; Lin, W.; Wary, V.; Debbab, A., Structural revision and absolute configuration of lateritin. Tetrahedron Letters 2014, 55, 6184-6187. 19. Hughes, A. B.; Sleebs, M. M., Total synthesis of bassiatin and its stereoisomers: novel divergent behavior of substrates in Mitsunobu cyclizations. Journal of Organic Chemistry 2004, 70, 3079-3088. 20. Kagamizono, T.; Nishino, E.; Matsumoto, K.; Kawashima, A.; Klshimoto, M.; Sakai, N.; He, B.-M.; Chenf, Z.-X.; Adachi, T.; Morimoto, S.; Hanada, K., Bassiatin, a new platelet aggregation inhibitor produced by Beauveria bassiana K-717. The Journal of Antibiotics 1995, 48, 1407-1412. 21. Nonappa; Kari, A.; Manu, L.; Erkki, K., Cyclic dipeptides: catalyst/promoter-free, rapid and environmentally benign cyclization of free amino acids. Green Chemistry 2011, 13, 1203-1209. 22. Simon, G.; Berube, C.; Voyer, N.; Grenier, D., Anti-biofilm and anti-adherence properties of novel cyclic dipeptides against oral pathogens. Bioorganic and Medicinal Chemistry 2019, 27, 2323-2331. 23. Berger, G.; Chab Majdalani, I.; Hanessian, S., Properties of the amide bond involving proline 4,5-methanologues: an experimental and theoretical study. Journal of Chemistry 2017, 57, 292-302. 24. Yedukondalu, N.; Shilpa, G.; Vidushi, K.; P., S. V.; Mehak, S.; Zabeer, A.; L., T. N.; Asif, A., TNF-α and IL-6 inhibitory effects of cyclic dipeptides isolated from marine bacteria Streptomyces sp. Medicinal Chemistry Research 2016, 26, 93-100. 25. Nishanth, S. K.; Nambisan, B.; Dileep, C., Three bioactive cyclic dipeptides from the Bacillus sp. N strain associated with entomopathogenic nematode. Peptides 2014, 53, 59-69. 26. Sansinenea, E.; Salazar, F.; Jiménez, J.; Mendoza, Á.; Ortiz, A., Diketopiperazines derivatives isolated from Bacillus thuringiensis and Bacillus endophyticus, establishment of their configuration by X-ray and their synthesis. Tetrahedron Letters 2016, 57, 2604-2607. 27. Törmäkangas, O. P.; Koskinen, A. M. P., Fast aldol-tishchenko reaction utilizing 1,3-diol monoalcoholates as the aatalysts. Organic Process Research and Development 2001, 5, 421-425. 28. Li, X. Y.; Wang, Y. H.; Yang, J.; Cui, W. Y.; He, P. J.; Munir, S.; He, P. F.; Wu, y. X.; He, Y. Q., Acaricidal activity of cyclodipeptides from Bacillus amyloliquefaciens W1 against Tetranychus urticae. Journal of Agricultural and Food Chemisrty 2018, 66, 10163-10168. 29. Noel, A.; Ferron, S.; Rouaud, I.; Gouault, N.; Hurvois, J. P.; Tomasi, S., Isolation and structure identification of novel brominated diketopiperazines from Nocardia ignorata-a lichen-associated actinobacterium. Molecules 2017, 22, 371-382. 30. 楊遠波; 劉和義; 彭鏡毅; 施炳霖; 呂勝由, 台灣維管束植物簡誌. 中華民國行政院農業委員會 2000, 第四卷. 31. GM, L.; ZN, C.; TR, Y.; WG., D., Studies on the chemical constituents of Rhynchotechum vestitum Hook. f et Thoms. Acta Pharmacologica Sinica 1990, 25, 699-704. 32. Lu, Y.; Xu, P. J.; Chen, Z. N.; Liu, G. M., The anthraquinones of Rhynchotechum vestitum. Phytochemistry 1997, 47, 315-317. 33. Lu, Y.; Xu, P. J.; Chen, Z. N.; Liu, G. M., Anthraquinone glycosides from Phynchotechum vestitum. Phytochemistry 1998, 49, 1135-1137. 34. Verdan, M. H.; Stefanello, M. E. l. A., Secondary metabolites and biological properties of Gesneriaceae species. Chemistry & Biodiversity 2012, 9, 2701-2731. 35. Youssef, D. T. A.; Badr, J. M.; Shaala, L. A.; Mohamed, G. A.; Bamanie, F. H., Ehrenasterol and biemnic acid; new bioactive compounds from the Red Sea sponge Biemna ehrenbergi. Phytochemistry Letters 2015, 12, 296-301. 36. Choudhurt, S. R.; Traquair, J. A.; Jarvis, W. R., New extracellular fatty acids in culture filtrates of Sporothrix flocculosa and S. rugulosa. Journal of Chemistry 1995, 73, 84-87. 37. Singh, K. S.; Sawant, S. G.; Devi, P.; Kaminsky, W., Stigmasterol from Eichhornia crassipes (water hyacinth): isolation, characterization and X-ray structure. Asian Journal of Chemistry 2015, 27, 3028-3030. 38. Ibrahim, M.; Ambreen, S.; Hussain, A.; Hussain, N.; Imran, M.; Ali, B.; Sumrra, S. H.; Yousuf, M.; Rehmani, F. S., Phytochemical investigation on Eucalyptus globulus labill. Asian Journal of Chemistry 2014, 26, 1011-1014. 39. Tao, R.; Wang, C. Z.; Kong, Z. W., Antibacterial/antifungal activity and synergistic interactions between polyprenols and other lipids isolated from Ginkgo biloba L. leaves. Molecules 2013, 18, 2166-2182. 40. Iwasaki, T.; Higashikawa, K.; Reddy, V. P.; Ho, W. W. S.; Fujimoto, Y.; Fukase, K.; Terao, J.; Kuniyasu, H.; Kambe, N., Nickel-butadiene catalytic system for the cross-coupling of bromoalkanoic acids with alkyl grignard reagents: a pravtical and versatile method for preparing fatty acids. Chemistry 2013, 19, 2956-2960. 41. Banerjee, D.; Hazra, A. K.; Seal, T.; Sur, T.; Bhattacharya, D.; Ray, J.; Mukherjee, A.; Mukherjee, B., Antioxidant and antiinflammatory activities of different solvent extracts and isolated compounds of Ipomoea pes-caprae (L) Sweet of Sunderban mangrove eco-complex. Asian Journal of Chemistry 2013, 25, 4997-5000 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78723 | - |
| dc.description.abstract | 第一部分:金蟬花之活性成分大量及量少化合物研究
金蟬花為中國傳統中藥材,早在魏晉南北朝時期即有食療方面的記載,由於金蟬花功效多,不遜於冬蟲夏草,因此有多方學者針對金蟬花的功效展開深入的研究,包含生物活性成分、藥理作用和保健功能,且因為對於腎病的改善頗有見效,在臨床應用研究方面也多著重於此。 本實驗室先前利用水萃取金蟬花 (1.2 Kg),欲仿效民間炮製和食療多以水為主,將不溶物部分使用乙醇萃取後,再使用氯仿、正丁醇、水三種溶劑做極性分割,氯仿可溶層再進一步使用乙腈和己烷進行液相-液相萃取,藉以將大量的脂肪類化合物從乙腈可溶層分離。接下來藉由Sephadex LH-20、silica gel 230-400 mesh、Lobar pre-packed column 和半製備正相高效層析進行分離,得到 14 個化合物。 鑑於前次的分離得知目的化合物 Beauvericin (10) 主要存於乙腈可溶層中,因此本次實驗直接利用氯仿萃取大量金蟬花 (15 Kg),再利用乙腈和己烷進行液相-液相萃取,接者使用silica gel與Sephadex LH-20分離純化得到約8 g的Beauvericin (10)。另外也藉由此次大量實驗,分離出7個含量較少之化合物,包括三個擬環雙肽、三個環雙肽與一個擬環四肽化合物以及一個由Hiv (2-hydroxyisovalerate)生合成之化合物,分別為 (3S,6R)-bassiatin (19)、(3S,6R)-7-hydroxybassiatin (20)、(3S,6S)-bassiatin (21)、cyclo(L-Pro-L-Pro) (22)、cyclo(L-Pro-L-Val) (23)、cyclo(L-Pro-L-Leu) (24)、cyclo(N-Me-Phe-D-Hiv-N-Me-Phe-D-Hiv) (25)和2,2,4-trimethyl-1,3-pentanediol diisobutyrate (26);其中除了化合物 19 之外,其餘皆為第一次從金蟬花中分離得到,可見金蟬花成分之多元性。 第二部分:蓬萊同蕊草葉部化學成分研究 苦苣苔科植物蓬萊同蕊草(Rhynchotechum formosanum)為一年生草本植物,是台灣北部低海拔森林中常見的物種之一,目前這個植物之化學成分尚未被任何研究報導,故本實驗室擬進行其葉部之成分研究。 經過萃取和極性分割後,利用CPC、Sephadex LH-20、Lobar-A分離,得到9個化合物,分別為4個核苷酸,uracil (1)、deoxyuridine (2)、thymidine (3)、adenosine、thymine、4-hydroxy-2-methoxypyrimidine (4);2個長鏈脂肪酸,methyl icosanoate (5)和icosanoic acid (8);2個固醇類化合物混合物,β-sitosterol (6) 和stigmasterol (7);以及1個苯丙烯酸化合物,p-coumaric acid (9)。此成分研究可充當爾後化學分類之參考資料。 | zh_TW |
| dc.description.abstract | Part. I. Comprehensive chemical investigation of Isaria cicadae.
Isaria cicadae, a traditional Chinese herbal medicine. Its application can be traced back to the Wei and Jin Dynasties. Because its effect is not inferior to Ophiocordyceps sinensis, many intensive researches have been conducted on exploration of its, including bioactive components, pharmacologic effects and health applications. In the clinical use, more attention was raised on its improvement on kidney disease. Smaller scale chemical investigation has been undertaken in our lab, the active constituent, beauvericin (10), was yielded via conventional approach. The ethanol extract was divided into fractions soluble in chloroform, n-butanol, and water. Chloroform-soluble layer was divided into fractions soluble in acetonitrile and hexane. The MeCN-soluble fraction was separated by Sephadex LH-20, silica gel, RP-Lobar column chromatography and semi-prepared HPLC to yield 14 compounds. The current study was aimed to isolate enough amount of beauvericin (10) for animal study. Thus, large scale extraction of I. cicadae (15 Kg) was undertaken. The CHCl3-extract was partitioned between acetonitrile and hexanes to eliminate the interference of lipids (hexanes layer). The MeCN-soluble part was chromatographed on silica gel and Sephadex LH-20 column to yield beauvericin. In this study, additional seven minor compounds were also isolated. Four of them are cyclodepsipeptides, including (3S,6R)-bassiatin (19), (3S,6R)-7-hydroxybassiatin (20), (3S,6S)-bassiatin (21), cyclo(N-Me-Phe-D-Hiv-N-Me-Phe-D-Hiv) (25), and the rest three are cyclodipeptides, i.e. cyclo(L-Pro-L-Pro) (22), cyclo(L-Pro-L-Val) (23), cyclo(L-Pro-L-Leu) (24). The last one is 2,2,4-trimethyl-1,3-pentadiol diisobutyrate (26). Except for compound 19, the other seven compounds are separated for the first time from the I. cicadae. Part. II. Chemical investigation of Rhynchotechum formosanum leaves. Rhynchotechum formosanum Hatus., a herbaceous plant, is one of the most common species in North Taiwan low-altitude forests. Up to the present study, the chemical constituents of this plant have not been reported yet. Therefore, this study was aimed to disclose this part from its leaves. Through CPC, Sephadex LH-20 and Lobar-A column, 11 compounds were isolated from the EtOH extract. They are six nucleosides, uracil (1), deoxyuridine (2), thymidine (3), adenosine, thymine and 4-hydroxy-2-methoxypyrimidine (4); 2 long-chain fatty acids, methyl icosanoate (5) and icosanoic acid (8); two inseparate steroids, mixture of β-sitosterol (6) and stigmasterol (7); and one phenylpropenoic acid compound, p-coumaric acid (9). This study will be useful for chemotaxonomy of the Rhynchotechum plants. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:14:45Z (GMT). No. of bitstreams: 1 ntu-108-R06423020-1.pdf: 8624077 bytes, checksum: a460fea3d94c76466bc574079d840d58 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要(Abstract) III 總目錄 V 圖目錄 VII 表目錄 VIII 流程圖目錄 X 附圖目錄 XI 專有名詞縮寫(Abbreviations of Terminology) XIV 第一部分 金蟬花之活性成分大量及量少化合物研究 1 壹、緒論 1 1.1 藥材簡介 2 1.2 Isaria cicadae成分之相關研究 3 1.3 研究目的 8 貳、實驗結果與討論 9 2.1 Cyclohexadepsipeptides化合物結構解析 10 2.1.1 Beauvericin (10) 10 2.1.2 Beauvericin D (11) 13 2.1.3 Beauvericin E (12) 15 2.2 Cyclodidepsipeptides化合物結構解析 18 2.2.1 (3S,6R)-Bassiatin (19) 18 2.2.2 (3S,6R)-7-Hydroxybassiatin (20) 21 2.2.3 (3S,6S)-Bassiatin (21) 22 2.3 Diketopiperazines化合物結構解析 24 2.3.1 cyclo(L-Pro-L-Pro) (22) 24 2.3.2 cyclo(L-Pro-L-Val) (23) 26 2.3.3 cyclo(L-Pro-L-Leu) (24) 26 2.4其它化合物結構解析 28 2.4.1 cyclo(N-Me-Phe-D-Hiv-N-Me-Phe-D-Hiv) (25) 28 2.4.2 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate (26) 30 參、實驗部分 33 3.1 儀器與器材 33 3.1.1 理化性質測定儀器 33 3.1.2 成分分離之儀器與器材 33 3.1.3 試藥與溶劑 34 3.2 植物來源 35 3.3 金蟬花成分之分離 35 3.3.1 目標化合物 beauvericin (10) 之萃取分離 35 3.3.2 化合物19之分離 38 3.3.3 化合物11、12之分離 38 3.3.4 化合物20、21之分離 38 3.3.5 化合物22、23、24之分離 38 3.3.6 化合物25分離 39 3.3.7 化合物26分離 39 3.4 化合物之物理數據 41 第二部分 蓬萊同蕊草葉部化學成分研究 45 壹、緒論 45 1.1 研究目的 45 1.2 植物簡介 46 1.3 Rhynchotechum屬植物成分之相關研究 47 貳、實驗結果與討論 49 2.1. 正丁醇可溶部分所分離之化合物結構解析 50 2.1.1 Uracil (1) 50 2.1.2 Deoxyuridine (2) 50 2.1.3 Thymidine (3) 52 2.1.4 4-Hydroxy-2-methoxypyrimidine (4) 53 2.2. 乙酸乙酯可溶部分所分離之化合物結構解析 54 2.2.1 Methyl icosanoate (5) 54 2.2.2 A mixture of β-sitosterol (6) and stigmasterol (7) 55 2.2.3 Icosanoic acid (8) 58 2.2.4 p-Coumaric acid (9) 59 參、實驗部分 60 3.1 儀器與器材 60 3.1.1 理化性質測定儀器 60 3.1.2 成分分離之儀器與器材 60 3.1.3 試藥與溶劑 61 3.2 植物來源 62 3.3 蓬萊同蕊草葉部化學成分之分離 62 3.3.1 蓬萊同蕊草葉部之萃取 62 3.3.2 水萃正丁醇可溶層之分離 63 3.3.3 乙酸乙酯可溶層之分離 64 3.4 化合物之物理數據 66 References 68 | |
| dc.language.iso | zh-TW | |
| dc.subject | 核?酸 | zh_TW |
| dc.subject | 核酸 | zh_TW |
| dc.subject | 金蟬花 | zh_TW |
| dc.subject | 腎病改善 | zh_TW |
| dc.subject | 白僵菌素 | zh_TW |
| dc.subject | 大量分離 | zh_TW |
| dc.subject | 擬環? | zh_TW |
| dc.subject | 環二? | zh_TW |
| dc.subject | 蓬萊同蕊草 | zh_TW |
| dc.subject | 化學成分研究 | zh_TW |
| dc.subject | chemical investigation | en |
| dc.subject | nucleic acid | en |
| dc.subject | large-scale separation | en |
| dc.subject | beauvericin | en |
| dc.subject | cyclodepsipeptides | en |
| dc.subject | kidney disease | en |
| dc.subject | chemotaxonomy | en |
| dc.subject | Isaria cicadae | en |
| dc.subject | cyclodidepsipeptides | en |
| dc.subject | Rhynchotechum formosanum | en |
| dc.subject | nucleosides | en |
| dc.title | 金蟬花及蓬萊同蕊草葉部化學成分之研究 | zh_TW |
| dc.title | Chemical investigation of Isaria cicadae and Rhynchotechum formosanum leaves | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳益昇(Ih-Sheng Chen),林雲蓮(Yun-Lian Lin),張嘉銓(Chia-Chuan Chang) | |
| dc.subject.keyword | 金蟬花,腎病改善,白僵菌素,大量分離,擬環?,環二?,蓬萊同蕊草,化學成分研究,核?酸,核酸, | zh_TW |
| dc.subject.keyword | Isaria cicadae,kidney disease,beauvericin,large-scale separation,cyclodepsipeptides,cyclodidepsipeptides,Rhynchotechum formosanum,chemical investigation,nucleosides,nucleic acid,chemotaxonomy, | en |
| dc.relation.page | 117 | |
| dc.identifier.doi | 10.6342/NTU201902113 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-30 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R06423020-1.pdf 未授權公開取用 | 8.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
