Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78722
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡孟君(Meng-Chun Hu)
dc.contributor.authorChih-Hung Chenen
dc.contributor.author陳稚鴻zh_TW
dc.date.accessioned2021-07-11T15:14:40Z-
dc.date.available2024-08-28
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-07-29
dc.identifier.citationBrinkmann, A.O. (2011). Molecular mechanisms of androgen action--a historical perspective. Methods Mol Biol 776, 3-24.
Byrd, J.C., and Bresalier, R.S. (2004). Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev 23, 77-99.
Cain, D.W., and Cidlowski, J.A. (2017). Immune regulation by glucocorticoids. Nat Rev Immunol 17, 233-247.
Chen, S.M. (2018). HSD3B1 is up-regulated by interleukin-4 in HT-29 human colon cancer cells via multiple signaling pathways. Graduate Institude of Physiology, National Taiwan University.
Chen, J., Gong, C., Mao, H., Li, Z., Fang, Z., Chen, Q., Lin, M., Jiang, X., Hu, Y., Wang, W., et al. (2018). E2F1/SP3/STAT6 axis is required for IL-4-induced epithelial-mesenchymal transition of colorectal cancer cells. Int J Oncol 53, 567-578.
Chen, W.Y., Weng, J.H., Huang, C.C., and Chung, B.C. (2007). Histone deacetylase inhibitors reduce steroidogenesis through SCF-mediated ubiquitination and degradation of steroidogenic factor 1 (NR5A1). Mol Cell Biol 27, 7284-7290.
Chou, C.W., Wu, M.S., Huang, W.C., and Chen, C.C. (2011). HDAC inhibition decreases the expression of EGFR in colorectal cancer cells. PLoS One 6, e18087.
Cima, I., Corazza, N., Dick, B., Fuhrer, A., Herren, S., Jakob, S., Ayuni, E., Mueller, C., and Brunner, T. (2004). Intestinal epithelial cells synthesize glucocorticoids and regulate T cell activation. J Exp Med 200, 1635-1646.
Coste, A., Dubuquoy, L., Barnouin, R., Annicotte, J.S., Magnier, B., Notti, M., Corazza, N., Antal, M.C., Metzger, D., Desreumaux, P., et al. (2007). LRH-1-mediated glucocorticoid synthesis in enterocytes protects against inflammatory bowel disease. Proc Natl Acad Sci U S A 104, 13098-13103.
Dhand, R., Hiles, I., Panayotou, G., Roche, S., Fry, M.J., Gout, I., Totty, N.F., Truong, O., Vicendo, P., Yonezawa, K., et al. (1994). PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity. EMBO J 13, 522-533.
Di Stefano, A.B., Iovino, F., Lombardo, Y., Eterno, V., Hoger, T., Dieli, F., Stassi, G., and Todaro, M. (2010). Survivin is regulated by interleukin-4 in colon cancer stem cells. J Cell Physiol 225, 555-561.
Duncan, T.J., Watson, N.F., Al-Attar, A.H., Scholefield, J.H., and Durrant, L.G. (2007). The role of MUC1 and MUC3 in the biology and prognosis of colorectal cancer. World J Surg Oncol 5, 31.
Farooq, M., Sulochana, K.N., Pan, X., To, J., Sheng, D., Gong, Z., and Ge, R. (2008). Histone deacetylase 3 (hdac3) is specifically required for liver development in zebrafish. Dev Biol 317, 336-353.
Franke, T.F., Kaplan, D.R., Cantley, L.C., and Toker, A. (1997). Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275, 665-668.
Gajewski, T.F., Schreiber, H., and Fu, Y.X. (2013). Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14, 1014-1022.
Gascan, H., Gauchat, J.F., Roncarolo, M.G., Yssel, H., Spits, H., and de Vries, J.E. (1991). Human B cell clones can be induced to proliferate and to switch to IgE and IgG4 synthesis by interleukin 4 and a signal provided by activated CD4+ T cell clones. J Exp Med 173, 747-750.
Ghayee, H.K., and Auchus, R.J. (2007). Basic concepts and recent developments in human steroid hormone biosynthesis. Rev Endocr Metab Disord 8, 289-300.
Gingras, S., Cote, S., and Simard, J. (2000). Multiple signaling pathways mediate interleukin-4-induced 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase type 1 gene expression in human breast cancer cells. Mol Endocrinol 14, 229-240.
Gingras, S., Moriggl, R., Groner, B., and Simard, J. (1999). Induction of 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase type 1 gene transcription in human breast cancer cell lines and in normal mammary epithelial cells by interleukin-4 and interleukin-13. Mol Endocrinol 13, 66-81.
Gingras, S., and Simard, J. (1999). Induction of 3beta-hydroxysteroid dehydrogenase/isomerase type 1 expression by interleukin-4 in human normal prostate epithelial cells, immortalized keratinocytes, colon, and cervix cancer cell lines. Endocrinology 140, 4573-4584.
Gocheva, V., Wang, H.W., Gadea, B.B., Shree, T., Hunter, K.E., Garfall, A.L., Berman, T., and Joyce, J.A. (2010). IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 24, 241-255.
Graham, J.D., and Clarke, C.L. (1997). Physiological action of progesterone in target tissues. Endocr Rev 18, 502-519.
Hart, P.H., Vitti, G.F., Burgess, D.R., Whitty, G.A., Piccoli, D.S., and Hamilton, J.A. (1989). Potential antiinflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factor alpha, interleukin 1, and prostaglandin E2. Proc Natl Acad Sci U S A 86, 3803-3807.
Herold, M.J., McPherson, K.G., and Reichardt, H.M. (2006). Glucocorticoids in T cell apoptosis and function. Cell Mol Life Sci 63, 60-72.
Hung, P.Y. (2017). Interleukin-4 induces HSD3B1 expression in HT-29 human colon cancer cells. Graduate Institude of Physiology, National Taiwan University.
Iwashita, J., Sato, Y., Sugaya, H., Takahashi, N., Sasaki, H., and Abe, T. (2003). mRNA of MUC2 is stimulated by IL-4, IL-13 or TNF-alpha through a mitogen-activated protein kinase pathway in human colon cancer cells. Immunol Cell Biol 81, 275-282.
Kostadinova, F., Schwaderer, J., Sebeo, V., and Brunner, T. (2014). Why does the gut synthesize glucocorticoids? Ann Med 46, 490-497.
Lagger, G., O'Carroll, D., Rembold, M., Khier, H., Tischler, J., Weitzer, G., Schuettengruber, B., Hauser, C., Brunmeir, R., Jenuwein, T., et al. (2002). Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21, 2672-2681.
Lai, T.C., Li, H.F., Li, Y.S., Hung, P.Y., Shyu, M.K., and Hu, M.C. (2017). Proximal GATA-binding sites are essential for human HSD3B1 gene transcription in the placenta. Sci Rep 7, 4271.
Lee, S.O., Pinder, E., Chun, J.Y., Lou, W., Sun, M., and Gao, A.C. (2008). Interleukin-4 stimulates androgen-independent growth in LNCaP human prostate cancer cells. Prostate 68, 85-91.
Lei, Y., Liu, L., Zhang, S., Guo, S., Li, X., Wang, J., Su, B., Fang, Y., Chen, X., Ke, H., et al. (2017). Hdac7 promotes lung tumorigenesis by inhibiting Stat3 activation. Mol Cancer 16, 170.
Liang, J., and Slingerland, J.M. (2003). Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2, 339-345.
Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008). Cancer-related inflammation. Nature 454, 436-444.
Marks, P., Rifkind, R.A., Richon, V.M., Breslow, R., Miller, T., and Kelly, W.K. (2001). Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1, 194-202.
Miller, W.L., and Auchus, R.J. (2011). The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 32, 81-151.
Miyazaki, T., Kawahara, A., Fujii, H., Nakagawa, Y., Minami, Y., Liu, Z.J., Oishi, I., Silvennoinen, O., Witthuhn, B.A., Ihle, J.N., et al. (1994). Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits. Science 266, 1045-1047.
Montgomery, R.L., Davis, C.A., Potthoff, M.J., Haberland, M., Fielitz, J., Qi, X., Hill, J.A., Richardson, J.A., and Olson, E.N. (2007). Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21, 1790-1802.
Nelms, K., Keegan, A.D., Zamorano, J., Ryan, J.J., and Paul, W.E. (1999). The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol 17, 701-738.
Nilsson, S., Makela, S., Treuter, E., Tujague, M., Thomsen, J., Andersson, G., Enmark, E., Pettersson, K., Warner, M., and Gustafsson, J.A. (2001). Mechanisms of estrogen action. Physiol Rev 81, 1535-1565.
Noti, M., Corazza, N., Mueller, C., Berger, B., and Brunner, T. (2010). TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. J Exp Med 207, 1057-1066.
Peng, L., Huang, Y., Jin, F., Jiang, S.W., and Payne, A.H. (2004). Transcription enhancer factor-5 and a GATA-like protein determine placental-specific expression of the Type I human 3beta-hydroxysteroid dehydrogenase gene, HSD3B1. Mol Endocrinol 18, 2049-2060.
Perandones, C.E., Illera, V.A., Peckham, D., Stunz, L.L., and Ashman, R.F. (1993). Regulation of apoptosis in vitro in mature murine spleen T cells. J Immunol 151, 3521-3529.
Roca, H., Craig, M.J., Ying, C., Varsos, Z.S., Czarnieski, P., Alva, A.S., Hernandez, J., Fuller, D., Daignault, S., Healy, P.N., et al. (2012). IL-4 induces proliferation in prostate cancer PC3 cells under nutrient-depletion stress through the activation of the JNK-pathway and survivin up-regulation. J Cell Biochem 113, 1569-1580.
Seder, R.A., and Paul, W.E. (1994). Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu Rev Immunol 12, 635-673.
Seto, E., and Yoshida, M. (2014). Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6, a018713.
Shankaranarayanan, P., Chaitidis, P., Kuhn, H., and Nigam, S. (2001). Acetylation by histone acetyltransferase CREB-binding protein/p300 of STAT6 is required for transcriptional activation of the 15-lipoxygenase-1 gene. JBC 276, 42753-42760.
Shanmugam, C., Jhala, N.C., Katkoori, V.R., Wan, W., Meleth, S., Grizzle, W.E., and Manne, U. (2010). Prognostic value of mucin 4 expression in colorectal adenocarcinomas. Cancer 116, 3577-3586.
Sheng, Y.H., He, Y., Hasnain, S.Z., Wang, R., Tong, H., Clarke, D.T., Lourie, R., Oancea, I., Wong, K.Y., Lumley, J.W., et al. (2017). MUC13 protects colorectal cancer cells from death by activating the NF-kappaB pathway and is a potential therapeutic target. Oncogene 36, 700-713.
Sidler, D., Renzulli, P., Schnoz, C., Berger, B., Schneider-Jakob, S., Fluck, C., Inderbitzin, D., Corazza, N., Candinas, D., and Brunner, T. (2011). Colon cancer cells produce immunoregulatory glucocorticoids. Oncogene 30, 2411-2419.
Simard, J., Ricketts, M.L., Gingras, S., Soucy, P., Feltus, F.A., and Melner, M.H. (2005). Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocr Rev 26, 525-582.
Taves, M.D., Gomez-Sanchez, C.E., and Soma, K.K. (2011). Extra-adrenal glucocorticoids and mineralocorticoids: evidence for local synthesis, regulation, and function. Am J Physiol Endocrinol Metab 301, E11-24.
Thornhill, M.H., Wellicome, S.M., Mahiouz, D.L., Lanchbury, J.S., Kyan-Aung, U., and Haskard, D.O. (1991). Tumor necrosis factor combines with IL-4 or IFN-gamma to selectively enhance endothelial cell adhesiveness for T cells. The contribution of vascular cell adhesion molecule-1-dependent and -independent binding mechanisms. J Immunol 146, 592-598.
Todaro, M., Lombardo, Y., Francipane, M.G., Alea, M.P., Cammareri, P., Iovino, F., Di Stefano, A.B., Di Bernardo, C., Agrusa, A., Condorelli, G., et al. (2008). Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4. Cell Death Differ 15, 762-772.
West, G.A., Matsuura, T., Levine, A.D., Klein, J.S., and Fiocchi, C. (1996). Interleukin 4 in inflammatory bowel disease and mucosal immune reactivity. Gastroenterology 110, 1683-1695.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78722-
dc.description.abstractInterlukin-4 (IL-4) 是一種由T helper 2 細胞所分泌的細胞激素,調控T helper 2 細胞分化與增生。過去文獻發現IL-4能夠促進癌細胞的生長,包括乳癌、前列腺癌等癌細胞,並且影響癌細胞的生長以及轉移能力。本論文我們利用MTT試驗發現,在缺乏血清的情況下,IL-4促進HT-29大腸癌細胞的生長。利用群落生成分析IL-4對於細胞生長的影響,結果顯示IL-4能增加HT-29細胞群落生長的數目。遷移與侵入在癌細胞的轉移中扮演重要角色,wound healing試驗的結果顯示,IL-4會促進HT-29細胞遷移的能力,並且促進上皮間質轉化相關基因表現。此外,我們也發現IL-4調控了HT-29大腸癌細胞許多黏液素以及促發炎細胞激素基因的表現。先前我們的研究發現在HT-29細胞中,IL-4會誘導類固醇荷爾蒙生成基因HSD3B1的大量表現,並能促進HT-29細胞產生具生物活性的糖類皮質素。已知糖類皮質素會促進T細胞的凋亡。我們將老鼠脾臟細胞培養於HT-29細胞培養液中,並利用流式細胞儀進行細胞凋亡分析,發現經IL-4處理的HT-29細胞培養液培能促進T細胞的凋亡,說明IL-4可能經由HSD3B1的表現,促進HT-29糖類皮質素產生而促進T細胞的凋亡。進一步研究表觀遺傳學是否調控IL-4誘導的HSD3B1表現,我們發現廣效型組蛋白去乙醯化蛋白酶 (HDAC)抑制劑能有效降低IL-4所誘導之HSD3B1表現,甲基轉移酶抑制劑則沒有明顯效應,說明組蛋白去乙醯化蛋白酶的活性對於IL-4所誘導之HSD3B1表現可能是重要的。將細胞中的HDAC1、HDAC2或HDAC3 進行knockdown後,能夠抑制IL-4所誘導之HSD3B1表現,說明HDAC對於IL-4所誘導HSD3B1表現是重要的。然而,探討其可能的作用機制,實驗結果顯示HDAC抑制劑不會改變HDAC1、HDAC2、HDAC3以及HDAC4的表現量,不會影響IL-4兩個重要訊息傳遞路徑STAT6與AKT之活化,也不會影響IL-4所誘導之STAT6與HSD3B1啟動子的結合。綜合以上結果顯示,IL-4會促進大腸癌細胞HT-29的生長與遷移,以及促進HSD3B1的表現產生糖類皮質素而影響免疫反應。zh_TW
dc.description.abstractInterleukin-4 (IL-4) is a cytokine secreted by T helper 2 cells which controls the differentiation and proliferation of T helper 2 cells. It has been demonstrated that IL-4 promotes cancer cell growth and metastasis, including breast cancer and prostate cancer. Here we showed that IL-4 stimulated HT-29 colon cancer cells growth under serum free condition measured by MTT assay. Besides, colony formation assay was performed to investigate the effects of IL-4 on the clonogenicity of HT-29 cells. Results showed that IL-4 promoted the ability of colony formation. Migration and invasion play a critical role in cancer metastasis. We further showed that IL-4 promoted the migration ability measured by wound healing assay and upregulated epithelial-mesenchymal transition-associated genes expression in HT-29 cells. We also found that IL-4 altered the expression of mucin genes and pro-inflammatory cytokines. Our previous study found that IL-4 induced steroidogenic gene HSD3B1 expression and stimulated bioactive glucocorticoids (GCs) production in HT-29 cells. It is known that GCs promote T cells apoptosis. Using flow cytometry analysis, we found that conditioned medium from HT-29 cells treated with IL-4 induced murine splenic T cells apoptosis, suggesting that IL-4 stimulated the production of GCs and promoted the T cells apoptosis, probably through the induction of HSD3B1 expression. To further investigate whether the epigenetic modifications are involved in IL-4-induced HSD3B1 expression. We found that IL-4-induced HSD3B1 expression was abolished by several HDAC inhibitors; however, the methyltransferase inhibitor had no significant effects. We further found HDAC1, HDAC2, or HDAC3 knockdown attenuated IL-4-induced HSD3B1 protein expression, indicating that these HDACs are critical for IL-4-induced HSD3B1 expression in HT-29 cells. IL-4 had no significant effects on HDAC1, HDAC2, HDAC3, and HDAC4 proteins expression, the phosphorylation of IL-4 downstream signaling STAT6 and AKT, and the ability of IL-4-induced STAT6 binding to HSD3B1 promoter. In summary, our study indicates that IL-4 promotes HT-29 cancer cell growth, migration, and the immunoregulatory GCs synthesis via HSD3B1 induction.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:14:40Z (GMT). No. of bitstreams: 1
ntu-108-R06441005-1.pdf: 2171879 bytes, checksum: ed3361a0dbb97b61e72c4181daa6770a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 I
目錄 II
表次 V
圖次 VI
附圖 VIII
中文摘要 IX
Abstract XI
I. Introduction 1
A. Biological functions of IL-4 1
B. IL-4 signaling transduction 2
C. Steroid hormones 3
D. Human HSD3B genes 4
E. Intestinal glucocorticoid synthesis and physiological functions 6
F. Histone deacetylase (HDAC) 6
G. Aim of the study 8
II. Materials and methods 9
A. Drugs 9
誌謝 I
目錄 II
表次 V
圖次 VI
附圖 VIII
中文摘要 IX
Abstract XI
I. Introduction 1
A. Biological functions of IL-4 1
B. IL-4 signaling transduction 2
C. Steroid hormones 3
D. Human HSD3B genes 4
E. Intestinal glucocorticoid synthesis and physiological functions 6
F. Histone deacetylase (HDAC) 6
G. Aim of the study 8
II. Materials and methods 9
A. Drugs 9
B. Cell culture 9
C. Whole cell lysates extraction 10
D. Western blot analysis 11
E. RNA isolation 14
F. Real-time RT-PCR 14
G. shRNA knockdown 17
H. Preparation of conditioned medium 20
I. Apoptotic T cells analysis 20
J. MTT assay 21
K. Wound healing assay 22
L. Colony formation assay 22
M. Chromatin immunoprecipitation (ChIP) 23
N. Statistical analysis 27
III. Results 28
A. Effects of IL-4 on HT-29 cell growth and migration ability 28
B. Effects of IL-4 on epithelial-mesenchymal transition (EMT) in HT-29 cells 29
C. Effects of IL-4 on mucin genes expression 29
D. Effects of IL-4 on pro-inflammatory cytokine genes expression 30
誌謝 I
目錄 II
表次 V
圖次 VI
附圖 VIII
中文摘要 IX
Abstract XI
I. Introduction 1
A. Biological functions of IL-4 1
B. IL-4 signaling transduction 2
C. Steroid hormones 3
D. Human HSD3B genes 4
E. Intestinal glucocorticoid synthesis and physiological functions 6
F. Histone deacetylase (HDAC) 6
G. Aim of the study 8
II. Materials and methods 9
A. Drugs 9
B. Cell culture 9
C. Whole cell lysates extraction 10
D. Western blot analysis 11
E. RNA isolation 14
F. Real-time RT-PCR 14
G. shRNA knockdown 17
H. Preparation of conditioned medium 20
I. Apoptotic T cells analysis 20
J. MTT assay 21
K. Wound healing assay 22
L. Colony formation assay 22
M. Chromatin immunoprecipitation (ChIP) 23
N. Statistical analysis 27
III. Results 28
A. Effects of IL-4 on HT-29 cell growth and migration ability 28
B. Effects of IL-4 on epithelial-mesenchymal transition (EMT) in HT-29 cells 29
C. Effects of IL-4 on mucin genes expression 29
D. Effects of IL-4 on pro-inflammatory cytokine genes expression 30
E. Effects of IL-4 on murine splenic T cells apoptosis 30
F. HDAC inhibitors abolish the IL-4-induced HSD3B1 expression in HT-29 cells 31
G. HDACs proteins expression are not affected by IL-4 in HT-29 cells 32
H. HDAC1, HDAC2 and HDAC3 are involved in IL4-induced HSD3B1 expression 33
I. IL-4 signaling pathways are not interrupted by HDAC inhibitors 34
J. Effects of IL-4 and HDAC inhibitor on STAT6 binding on HSD3B1 promoter in HT-29 cells 34
K. Effects of IL-4 and TSA on histone H3 acetylation on HSD3B1 promoter in HT-29 cells 35
IV. Discussion 36
A. Potential roles of IL-4 in HT-29 colon cancer cell growth and metastasis 36
B. The roles of IL-4 on intestinal GCs synthesis, immune regulation, and cytokines expression 38
C. Effects HDAC inhibitor on IL-4-induced HSD3B1 expression 39
V. References 42
dc.language.isoen
dc.subject大腸癌zh_TW
dc.subject介白素-4zh_TW
dc.subject組蛋白去乙醯化蛋白?zh_TW
dc.subjectHSD3B1zh_TW
dc.subjectHSD3B1en
dc.subjectInterleukin-4en
dc.subjectcolon canceren
dc.subjectHistone deacetylaseen
dc.titleInterleukin-4對於HT-29大腸癌細胞生長與轉移之影響zh_TW
dc.titleInterleukin-4 influences HT-29 colon cancer cell growth and metastasisen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧主欽(Juu-Chin Lu),張淑芬(Shwu-Fen Chang),徐立中(Li-Chung Hsu)
dc.subject.keyword介白素-4,組蛋白去乙醯化蛋白?,HSD3B1,大腸癌,zh_TW
dc.subject.keywordInterleukin-4,Histone deacetylase,HSD3B1,colon cancer,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201902128
dc.rights.note有償授權
dc.date.accepted2019-07-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
dc.date.embargo-lift2024-08-28-
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-108-R06441005-1.pdf
  未授權公開取用
2.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved