請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78716
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陶秘華(Mi-Hua Tao) | |
dc.contributor.author | Hao-Chun Shen | en |
dc.contributor.author | 沈昊群 | zh_TW |
dc.date.accessioned | 2021-07-11T15:14:15Z | - |
dc.date.available | 2024-08-28 | |
dc.date.copyright | 2019-08-28 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-30 | |
dc.identifier.citation | 1. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1999;17(7):2105-16.
2. Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, and Louie AC. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1995;13(3):688-96. 3. Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, and Blum RH. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1996;14(1):7-17. 4. Motzer RJ, Bacik J, Murphy BA, Russo P, and Mazumdar M. Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2002;20(1):289-96. 5. Azuma M, Ito D, Yagita H, Okumura K, Phillips JH, Lanier LL, et al. B70 antigen is a second ligand for CTLA-4 and CD28. Nature. 1993;366(6450):76-9. 6. Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Restivo VA, Jr., Lombard LA, et al. Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science (New York, NY). 1993;262(5135):909-11. 7. Kong KF, Fu G, Zhang Y, Yokosuka T, Casas J, Canonigo-Balancio AJ, et al. Protein kinase C-eta controls CTLA-4-mediated regulatory T cell function. Nature immunology. 2014;15(5):465-72. 8. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science (New York, NY). 2008;322(5899):271-5. 9. Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nature immunology. 2002;3(11):1097-101. 10. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science (New York, NY). 2011;332(6029):600-3. 11. Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, Srinivasan M, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res. 2013;1(1):32-42. 12. Korman A, Chen B, Wang C, Wu L, Cardarelli P, and Selby M. Activity of Anti-PD-1 in Murine Tumor Models: Role of “Host” PD-L1 and Synergistic Effect of Anti-PD-1 and Anti-CTLA-4 (48.37). The Journal of Immunology. 2007;178(1 Supplement):S82. 13. Leach DR, Krummel MF, and Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science (New York, NY). 1996;271(5256):1734-6. 14. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. The New England journal of medicine. 2010;363(8):711-23. 15. Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. The New England journal of medicine. 2011;364(26):2517-26. 16. Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2012;30(17):2046-54. 17. Hodi FS, Butler M, Oble DA, Seiden MV, Haluska FG, Kruse A, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(8):3005-10. 18. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, et al. Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. Journal of Clinical Oncology. 2015;33(17):1889-94. 19. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, and Honjo T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nature immunology. 2013;14(12):1212-8. 20. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2010;28(19):3167-75. 21. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England journal of medicine. 2012;366(26):2443-54. 22. Blank CU, Rozeman EA, Fanchi LF, Sikorska K, van de Wiel B, Kvistborg P, et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nature medicine. 2018;24(11):1655-61. 23. Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD, et al. Neoadjuvant PD-1 Blockade in Resectable Lung Cancer. The New England journal of medicine. 2018;378(21):1976-86. 24. Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nature medicine. 2019. 25. Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, López-Janeiro A, Porciuncula A, Idoate MA, et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nature medicine. 2019;25(3):470-6. 26. Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, et al. Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2010;28(7):1099-105. 27. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568-71. 28. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research. 2011;17(13):4550-7. 29. Stevanovic S, Pasetto A, Helman SR, Gartner JJ, Prickett TD, Howie B, et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science (New York, NY). 2017;356(6334):200-5. 30. Ye Q, Song DG, Poussin M, Yamamoto T, Best A, Li C, et al. CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clinical cancer research : an official journal of the American Association for Cancer Research. 2014;20(1):44-55. 31. Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, et al. PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 2014;124(5):2246-59. 32. Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nature medicine. 2015;21(8):914-21. 33. Robbins PF, Kassim SH, Tran TLN, Crystal JS, Morgan RA, Feldman SA, et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clinical cancer research : an official journal of the American Association for Cancer Research. 2015;21(5):1019-27. 34. Aichele P, Hengartner H, Zinkernagel RM, and Schulz M. Antiviral cytotoxic T cell response induced by in vivo priming with a free synthetic peptide. The Journal of experimental medicine. 1990;171(5):1815-20. 35. Feltkamp MC, Smits HL, Vierboom MP, Minnaar RP, de Jongh BM, Drijfhout JW, et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. European journal of immunology. 1993;23(9):2242-9. 36. Toes RE, Blom RJ, Offringa R, Kast WM, and Melief CJ. Enhanced tumor outgrowth after peptide vaccination. Functional deletion of tumor-specific CTL induced by peptide vaccination can lead to the inability to reject tumors. Journal of immunology (Baltimore, Md : 1950). 1996;156(10):3911-8. 37. Toes RE, Offringa R, Blom RJ, Melief CJ, and Kast WM. Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(15):7855-60. 38. Bijker MS, Melief CJ, Offringa R, and van der Burg SH. Design and development of synthetic peptide vaccines: past, present and future. Expert review of vaccines. 2007;6(4):591-603. 39. Bijker MS, van den Eeden SJ, Franken KL, Melief CJ, Offringa R, and van der Burg SH. CD8+ CTL priming by exact peptide epitopes in incomplete Freund's adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. Journal of immunology (Baltimore, Md : 1950). 2007;179(8):5033-40. 40. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, and Levitsky H. The central role of CD4(+) T cells in the antitumor immune response. The Journal of experimental medicine. 1998;188(12):2357-68. 41. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, and Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature. 1998;393(6684):480-3. 42. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, and Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature. 1998;393(6684):478-80. 43. Mortara L, Gras-Masse H, Rommens C, Venet A, Guillet J-G, and Bourgault-Villada I. Type 1 CD4<sup>+</sup> T-Cell Help Is Required for Induction of Antipeptide Multispecific Cytotoxic T Lymphocytes by a Lipopeptidic Vaccine in Rhesus Macaques. Journal of virology. 1999;73(5):4447. 44. Matsui S, Ahlers JD, Vortmeyer AO, Terabe M, Tsukui T, Carbone DP, et al. A model for CD8+ CTL tumor immunosurveillance and regulation of tumor escape by CD4 T cells through an effect on quality of CTL. Journal of immunology (Baltimore, Md : 1950). 1999;163(1):184-93. 45. Schuurhuis DH, Laban S, Toes RE, Ricciardi-Castagnoli P, Kleijmeer MJ, van der Voort EI, et al. Immature dendritic cells acquire CD8(+) cytotoxic T lymphocyte priming capacity upon activation by T helper cell-independent or -dependent stimuli. The Journal of experimental medicine. 2000;192(1):145-50. 46. Borst J, Ahrends T, Babala N, Melief CJM, and Kastenmuller W. CD4(+) T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018. 47. Knutson KL, Schiffman K, and Disis ML. Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Invest. 2001;107(4):477-84. 48. Dillon PM, Olson WC, Czarkowski A, Petroni GR, Smolkin M, Grosh WW, et al. A melanoma helper peptide vaccine increases Th1 cytokine production by leukocytes in peripheral blood and immunized lymph nodes. Journal for ImmunoTherapy of Cancer. 2014;2(1):23. 49. Zwaveling S, Ferreira Mota SC, Nouta J, Johnson M, Lipford GB, Offringa R, et al. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. Journal of immunology (Baltimore, Md : 1950). 2002;169(1):350-8. 50. Knutson KL, and Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother. 2005;54(8):721-8. 51. Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. The New England journal of medicine. 2009;361(19):1838-47. 52. Lopez JA, Weilenman C, Audran R, Roggero MA, Bonelo A, Tiercy JM, et al. A synthetic malaria vaccine elicits a potent CD8(+) and CD4(+) T lymphocyte immune response in humans. Implications for vaccination strategies. European journal of immunology. 2001;31(7):1989-98. 53. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515(7528):577-81. 54. Welters MJ, Kenter GG, Piersma SJ, Vloon AP, Lowik MJ, Berends-van der Meer DM, et al. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clinical cancer research : an official journal of the American Association for Cancer Research. 2008;14(1):178-87. 55. Gnjatic S, Nishikawa H, Jungbluth AA, Gure AO, Ritter G, Jager E, et al. NY-ESO-1: review of an immunogenic tumor antigen. Advances in cancer research. 2006;95:1-30. 56. Sabbatini P, Tsuji T, Ferran L, Ritter E, Sedrak C, Tuballes K, et al. Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clinical cancer research : an official journal of the American Association for Cancer Research. 2012;18(23):6497-508. 57. Wada H, Isobe M, Kakimi K, Mizote Y, Eikawa S, Sato E, et al. Vaccination with NY-ESO-1 overlapping peptides mixed with Picibanil OK-432 and montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen. Journal of immunotherapy (Hagerstown, Md : 1997). 2014;37(2):84-92. 58. Baumgaertner P, Costa Nunes C, Cachot A, Maby-El Hajjami H, Cagnon L, Braun M, et al. Vaccination of stage III/IV melanoma patients with long NY-ESO-1 peptide and CpG-B elicits robust CD8(+) and CD4(+) T-cell responses with multiple specificities including a novel DR7-restricted epitope. Oncoimmunology. 2016;5(10):e1216290. 59. Novellino L, Castelli C, and Parmiani G. A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother. 2005;54(3):187-207. 60. Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nature reviews Clinical oncology. 2014;11(9):509-24. 61. Coulie PG, Van den Eynde BJ, van der Bruggen P, and Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nature reviews Cancer. 2014;14(2):135-46. 62. Engelhard VH, Bullock TN, Colella TA, Sheasley SL, and Mullins DW. Antigens derived from melanocyte differentiation proteins: self-tolerance, autoimmunity, and use for cancer immunotherapy. Immunological reviews. 2002;188:136-46. 63. Bos R, van Duikeren S, van Hall T, Kaaijk P, Taubert R, Kyewski B, et al. Expression of a natural tumor antigen by thymic epithelial cells impairs the tumor-protective CD4+ T-cell repertoire. Cancer research. 2005;65(14):6443-9. 64. Pedersen SR, Sorensen MR, Buus S, Christensen JP, and Thomsen AR. Comparison of vaccine-induced effector CD8 T cell responses directed against self- and non-self-tumor antigens: implications for cancer immunotherapy. Journal of immunology (Baltimore, Md : 1950). 2013;191(7):3955-67. 65. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science (New York, NY). 2002;298(5594):850-4. 66. Melief CJ, van Hall T, Arens R, Ossendorp F, and van der Burg SH. Therapeutic cancer vaccines. J Clin Invest. 2015;125(9):3401-12. 67. Heemskerk B, Kvistborg P, and Schumacher TN. The cancer antigenome. The EMBO journal. 2013;32(2):194-203. 68. Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science (New York, NY). 1995;269(5228):1281-4. 69. Coulie PG, Lehmann F, Lethé B, Herman J, Lurquin C, Andrawiss M, et al. A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(17):7976-80. 70. Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A, Ferel D, et al. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(44):16013-8. 71. Castle JC, Kreiter S, Diekmann J, Lower M, van de Roemer N, de Graaf J, et al. Exploiting the mutanome for tumor vaccination. Cancer research. 2012;72(5):1081-91. 72. Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ, et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature. 2012;482(7385):400-4. 73. Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science (New York, NY). 2014;344(6184):641-5. 74. Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nature medicine. 2013;19(6):747-52. 75. van Rooij N, van Buuren MM, Philips D, Velds A, Toebes M, Heemskerk B, et al. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2013;31(32):e439-42. 76. Tran E, Robbins PF, and Rosenberg SA. 'Final common pathway' of human cancer immunotherapy: targeting random somatic mutations. Nature immunology. 2017;18(3):255-62. 77. Verdegaal EM, de Miranda NF, Visser M, Harryvan T, van Buuren MM, Andersen RS, et al. Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature. 2016;536(7614):91-5. 78. Linnemann C, van Buuren MM, Bies L, Verdegaal EM, Schotte R, Calis JJ, et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nature medicine. 2015;21(1):81-5. 79. <ESMO-Immuno-Oncology-Congress-2017-Scientific-Report (1).pdf>. 80. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science (New York, NY). 2015;348(6230):124-8. 81. Tran E, Robbins PF, Lu YC, Prickett TD, Gartner JJ, Jia L, et al. T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer. The New England journal of medicine. 2016;375(23):2255-62. 82. Martin SD, Wick DA, Nielsen JS, Little N, Holt RA, and Nelson BH. A library-based screening method identifies neoantigen-reactive T cells in peripheral blood prior to relapse of ovarian cancer. Oncoimmunology. 2017;7(1):e1371895-e. 83. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. New England Journal of Medicine. 2014;371(23):2189-99. 84. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science (New York, NY). 2015;350(6257):207-11. 85. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. The New England journal of medicine. 2017;376(25):2415-26. 86. Giannakis M, Mu XJ, Shukla SA, Qian ZR, Cohen O, Nishihara R, et al. Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma. Cell reports. 2016;15(4):857-65. 87. Howitt BE, Shukla SA, Sholl LM, Ritterhouse LL, Watkins JC, Rodig S, et al. Association of Polymerase e-Mutated and Microsatellite-Instable Endometrial Cancers With Neoantigen Load, Number of Tumor-Infiltrating Lymphocytes, and Expression of PD-1 and PD-L1. JAMA oncology. 2015;1(9):1319-23. 88. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science (New York, NY). 2017;357(6349):409-13. 89. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. The New England journal of medicine. 2015;372(26):2509-20. 90. Lauss M, Donia M, Harbst K, Andersen R, Mitra S, Rosengren F, et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nature communications. 2017;8(1):1738. 91. Yarchoan M, Hopkins A, and Jaffee EM. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. The New England journal of medicine. 2017;377(25):2500-1. 92. Tran E, Ahmadzadeh M, Lu YC, Gros A, Turcotte S, Robbins PF, et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science (New York, NY). 2015;350(6266):1387-90. 93. Rajasagi M, Shukla SA, Fritsch EF, Keskin DB, DeLuca D, Carmona E, et al. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood. 2014;124(3):453-62. 94. DuPage M, Mazumdar C, Schmidt LM, Cheung AF, and Jacks T. Expression of tumour-specific antigens underlies cancer immunoediting. Nature. 2012;482(7385):405-9. 95. Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520(7549):692-6. 96. Zacharakis N, Chinnasamy H, Black M, Xu H, Lu YC, Zheng Z, et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nature medicine. 2018;24(6):724-30. 97. Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science (New York, NY). 2015;348(6236):803-8. 98. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217-21. 99. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222-6. 100. Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Science translational medicine. 2018;10(436). 101. Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2018. 102. Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature. 2018. 103. Herrera FG, Bourhis J, and Coukos G. Radiotherapy combination opportunities leveraging immunity for the next oncology practice. CA Cancer J Clin. 2017;67(1):65-85. 104. Wu CJ, Tsai YT, Lee IJ, Wu PY, Lu LS, Tsao WS, et al. Combination of radiation and interleukin 12 eradicates large orthotopic hepatocellular carcinoma through immunomodulation of tumor microenvironment. Oncoimmunology. 2018;7(9):e1477459. 105. Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. Journal of immunological methods. 1999;223(1):77-92. 106. Matsumoto M, and Seya T. TLR3: interferon induction by double-stranded RNA including poly(I:C). Advanced drug delivery reviews. 2008;60(7):805-12. 107. Neefjes J, Jongsma ML, Paul P, and Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11(12):823-36. 108. Bloom MB, Perry-Lalley D, Robbins PF, Li Y, el-Gamil M, Rosenberg SA, et al. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. The Journal of experimental medicine. 1997;185(3):453-9. 109. Schreurs MW, Eggert AA, de Boer AJ, Vissers JL, van Hall T, Offringa R, et al. Dendritic cells break tolerance and induce protective immunity against a melanocyte differentiation antigen in an autologous melanoma model. Cancer research. 2000;60(24):6995-7001. 110. Arnold PY, La Gruta NL, Miller T, Vignali KM, Adams PS, Woodland DL, et al. The majority of immunogenic epitopes generate CD4+ T cells that are dependent on MHC class II-bound peptide-flanking residues. Journal of immunology (Baltimore, Md : 1950). 2002;169(2):739-49. 111. Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, and McCluskey J. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol. 2015;33:169-200. 112. Fu C, and Jiang A. Dendritic Cells and CD8 T Cell Immunity in Tumor Microenvironment. Frontiers in immunology. 2018;9:3059-. 113. Davis ME, Chen Z, and Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Reviews Drug Discovery. 2008;7:771. 114. Lin LC, Chattopadhyay S, Lin JC, and Hu CJ. Advances and Opportunities in Nanoparticle- and Nanomaterial-Based Vaccines against Bacterial Infections. Advanced healthcare materials. 2018;7(13):e1701395. 115. Chien‐Wei Lin L, Huang CY, Yao BY, Lin J-C, Agrawal A, Algaissi A, et al. Viromimetic STING Agonist‐Loaded Hollow Polymeric Nanoparticles for Safe and Effective Vaccination against Middle East Respiratory Syndrome Coronavirus. 2019. 116. Gross S, Lennerz V, Gallerani E, Mach N, Bohm S, Hess D, et al. Short Peptide Vaccine Induces CD4+ T Helper Cells in Patients with Different Solid Cancers. Cancer Immunol Res. 2016;4(1):18-25. 117. Wang M, Larsen MV, Nielsen M, Harndahl M, Justesen S, Dziegiel MH, et al. HLA Class I Binding 9mer Peptides from Influenza A Virus Induce CD4+ T Cell Responses. PLOS ONE. 2010;5(5):e10533. 118. Wang M, Tang ST, Stryhn A, Justesen S, Larsen MV, Dziegiel MH, et al. Identification of MHC class II restricted T-cell-mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides. Immunology. 2011;132(4):482-91. 119. Jandus C, Bioley G, Dojcinovic D, Derre L, Baitsch L, Wieckowski S, et al. Tumor antigen-specific FOXP3+ CD4 T cells identified in human metastatic melanoma: peptide vaccination results in selective expansion of Th1-like counterparts. Cancer research. 2009;69(20):8085-93. 120. Bioley G, Jandus C, Tuyaerts S, Rimoldi D, Kwok WW, Speiser DE, et al. Melan-A/MART-1-specific CD4 T cells in melanoma patients: identification of new epitopes and ex vivo visualization of specific T cells by MHC class II tetramers. Journal of immunology (Baltimore, Md : 1950). 2006;177(10):6769-79. 121. Rosenberg SA, and Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science (New York, NY). 2015;348(6230):62-8. 122. Restifo NP, Dudley ME, and Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12(4):269-81. 123. Fesnak AD, June CH, and Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nature reviews Cancer. 2016;16(9):566-81. 124. Verdegaal EM, Visser M, Ramwadhdoebe TH, van der Minne CE, van Steijn JA, Kapiteijn E, et al. Successful treatment of metastatic melanoma by adoptive transfer of blood-derived polyclonal tumor-specific CD4+ and CD8+ T cells in combination with low-dose interferon-alpha. Cancer Immunol Immunother. 2011;60(7):953-63. 125. Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nature medicine. 2016;22(4):433-8. 126. Parkhurst M, Gros A, Pasetto A, Prickett T, Crystal JS, Robbins P, et al. Isolation of T-Cell Receptors Specifically Reactive with Mutated Tumor-Associated Antigens from Tumor-Infiltrating Lymphocytes Based on CD137 Expression. Clinical cancer research : an official journal of the American Association for Cancer Research. 2017;23(10):2491-505. 127. Yossef R, Tran E, Deniger DC, Gros A, Pasetto A, Parkhurst MR, et al. Enhanced detection of neoantigen-reactive T cells targeting unique and shared oncogenes for personalized cancer immunotherapy. JCI insight. 2018;3(19). 128. Simoni Y, Becht E, Fehlings M, Loh CY, Koo S-L, Teng KWW, et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 2018;557(7706):575-9. 129. Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science (New York, NY). 2016;354(6316):1160-5. 130. Thommen DS, Koelzer VH, Herzig P, Roller A, Trefny M, Dimeloe S, et al. A transcriptionally and functionally distinct PD-1(+) CD8(+) T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nature medicine. 2018;24(7):994-1004. 131. Matsuda T, Leisegang M, Park JH, Ren L, Kato T, Ikeda Y, et al. Induction of Neoantigen-specific Cytotoxic T Cells and Construction of T-cell Receptor-engineered T cells for Ovarian Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2018. 132. Hu Z, Anandappa AJ, Sun J, Kim J, Leet DE, Bozym DJ, et al. A cloning and expression system to probe T cell receptor specificity and assess functional avidity to neoantigens. Blood. 2018. 133. Stronen E, Toebes M, Kelderman S, van Buuren MM, Yang W, van Rooij N, et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science (New York, NY). 2016;352(6291):1337-41. 134. Linnemann C, Mezzadra R, and Schumacher TN. TCR repertoires of intratumoral T-cell subsets. Immunological reviews. 2014;257(1):72-82. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78716 | - |
dc.description.abstract | 癌症免疫療法最近取得了重要的進展,對已經轉移的晚期癌症也有顯著的治療效果。可惜的是,治療效果僅限於少數病人,大多數患者對免疫治療仍無反應。目前已知,免疫治療的效果和腫瘤內基因突變量以及腫瘤內T細胞數目有正相關,不僅如此,有研究也證實這些腫瘤內的T細胞會辨識經由基因突變產生的腫瘤新生抗原(neoantigen)。我們實驗室過去以放射線合併細胞激素治療腫瘤,在腫瘤組織內可引發大量的CD8+ T 細胞浸潤,使大型腫瘤完全消失。但有些小鼠在長時間觀察後,腫瘤仍會復發。我們認為放射線合併細胞激素治療引發的腫瘤內T細胞對腫瘤新生抗原具有專一性,因此能有效清除腫瘤。但之後,這群腫瘤專一性T細胞數量逐漸減少,造成腫瘤復發。如果應用腫瘤新生抗原製成疫苗免疫小鼠,維持或增加腫瘤專一性T細胞的數量和活性,或許能達到長期抑制腫瘤的目的。
我們選用B16F10 和CT26作為實驗的腫瘤模型,為了找到最適合的腫瘤新生抗原作為疫苗,我們首先從先前文獻搜尋腫瘤內突變點並預測這些短片段突變抗原表位(epitope) 和第一型主要組織相容性複合物 (MHC class I) 的親和力,之後根據親和力的強弱選擇其中21條腫瘤新生抗原作為疫苗。此外,我們進一步確認報告的突變確實存在於我們的腫瘤細胞株,目前已確認B16F10內可表現其中16種點突變,CT26有其中13種點突變。接著,我們根據胺基酸序列將腫瘤新生抗原設計成長片段胜肽疫苗,免疫小鼠後,以ELISPOT技術分析抗原免疫性,發現大部分腫瘤新生抗原疫苗活化的是CD4+ T 細胞反應,較少腫瘤新生抗原引發CD8+ T 細胞反應。另外,我們進一步驗證腫瘤新生抗原疫苗引發的T細胞反應可以有效分區別突變胜肽和野生型胜肽,但有趣的是,這些長片段胜肽疫苗引發的T細胞大部分無法辨識預測的抗原表位,因此,我們認為長片段胜肽疫苗可能不適用於引發抗腫瘤的T細胞反應。我們直接以預測的短片段突變抗原表位作為疫苗 (簡稱短片段胜肽疫苗),並分析其抗原免疫性。發現其中分別僅4種B16F10短片段胜肽疫苗和3種CT26短片段胜肽疫苗引發T細胞反應,顯示直接注射短片段胜肽疫苗,無法引發有效的T細胞反應,未來需要繼續研發更有效的胜肽疫苗平台。 我們接著測試腫瘤新生抗原疫苗的治療效果。在B16F10腫瘤保護實驗中,活化CD4+ T細胞和活化CD8+ T細胞的長片段腫瘤新生抗原疫苗,對腫瘤就有保護效果。另外,具有很強免疫反應的短片段胜肽疫苗,也可有效抑制腫瘤生長。最後我們觀察疫苗是否可延緩腫瘤的復發,藉由我們實驗室先前研究的合併治療搭配疫苗療法治療B16F10大腫瘤,但無論搭配長片段或短片段胜肽疫苗,其治療效果都不顯著,顯示腫瘤新生抗原疫苗雖然具有潛力,但仍有許多改善的空間來達到更好的治療效果。 | zh_TW |
dc.description.abstract | Immune checkpoint blockades have shown durable clinical responses in various cancers, but benefit only a small portion of patients. A high mutational load and T cell responses to neoantigens, a class of tumor-specific mutations, are thought to be essential for the success of checkpoint inhibitors. Thus, neoantigens are ideal targets for cancer treatment as they lack expression in normal tissues and can potentially be recognized by T-cell repertoire. Our previous data demonstrated that radiation in combination with cytokines efficiently induced infiltration of CD8+ T cells in the tumor tissue and resulted in tumor regression. However, most of the tumors eventually relapsed. The aim of this project is to investigate whether vaccination with neoantigens can expand neoantigen-specific T-cells that are induced by the combination therapy and improve long-term tumor control.
Two independent murine tumor models, B16F10 and CT26, were used in this study. First of all, we identified mutations which were previously reported in these two tumor cell lines and predicted the binding affinity between the mutated epitopes and MHC class I molecules. 21 neoantigens were selected for therapeutic vaccines. Then, we validated the presence of these mutations in our tumor cells and found that 16 and 13 mutations were existed in the B16F10 and CT26 tumor models, respectively. To test the immunogenicity of these mutated epitopes, mice were vaccinated with synthetic long peptides. The results showed dominant CD4+ T cell responses were induced in comparison with CD8+ T cells. We further demonstrated that long peptide-induced T cells can discriminate between the mutated and wild-type peptides, however, these T cells failed to recognized the corresponding short peptides (the predicted T-cell epitopes), suggesting that the long peptide neoantigen vaccines may not be suitable as therapeutic cancer vaccines. We then applied short peptides as cancer vaccines. However, only 4 and 3 short peptides elicited CD8+ T cell responses in B16F10 and CT26 models, respectively. To test the therapeutic effect of neoantigen vaccines, in the tumor protection study, we demonstrated that long neoantigen peptides, which induced CD4+ or CD8+ T cell response, as well as the immunogenic short neoantigen peptide were able to confer antitumor effects. Finally, low response rates were shown in mice vaccinated with long or short peptides after treated with combination therapy of radiation and cytokine as previously described, suggesting that neoantigen vaccines had a potential to obtain anti-tumor effects. However, there were still much improvement for a better therapeutic efficacy. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:14:15Z (GMT). No. of bitstreams: 1 ntu-108-R06424005-1.pdf: 4863157 bytes, checksum: 01d50551939ce805ee184f8060841fe6 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員審定書 i
謝誌 ii 摘要 iii ABSTRACT v List of Figures x List of Tables xiii List of Abbreviation xiv 1. Introduction 1 1.1 Current immunotherapy 1 1.1.1 Immune checkpoint blockade 1 1.1.2 Adoptive T cell therapy 3 1.2 Formation of vaccination 4 1.2.1 Exact MHC class I peptides 4 1.2.2 Exact MHC class I binding peptides + helper peptides 5 1.2.3 Synthetic long peptides 6 1.3 Therapeutic cancer vaccine 9 1.3.1 Conventional tumor antigen vaccine 9 1.3.2 Neoantigen vaccine 10 1.4 Combination of radiation and cytokine therapy established in our lab 17 2. Rationale/Specific Aim 19 3. Material and Method 19 3.1 Animals models and cell line 19 3.2 Mutation validation 20 3.3 MHC class I prediction 20 3.4 Synthetic peptides and adjuvants 21 3.5 Generation of mature BMDC 21 3.6 CD4+/CD8+ T cell isolation 22 3.7 Flow cytometric analysis 22 3.8 Immunization of mice 23 3.9 Enzyme-linked immunospot assay (ELISPOT) 23 3.10 B16F10 melanoma tumor model 23 3.11 Statistics 24 4. Result 24 4.1 Aim 1: The identification of neoantigens. 24 4.1.1 Neoantigen selection. 25 4.1.2 Transcripts mutation screening in cell lines. 25 4.2 Aim 2: The immunogenicity testing of synthetic long peptides 26 4.2.1 Generation of mature bone marrow-derived dendritic cells 26 4.2.2 Purity testing of CD4+ and CD8+ T cell enrichment 27 4.2.3 Immunogenicity analysis of neoantigen long peptides 27 4.2.4 Investigation of long peptide-induced T cell response against corresponding short peptides. 29 4.2.5 The specificity of long peptide-induced T cell response against mutated versus wild-type peptides. 30 4.3 Aim 3: Alternative vaccination strategy by short peptide vaccines. 30 4.3.1 Immunogenicity analysis of neoantigen short peptides 31 4.4 The anti-tumor effect of vaccination 32 4.4.1 Protection against tumor growth by vaccination 32 4.4.2 Prevention of tumor recurrence by vaccination. 33 5. Discussion 35 5.1 Long peptides induced dominantly CD4+ T cell response 35 5.2 Low ratio of short peptides induced CD8+ T cell response 36 5.3 Vaccine-induced CD4+ T cells recognized against short peptides 37 5.4 Neoantigen vaccines led to low response rates of tumor regression 38 6. Reference 39 | |
dc.language.iso | zh-TW | |
dc.title | 利用腫瘤新生抗原疫苗防止腫瘤復發 | zh_TW |
dc.title | Prevention of tumor relapse by neoantigen vaccine | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 朱清良(Ching-Liang Chu),楊雅倩(Ya-Chien Yang),莊雅惠(Ya-Hui Chuang) | |
dc.subject.keyword | 免疫治療,合併治療,腫瘤新生抗原疫苗,腫瘤專一性 T 細胞,抗原免疫性預測, | zh_TW |
dc.subject.keyword | Cancer immunotherapy,combination therapy,neoantigen vaccine,MHC class I binding prediction,neoantigen-specific T cell reactivity, | en |
dc.relation.page | 93 | |
dc.identifier.doi | 10.6342/NTU201901888 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-31 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
dc.date.embargo-lift | 2024-08-28 | - |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-R06424005-1.pdf 目前未授權公開取用 | 4.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。