請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7871完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 施文彬 | |
| dc.contributor.author | Yu-Chi Chen | en |
| dc.contributor.author | 陳俞齊 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:56:44Z | - |
| dc.date.available | 2021-08-24 | |
| dc.date.available | 2021-05-19T17:56:44Z | - |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-17 | |
| dc.identifier.citation | [1] Mayo Clinic. (2014, July). Heart disease, definition. [Online]. Available: http://www.mayoclinic.org/
[2] Patient Info. (2016, May). Acute coronary syndrome. [Online]. Available: http://patient.info/ [3] A. M. Gordon, E. Homsher, and M. Regnier, “Regulation of contraction in striated muscle,” Physiological Reviews, vol. 80, no. 2, pp.853-924, 2000. [4] J. L. McDonough and J. E. V. Eyk, “Developing the next generation of cardiac markers: disease-induced modifications of troponin I,” Prog. Cardiovasc. Dis., vol. 47, pp. 207-216, 2004. [5] V. S. Mahajan and P. Jarolim, “How to interpret elevated cardiac troponin levels,” Circulation, vol. 124, pp. 2350-2354, 2011. [6] P. Zuo, X. Li, D. C. Dominguez, and B.-C. Ye, “A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide noano-biosensors for one-step multiplexed pathogen detection,” Lab Chip, vol. 13, pp. 3921-3928, 2013. [7] W. U. Dittmer, T. H. Evers, W. M. Hardeman, W. Huijnen, R. Kamps, P. d. Kievit, J. H. M. Neijzen, J. H. Nieuwenhuis, M. J. J. Sijbers, D. W. C. Dekkers, M. H. Hefti, and M. F. W. C. Martens, “Rapid, high sensitivity, point-of- care test for cardiac troponin based on optomagnetic biosensor,” Clin. Chim. Acta, vol. 411, pp. 868-873, 2010. [8] NewLife BioChemEX LLC. (2012). ELISA. [Online]. Available: http://www.nlbiochemex.com/ [9] V. Bhalla, S. Carrara, P. Sharma, Y. Nangia, and C. R. Suri, “Gold nanoparticles mediated label-free capacitance detection fo cardiac troponin I,” Sensor. Actuator. B, vol. 161, pp. 761-768, 2012. [10] A. Periyakaruppan, R. P. Gandhiraman, M. Meyyappan and, J. E. Koehne, “Label-free detection of cardiac troponin-I using carbon nanofiber based nanoelectrode arrays,” Anal. Chem., vol. 85, pp. 3858-3863, 2013. [11] J. Wu, D. M. Cropek, A. C. West, and S. Banta, “Development of a troponin I biosensor using a peptide obtained through phage display,” Anal. Chem., vol. 82, pp. 8235-8243, 2010. [12] W.-J. Kim, B. K. Kim, A. Kim, C. Huh, C. S. Ah, K.-H. Kim, J. Hong, S. H. Park, S. Song, J. Song, and G. Y. Sung, “Response to cardiac markers in human serum analyzed by guided-mode resonance biosensor,” Anal. Chem., vol. 82, pp. 9686-9693, 2010. [13] W.-Y. Wu, Z.-P. Bian, W. Wang, W. Wang, and J.-J. Zhu, “PDMS gold nanoparticle composite film-based silver enhanced colorimetric detection of cardiac troponin I,” Sensor. Actuator. B, vol. 147, pp. 298-303, 2010. [14] Y.-C. Kwon, M.-G. Kim, E.-M. Kim, Y.-B. Shin, S.-K. Lee, S. D. Lee, M.-J. Cho, and H.-S. Ro, “Development of a surface plasmon resonance-based immunosensor for the rapid detection of cardiac troponin I,” Biotechnol. Lett., vol. 33, pp. 921-927, 2011. [15] Z. R. Guo, C. R. Gu, X. Fan, Z. P. Bian, H. F. Wu, D. Yang, N. Gu, and J. N. Zhang, “Fabrication of anti-human cardiac troponin I immunogold nanorods for sensing acute myocardial damage,” Nanoscale Res. Lett., vol. 4, pp. 1428-1433, 2009. [16] M. Shan, M. Li, X. Qiu, H. Qi, Q. Gao, and C. Zhang, “Sensitive electrogenerated chemiluminescence peptide-based biosensor for the determination of troponin I with gold nanoparticles amplification,” Gold Bull., vol. 47, pp. 57-64, 2014. [17] P. K. Ang, A. Li, M. Jaiswal, Y. Wang, H. W. Hou, J. T. L. Thong, C. T. Lim, and K. P. Loh, “Flow sensing of single cell by graphene transistor in a microfluidic channel,” Nano, Lett., vol. 11, pp. 5240-5246, 2011. [18] R. X. He, P. Lin, Z. K. Liu, H. W. Zhu, X. Z. Zhao, H. L. W. Chan, and F. Yan, “Solution-gated graphene field effect transistors integrated in microfluidic systems and used for flow velocity detection,” Nano Lett., vol. 12, pp. 1404-1409, 2012. [19] L. C. Clark, Jr. and C. Lyons, “Electrode systems for continuous monitoring in cardiovascular surgery”, Ann. Ny. Acad. Sci., vol. 102, pp. 29-45, 1962. [20] S. J. Updike and G. P. Hicks, “The enzyme electrode,” Nature, vol. 214, pp. 986-988, 1967. [21] G. Saltzgaber, P. Wojcik, T. Sharf, M. R Leyden, J. L Wardini, C. A Heist, A. A Adenuga, V. T Remcho, and E. D Minot, “Scalable graphene field-effect sensors forspecific protein detection,” Nanotechnology, vol. 24, 355502, 2013. [22] M. Ueda, Y. Takamura, Y. Horiike, and Y. Baba, “Molecular detection in an microfluidic device by streaming current measurement,” JPN. J. APPL. PHYS., vol. 41, pp. L1275-L1277, 2002. [23] D. C. Martins, V. Chu, D. M. F. Prazeres, and J. P. Conde, “Electrical detection of DNA immobilization and hybridization by streaming current measurements in microchannels,” Appl. Phys. Lett., vol. 99, pp. 183702, 2011. [24] D. L. Robertson and G. F. Joyce, 'Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA,' Nature, vol. 344, pp. 467-468, 1990. [25] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubons, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666-669, 2004. [26] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, pp. 385-388, 2008. [27] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science, vol. 320, pp. 1308, 2008. [28] R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, “The role of graphene for electrochemical energy storage,” Nat. Mater., vol. 14, pp. 271-279, 2015. [29] F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, and K. Novoselov, “ Detection of individual gasmolecules adsorbed on graphene,” Nat. Mater., vol. 6, pp. 652-655, 2007. [30] N. Mohanty and V. Berry, “Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents,” Nano. Lett., vol. 8, pp. 4469-4476, 2008. [31] W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc., vol. 80, p. 1339, 1958. [32] P. Lia, B. Zhangb and, T. Cuib, “Towards intrinsic graphene biosensor: A label-free, suspended single crystalline graphene sensor for multiplex lung cancer tumor markers detection,” Biosens. Bioelectron., vol. 72, pp. 168-174, 2015. [33] P.-J. J. Huang, R. Kempaiah, and J. Liu, “Synergistic pH effect for reversible shuttling aptamer-based biosensors between graphene oxide and target molecules,” J. Mater. Chem., vol. 21, pp. 8991-8993, 2011. [34] L. Jiang, R. Yuan, Y. Chai, Y. Yuan, L. Bai, and Y. Wang, “Aptamer-based highly sensitive electrochemical detection of thrombin via the amplification of graphene,” Analyst., vol. 137, pp. 2415-2420, 2012. [35] Y. Wang, Y. Xiao, X. Ma, N. Li, and X. Yang, “Label-free and sensitive thrombin sensing on a molecularly grafted aptamer on graphene,” Chem. Commun., vol. 48, pp. 738-740, 2012. [36] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano. Lett., vol. 9, pp. 30-35, 2009. [37] W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff , “Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition,” Nano. Lett., vol. 10, pp. 1645-1651, 2010. [38] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano. Lett., vol. 9, pp. 4359-4363, 2009. [39] J. D. Wood, G. .P Doidge, E. A. Carrion, J. C. Koepke, J. A. Kaitz, I. Datye, A. Behnam, J. Hewaparakrama, B. Aruin, Y. Chen, H. Dong, R. T. Haasch, J. W. Lyding, and E. Pop, 'Annealing free, clean graphene transfer using alternative polymer scaffolds,' Nanotechnology, vol. 26, pp. 055302, 2015. [40] W. Regan, N. Alem, B. Alemán, B Geng, Ç. Girit, L. Maserati, F. Wang, M. Crommie, and A. Zettla, “A direct transfer of layer-area graphene,” Appl. Phys. Lett., vol. 96, pp. 102-113, 2010. [41] L. J. Cote, F. Kim, and J. Huang, “Langmuir-Blodgett assembly of graphite oxide single layers,” J. Am. Chem. Soc., vol. 131, pp. 1043-1049, 2009. [42] M. Musoddiq Jaafar, G. P. M. K. Ciniciato, S. A. Ibrahim, S. M. Phang, K. Yunus, A. C. Fisher, M. Iwamoto, and P. Vengadesh, “Preparation of a three-dimensional reduced graphene oxide film by using the Langmuir–Blodgett method,” Langmuir., vol. 31, pp. 10426-10434, 2015. [43] L. J. Cote, J. Kim, V. C. Tung, J. Luo, F. Kim, and J. Huang, “Graphene oxide as surfactant sheets,” Pure. Appl. Chem., vol. 83, pp. 95-110, 2011. [44] J. Chang, S. Mao, Y. Zhang, S. Cui, G. Zhou, X. Wu, C. H. Yang, and J. Chen, “Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria,” Nanoscale, vol. 5, pp. 3620-3626, 2013. [45] S. Bykkam, K.V. Rao, C. S. Chakra, V. Rajendar, R. N. Kumar and J. Ananthaiah, “Graphene oxide thin films: A simple profilometer for film thickness measurement,” IJEAT., vol. 2, pp. 2249-8958, 2013. [46] B. J. Tarasevich, J. Liu, M. Sarikaya and I. A. Akasy, “Inorganic gels with nanometer-sized particles,” Mat. Res. Soc. Symp. Proc., vol. 121, pp.225-237, 1988. [47] A. G. Emslie, F. T. Bonner, and L. G. Peck, “Flow of a viscous liquid on a rotating disk,” Appl. Phys., vol. 29, pp. 858-862, 1958. [48] D. Meyerhofer, “Characteristics of resist films produced by spinning,” J. Appl. Phys., vol. 49, pp. 3993, 1978. [49] Brewer Science. (1997). Spin coating theory. [Online]. Available: http://www.brewerscience.com/spin-coating-theory [50] N. Sahu, B. Parija, and S. Panigrahi, “Fundamental understanding and modeling of spin coating process: A review,” Indian J. Phys., vol. 83, pp. 493-502, 2009. [51] G. A. Luurtsema, “Spin coating for rectangular substrates,” M.S. thesis, Dept. Elec. Eng. And Com. Sci., Univ. CA., Berkeley, 1997. [52] 蘇清源,“物理專文:石墨烯氧化物之特性與應用前景”,物理雙月刊,第33卷,第2期,第163-167頁,2011。 [53] D. E. Bornside, C. W. macosko, and L. E. Scriven, “Spin coating: Onedimensional model,” J. Appl. Phys., vol. 66, pp. 5185, 1989. [54] Y. S. Kim, H. S. Jung, T. Matsuura, H. Y. Lee, T. Kawai, and M. B. Gu, “Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip,” Biosens Bioelectron, vol. 22, pp. 2525-2531, 2007. [55] B.D. Washo, “Rheology and modeling of the spin coating process,” IBM J. Res. Dev., vol. 21, pp. 190-198, 1977. [56] D. P. Birnie III, S. K. Hau, D. S. Kamber, and D. M. Kaz, “Effect of ramping-up rate on film thickness for spin-on processing,” J. Mater. Sci., vol. 16, pp. 715-720, 2005. [57] Georgia Tech. (2004, Jun.). Spin theory. [Online]. Available: http://www2.ece.gatech.edu/research/labs/vc/packaging/theory/spin_theory.html [58] Y. Guo, C. Di, H. Liu, J. Zheng, L. Zhang, G. Yu, and Y. Liu, “General route toward patterning of graphene oxide by a combination of wettability modulation and spin-coating,” Acs Nano, vol. 4, pp. 5749-5754, 2010. [59] Ossila enabling innovative electronics. (2016). Spin coating: A guide to theory and techniques. [Online]. Available: http://www.ossila.com/pages/spin-coating [60] M. Wirde and U. Gelius, “Self-assembled monolayers of cystamine and cysteamine on gold studied by XPS and voltammetry,” Langmuir, vol. 15, pp. 6370–6378, 1999. [61] X. Zhu, Q. Liu, X. Zhu, C. Li, M. Xu, and Y. Liang, “Reduction of graphene oxide via ascorbic acid and its application for simultaneous detection of dopamine and ascorbic acid,” Int. J. Electrochem. Sci., vol. 7, pp. 5172-5184, 2012. [62] J. Vivekananda, J. L. Kiel, “Anti-francisella tularensis DNA aptamers detect tularemia antigen from different subspecies by aptamer-linked immobilized sorbent assay,” Lab. Invest.,vol. 8, pp, 610-618, 2006. [63] E. Baldrich, J. L. Acero, G. Reekmans, W. Laureyn, C. K. O'Sullivan, “Displacement enzyme linked aptamer assay,” Anal. Chem., vol. 77, pp. 4774-4874, 2005. [64] B. Strehlitz, N. Nikolaus, R. Stoltenburg, “Protein detection with aptamer biosensors,“ Sensors, vol. 8, pp. 4296-4307, 2008. [65] D. G. Ahn, I. J. Jeon, J. D. Kim, M. S. Song, S. R. Han, S. W. Lee, H. Jung, J. W. Oh, “RNA aptamer-based sensitive detection of SARS coronavirus nucleocapsid protein,” Analyst, vol. 134, pp. 1896-1901, 2009. [66] D. L. Robertson, G. F. Joyce, “Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA,” Nature, vol. 344, pp. 467-468, 1990. [67] A. D. Ellington, J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature, vol. 346, pp. 818-822, 1990. [68] C. Tuerk, L. Gold, “Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase,” Science, vol. 249, pp. 505-510, 1990. [69] R. E. Wang, H. Wu, Y. Niu, J. Cai, “Improving the stability of aptamers by chemical modification,” Curr. Med. Chem., vol. 18, pp. 4126-4138, 2011. [70] S. Balamurugan, A. Obubuafo, S. A. Soper, D. A. Spivak, “Surface immobilization methods for aptamer diagnostic applications,” Anal. Bioanal. Chem., vol. 390, pp. 1009-1021, 2008. [71] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo, “Reduction of graphene oxide via L-ascorbic acid,” Chem. Commun., vol. 46, pp. 1112-1114, 2010. [72] L. Yang, Y. Li, C. L. Griffis, and M. G. Johnson, “Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium,” Biosens. Bioelectron., vol. 19, pp. 1139-1147, 2004. [73] J. Chang, S. Mao, Y. Zhang, S. Cui, G. Zhou, X. Wu, C.-H. Yang, and J. Chen, “Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria,” Nanoscale, vol. 5, p. 3620, 2013. [74] S. Gurunathan, J. W. Han, E. S. Kim, J. H. Park, and J.-H. Kim, “Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule,” Int. J. Nanomedicine, vol. 10, pp. 2951-2969, 2015. [75] A. Jorio, M. Dresselhaus, R. Saito, and G. F. Dresselhaus, “Raman Spectroscopy in Graphene Related Systems,” ISBN 978-3-527-40811-5, 2011. [76] A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B, vol. 61, pp. 14095–14107, 2000. [77] X. Dong, D. Fu, W. Fang, Y. Shi, P. Chen, L.-J. Li, “Doping single-layer graphene with aromatic molecules,” Small, vol. 5, pp. 1422-1426, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7871 | - |
| dc.description.abstract | 本論文以開發心臟病量測晶片為背景,利用旋轉塗佈法(Spin-coating method)在量測晶片上製作還原氧化石墨烯(Reduced graphene oxide)薄膜,以其用來當作感測區材料。臨床上對於急性冠心症(acute coronary syndrome, ACS)的診斷為症狀評估、心電圖的缺氧變化以及心肌酶濃度升高,而心肌生物標記(Cardiac biomarker)的濃度在心肌受損初期即會微量提升,因此只要提早偵測到生物標記的濃度變化,將可及時對病患做緊急治療。本論文所屬計畫致力於開發一生物感測晶片,期望能使用二維材料-石墨烯(Graphene)來當作感測區,以達到使用方便、檢測快速、效能穩定、價格便宜的效果,因此將著重於製備石墨烯薄膜的方法以及其均勻性的控制,以能夠成為商品及量產為目標。利用石墨烯作為感測區的方式已有許多文獻提出,然而多以化學氣相沉積法(chemical vapor deposition, CVD)來製備,再藉由濕式轉印方式將石墨烯轉移至感測晶片上,此轉印的過程中,通常會造成石墨烯機械應力的拉扯以及損毀,因此本論文使用石墨烯氧化物以及旋轉塗佈法來製備石墨烯氧化物薄膜,以達到更為均勻之石墨烯薄膜。在本論文中,首先將石墨烯氧化物分散於甲醇與水的混和分散液中,利用食人魚洗劑(Piranha solution)以及半胱胺(cysteamine)對基材二氧化矽(SiO2)以及金電極(Au)進行親疏水改質,藉由親疏水性的改變,石墨烯氧化物薄膜的覆蓋率可從36%提升至100%。再使用旋轉塗佈法將石墨烯氧化物旋塗在改質過後的晶片表面,並藉由白光干涉儀(Optics-Type surface analyser)可得知當轉速為每分鐘2000、3000、4000以及5000轉時,石墨烯氧化物厚度為14.4 nm、10.2 nm、7.2 nm以及6.6 nm,經由與Washo’s與Meyerhofer’s模型比較膜厚與轉速之間的關係,可得膜厚與轉速成-0.905次方關係。最後將石墨烯氧化物薄膜泡入抗壞血酸(L-Ascorbic acid)水溶液中進行還原,並利用拉曼光譜儀(Raman spectrometer)中D band 與G band的比例變化來證實還原氧化石墨烯的氧化程度,其中ID/IG還原前為0.93還原後為1.05,其中以每分鐘5000轉時重複旋塗3次擁有最好的電阻穩定性,此時平均電阻值為0.25 Ω,誤差除以平均值為4.3%。 | zh_TW |
| dc.description.abstract | Based on the development of a heart disease detection chip, this dissertation proposed to adopt the spin-coating method to form a reduced graphene oxide thin film as the sensing material on the detection chip. The clinical diagnosis of acute coronary syndrome, ACS, is based on symptom assessment, signs of oxygen deprivation on the electrocardiogram (ECG), and increase in the myocardial enzyme concentration. Because the concentration of cardiac biomarkers is increased in the early stage of myocardial damage, the early detection and subsequent emergency treatment of patients is possible. This dissertation is a part of a larger project that is targeted at developing a biosensor chip using a two dimensional material, graphene, as the detector region in order to realize a final product that is convenient, rapid, stable, and cost-effective. Therefore, this study is emphasized on the graphene thin film preparation method as well as the uniformity control with the goal of developing and mass producing for an actual product. While several studies have already proposed to employ the graphene as the sensor region material, most teams used the method of chemical vapor deposition (CVD) followed by subsequent transferring via wet-printing to the sensor region of the chip. However, during the transfer process, defects may occur resulting from the mechanical residual stress in the graphene's structure. Thus, this study employed the spin-coating method to prepare a graphene oxide (GO) thin film that was highly uniform. Briefly, GO was first dispersed in a solution containing water and methanol. On the side, a piranha solution and cysteamine solution were used to modify the SiO2 and Au electrode surface for the hydrophilicity. By increasing the hydrophilicity of the substrate, the coverage of the GO thin film increased from 36% to 100%. Then the spin-coating method was used to cover the GO onto the modified chips. As determined using the Optics-Type surface analyser, the thickness of the GO film was 14.4 nm, 10.2 nm, 7.2 nm, and 6.6 nm at spin rate of 2000 rpm, 3000 rpm, 4000rpm, and 5000rpm, respectively. After adopting Washo's and Meyerhofer's models to establish a relationship between film thickness and spin rate, a -0.905 power relationship was established. Lastly, the GO film was soaked in an L-Ascorbic acid solution for the reduction process. The reduction level was determined by Raman spectroscopy through calculating the change in the ratio of the D band and the G band. Wherein, ID/IG was 0.93 before reduction and 1.05 after reduction. The highest resistance stability was achieved by coating at 5000 rpm for three times. The resultant mean resistance value was 0.25Ω and the standard deviation/mean value was 4.3%. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:56:44Z (GMT). No. of bitstreams: 1 ntu-105-R03522502-1.pdf: 3122134 bytes, checksum: 705bbcaf090f72cf08351b6193bf9c0f (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iii SYMBOL TABLE v CONTENTS ix LIST OF FIGURES xii LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Acute coronary syndrome 1 1.1.2 Cardiac muscles and troponin 2 1.1.3 Tropnin detection 4 1.2 Biosensor 7 1.2.1 Concept of biochip 7 1.2.2 Biosensor based on graphene 8 1.2.3 Reduced-grphene-oxide 10 1.3 Literature review 12 1.3.1 Langmuir-Blodgett method 12 1.3.2 SAMs (Self-assembly) method 13 1.3.3 Spin-coating method 14 1.4 Motivation 15 Chapter 2 Spin-coating theory 17 2.1 Introduction to spin-coating 17 2.2 Spin coating thickness equation 20 2.3 Spin rate & GO film thickness 24 2.4 Spin coating with solvent blends 26 Chapter 3 Fabrication and experiment 28 3.1 Material 28 3.1.1 Substrate 28 3.1.2 Solution 28 3.1.3 Cysteamine 29 3.1.4 L-Ascorbic acid 30 3.1.5 Aptamer 30 3.1.6 Bio-molecules in the experiment 31 3.2 Devices fabrication 32 3.2.1 Design 32 3.2.2 Lithography 35 3.2.3 Lift-off methods 36 3.3 Experiment prepare 39 3.3.1 Surface hydrophilization 39 3.3.2 Graphene oxide dispersion 40 3.4 Spin-coating process 40 3.5 Reduced process 41 Chapter 4 Results and discussion 43 4.1 Contact angle analysis 43 4.1.1 Surface treatment 43 4.1.2 Solvent blends 47 4.2 Reduced process analysis 50 4.2.1 Reduced time control 51 4.2.2 Raman spectroscopy analysis 52 4.3 Spin rate and thickness 54 4.4 Coverage and uniformity 59 4.5 GO uniformity discussion 65 4.6 cTnI biomarker detection 68 Chapter 5 Conclusions and future works 71 5.1 Conclusions 71 5.2 Future works 72 Reference 75 | |
| dc.language.iso | en | |
| dc.title | 利用旋轉塗佈法製備還原氧化石墨烯適體生物感測器應用於心臟Troponin-I檢測之研究 | zh_TW |
| dc.title | Research of reduced-graphene-oxide-based cardiac Troponin-I biosensor fabricated by spin-coated method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林啟萬,劉建豪,施博仁,蔡燿全 | |
| dc.subject.keyword | 急性冠心症,生物標記,生物感測器,旋轉塗佈法,石墨烯,石墨烯氧化物,還原氧化石墨烯,接觸角,親疏水性改質,拉曼光譜, | zh_TW |
| dc.subject.keyword | Acute coronary syndrome,Biomarker,Biodetector,Spin-coating,Graphene,Graphene oxide,Reduced graphene,Contact angle,Hydrophilic modification,Raman spectroscopy, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU201602344 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2016-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf | 3.05 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
