請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78715完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐立中(Li-Chung Hsu) | |
| dc.contributor.author | Chia-Ching Lin | en |
| dc.contributor.author | 林佳靜 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:14:11Z | - |
| dc.date.available | 2024-08-28 | |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-31 | |
| dc.identifier.citation | References
1. Shen, H.N., Lu, C.L. & Yang, H.H. Epidemiologic trend of severe sepsis in Taiwan from 1997 through 2006. Chest 138, 298-304 (2010). 2. Donath, M.Y. & Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11, 98-107 (2011). 3. Franks, A.L. & Slansky, J.E. Multiple associations between a broad spectrum of autoimmune diseases, chronic inflammatory diseases and cancer. Anticancer Res 32, 1119-1136 (2012). 4. Mino, T. & Takeuchi, O. Post-transcriptional regulation of cytokine mRNA controls the initiation and resolution of inflammation. Biotechnol Genet Eng Rev 29, 49-60 (2013). 5. Carpenter, S., Ricci, E.P., Mercier, B.C., Moore, M.J. & Fitzgerald, K.A. Post-transcriptional regulation of gene expression in innate immunity. Nat Rev Immunol 14, 361-376 (2014). 6. Kafasla, P., Skliris, A. & Kontoyiannis, D.L. Post-transcriptional coordination of immunological responses by RNA-binding proteins. Nat Immunol 15, 492-502 (2014). 7. Broggi, A. & Granucci, F. Microbe- and danger-induced inflammation. Mol Immunol 63, 127-133 (2015). 8. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637-650 (2011). 9. Rubartelli, A. & Sitia, R. Stress as an intercellular signal: the emergence of stress-associated molecular patterns (SAMP). Antioxid Redox Signal 11, 2621-2629 (2009). 10. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783-801 (2006). 11. Brubaker, S.W., Bonham, K.S., Zanoni, I. & Kagan, J.C. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33, 257-290 (2015). 12. Liaunardy-Jopeace, A. & Gay, N.J. Molecular and cellular regulation of toll-like receptor-4 activity induced by lipopolysaccharide ligands. Front Immunol 5, 473 (2014). 13. Watanabe, S., Kumazawa, Y. & Inoue, J. Liposomal lipopolysaccharide initiates TRIF-dependent signaling pathway independent of CD14. PLoS One 8, e60078 (2013). 14. Lee, C.Y. et al. The ubiquitin ligase ZNRF1 promotes caveolin-1 ubiquitination and degradation to modulate inflammation. Nat Commun 8, 15502 (2017). 15. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat Rev Immunol 4, 499-511 (2004). 16. Oganesyan, G. et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208-211 (2006). 17. Whitmore, M.M. et al. Negative regulation of TLR-signaling pathways by activating transcription factor-3. J Immunol 179, 3622-3630 (2007). 18. Medzhitov, R. & Horng, T. Transcriptional control of the inflammatory response. Nat Rev Immunol 9, 692-703 (2009). 19. Heyninck, K. & Beyaert, R. The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-kappaB activation at the level of TRAF6. FEBS Lett 442, 147-150 (1999). 20. Boone, D.L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 5, 1052-1060 (2004). 21. Harhaj, E.W. & Dixit, V.M. Regulation of NF-kappaB by deubiquitinases. Immunol Rev 246, 107-124 (2012). 22. Shepherd, E.G. et al. The function of mitogen-activated protein kinase phosphatase-1 in peptidoglycan-stimulated macrophages. J Biol Chem 279, 54023-54031 (2004). 23. Lai, W.S., Carballo, E., Thorn, J.M., Kennington, E.A. & Blackshear, P.J. Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilization of mRNA. J Biol Chem 275, 17827-17837 (2000). 24. Mahtani, K.R. et al. Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Mol Cell Biol 21, 6461-6469 (2001). 25. Tudor, C. et al. The p38 MAPK pathway inhibits tristetraprolin-directed decay of interleukin-10 and pro-inflammatory mediator mRNAs in murine macrophages. FEBS Lett 583, 1933-1938 (2009). 26. Anderson, P. Post-transcriptional control of cytokine production. Nat Immunol 9, 353-359 (2008). 27. Carballo, E., Lai, W.S. & Blackshear, P.J. Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 95, 1891-1899 (2000). 28. He, G., Sun, D., Ou, Z. & Ding, A. The protein Zfand5 binds and stabilizes mRNAs with AU-rich elements in their 3'-untranslated regions. J Biol Chem 287, 24967-24977 (2012). 29. Paschoud, S. et al. Destabilization of interleukin-6 mRNA requires a putative RNA stem-loop structure, an AU-rich element, and the RNA-binding protein AUF1. Mol Cell Biol 26, 8228-8241 (2006). 30. Leppek, K. et al. Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs. Cell 153, 869-881 (2013). 31. Yu, D. et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 450, 299-303 (2007). 32. Schaefer, J.S., Montufar-Solis, D., Nakra, N., Vigneswaran, N. & Klein, J.R. Small intestine inflammation in Roquin-mutant and Roquin-deficient mice. PLoS One 8, e56436 (2013). 33. Vogel, K.U. et al. Roquin paralogs 1 and 2 redundantly repress the Icos and Ox40 costimulator mRNAs and control follicular helper T cell differentiation. Immunity 38, 655-668 (2013). 34. Murakawa, Y. et al. RC3H1 post-transcriptionally regulates A20 mRNA and modulates the activity of the IKK/NF-kappaB pathway. Nat Commun 6, 7367 (2015). 35. Schaefer, J.S. & Klein, J.R. Roquin--a multifunctional regulator of immune homeostasis. Genes Immun 17, 79-84 (2016). 36. Mino, T. et al. Regnase-1 and Roquin Regulate a Common Element in Inflammatory mRNAs by Spatiotemporally Distinct Mechanisms. Cell 161, 1058-1073 (2015). 37. Masuda, K. et al. Arid5a controls IL-6 mRNA stability, which contributes to elevation of IL-6 level in vivo. Proc Natl Acad Sci U S A 110, 9409-9414 (2013). 38. Liang, J. et al. A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J Biol Chem 283, 6337-6346 (2008). 39. Matsushita, K. et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 1185-1190 (2009). 40. Li, Y. et al. Central role of myeloid MCPIP1 in protecting against LPS-induced inflammation and lung injury. Signal Transduct Target Ther 2, 17066 (2017). 41. Iwasaki, H. et al. The IkappaB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1. Nat Immunol 12, 1167-1175 (2011). 42. Mizgalska, D. et al. Interleukin-1-inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL-1beta mRNA. FEBS J 276, 7386-7399 (2009). 43. Yang, C., Huang, S., Wang, X. & Gu, Y. Emerging Roles of CCCH-Type Zinc Finger Proteins in Destabilizing mRNA Encoding Inflammatory Factors and Regulating Immune Responses. Crit Rev Eukaryot Gene Expr 25, 77-89 (2015). 44. Wawro, M. et al. ZC3H12B, a new active member of the ZC3H12 family. RNA (2019). 45. De Almeida, C., Scheer, H., Zuber, H. & Gagliardi, D. RNA uridylation: a key posttranscriptional modification shaping the coding and noncoding transcriptome. Wiley Interdiscip Rev RNA 9 (2018). 46. Yeo, J. & Kim, V.N. U-tail as a guardian against invading RNAs. Nat Struct Mol Biol 25, 903-905 (2018). 47. Chung, C.Z., Seidl, L.E., Mann, M.R. & Heinemann, I.U. Tipping the balance of RNA stability by 3' editing of the transcriptome. Biochim Biophys Acta 1861, 2971-2979 (2017). 48. Martin, G. & Keller, W. RNA-specific ribonucleotidyl transferases. RNA 13, 1834-1849 (2007). 49. Kwak, J.E. & Wickens, M. A family of poly(U) polymerases. RNA 13, 860-867 (2007). 50. Rissland, O.S., Mikulasova, A. & Norbury, C.J. Efficient RNA polyuridylation by noncanonical poly(A) polymerases. Mol Cell Biol 27, 3612-3624 (2007). 51. Lim, J. et al. Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation. Science 361, 701-704 (2018). 52. Nagaike, T., Suzuki, T., Katoh, T. & Ueda, T. Human mitochondrial mRNAs are stabilized with polyadenylation regulated by mitochondria-specific poly(A) polymerase and polynucleotide phosphorylase. J Biol Chem 280, 19721-19727 (2005). 53. Chang, J.H. & Tong, L. Mitochondrial poly(A) polymerase and polyadenylation. Biochim Biophys Acta 1819, 992-997 (2012). 54. Yashiro, Y. & Tomita, K. Function and Regulation of Human Terminal Uridylyltransferases. Front Genet 9, 538 (2018). 55. Schmidt, M.J., West, S. & Norbury, C.J. The human cytoplasmic RNA terminal U-transferase ZCCHC11 targets histone mRNAs for degradation. RNA 17, 39-44 (2011). 56. Lackey, P.E., Welch, J.D. & Marzluff, W.F. TUT7 catalyzes the uridylation of the 3' end for rapid degradation of histone mRNA. RNA 22, 1673-1688 (2016). 57. Mullen, T.E. & Marzluff, W.F. Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5' to 3' and 3' to 5'. Genes Dev 22, 50-65 (2008). 58. LaCava, J. et al. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121, 713-724 (2005). 59. Trippe, R. et al. Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase. RNA 12, 1494-1504 (2006). 60. Schmidt, M.J. & Norbury, C.J. Polyadenylation and beyond: emerging roles for noncanonical poly(A) polymerases. Wiley Interdiscip Rev RNA 1, 142-151 (2010). 61. Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696-708 (2009). 62. Rau, F. et al. Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy. Nat Struct Mol Biol 18, 840-845 (2011). 63. Jones, M.R. et al. Zcchc11 uridylates mature miRNAs to enhance neonatal IGF-1 expression, growth, and survival. PLoS Genet 8, e1003105 (2012). 64. Norbury, C.J. 3' Uridylation and the regulation of RNA function in the cytoplasm. Biochem Soc Trans 38, 1150-1153 (2010). 65. Lim, J. et al. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 159, 1365-1376 (2014). 66. Minoda, Y. et al. A novel Zinc finger protein, ZCCHC11, interacts with TIFA and modulates TLR signaling. Biochem Biophys Res Commun 344, 1023-1030 (2006). 67. Jones, M.R. et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol 11, 1157-1163 (2009). 68. van Wolfswinkel, J.C. et al. CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs. Cell 139, 135-148 (2009). 69. Thornton, J.E., Chang, H.M., Piskounova, E. & Gregory, R.I. Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA 18, 1875-1885 (2012). 70. Kim, B. et al. TUT7 controls the fate of precursor microRNAs by using three different uridylation mechanisms. EMBO J 34, 1801-1815 (2015). 71. Faehnle, C.R., Walleshauser, J. & Joshua-Tor, L. Multi-domain utilization by TUT4 and TUT7 in control of let-7 biogenesis. Nat Struct Mol Biol 24, 658-665 (2017). 72. Viegas, S.C., Silva, I.J., Apura, P., Matos, R.G. & Arraiano, C.M. Surprises in the 3'-end: 'U' can decide too! FEBS J 282, 3489-3499 (2015). 73. Chang, H., Lim, J., Ha, M. & Kim, V.N. TAIL-seq: genome-wide determination of poly(A) tail length and 3' end modifications. Mol Cell 53, 1044-1052 (2014). 74. Kozlowski, E. et al. The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses. PLoS One 12, e0179797 (2017). 75. Ansari, M.Y. et al. Genetic Inactivation of ZCCHC6 Suppresses Interleukin-6 Expression and Reduces the Severity of Experimental Osteoarthritis in Mice. Arthritis Rheumatol (2018). 76. Le Pen, J. et al. Terminal uridylyltransferases target RNA viruses as part of the innate immune system. Nat Struct Mol Biol 25, 778-786 (2018). 77. Chang, C.-C. The role of Zcchc6 in the innate immune responses. Master thesis, National Taiwan University, Taiwan, 2012. 78. Shen, Y.-R. The functional role of ZCCHC6 in TLR4-mediated immune responses. Master thesis, National Taiwan University, Taiwan, 2012. 79. Zhao, W., Liu, M. & Kirkwood, K.L. p38alpha stabilizes interleukin-6 mRNA via multiple AU-rich elements. J Biol Chem 283, 1778-1785 (2008). 80. Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427-1429 (1995). 81. Chuang, S.Y. et al. TLR-induced PAI-2 expression suppresses IL-1beta processing via increasing autophagy and NLRP3 degradation. Proc Natl Acad Sci U S A 110, 16079-16084 (2013). 82. Rajkumar, A.P. et al. Experimental validation of methods for differential gene expression analysis and sample pooling in RNA-seq. BMC Genomics 16, 548 (2015). 83. Zhang, G. et al. FANSe: an accurate algorithm for quantitative mapping of large scale sequencing reads. Nucleic Acids Res 40, e83 (2012). 84. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140 (2010). 85. Zhao, W., Liu, M., D'Silva, N.J. & Kirkwood, K.L. Tristetraprolin regulates interleukin-6 expression through p38 MAPK-dependent affinity changes with mRNA 3' untranslated region. J Interferon Cytokine Res 31, 629-637 (2011). 86. Scheer, H., Zuber, H., De Almeida, C. & Gagliardi, D. Uridylation Earmarks mRNAs for Degradation... and More. Trends Genet 32, 607-619 (2016). 87. Chung, C.Z., Seidl, L.E., Mann, M.R. & Heinemann, I.U. Tipping the balance of RNA stability by 3' editing of the transcriptome. Biochim Biophys Acta Gen Subj 1861, 2971-2979 (2017). 88. Hunter, C.A. & Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat Immunol 16, 448-457 (2015). 89. Hirano, T. Interleukin 6 in autoimmune and inflammatory diseases: a personal memoir. Proc Jpn Acad Ser B Phys Biol Sci 86, 717-730 (2010). 90. Rivera-Chavez, F.A., Peters-Hybki, D.L., Barber, R.C. & O'Keefe, G.E. Interleukin-6 promoter haplotypes and interleukin-6 cytokine responses. Shock 20, 218-223 (2003). 91. Hao, S. & Baltimore, D. The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules. Nat Immunol 10, 281-288 (2009). 92. Schott, J. & Stoecklin, G. Networks controlling mRNA decay in the immune system. Wiley Interdiscip Rev RNA 1, 432-456 (2010). 93. Menezes, M.R., Balzeau, J. & Hagan, J.P. 3' RNA Uridylation in Epitranscriptomics, Gene Regulation, and Disease. Front Mol Biosci 5, 61 (2018). 94. Chang, H.M., Triboulet, R., Thornton, J.E. & Gregory, R.I. A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature 497, 244-248 (2013). 95. Pirouz, M., Du, P., Munafo, M. & Gregory, R.I. Dis3l2-Mediated Decay Is a Quality Control Pathway for Noncoding RNAs. Cell Rep 16, 1861-1873 (2016). 96. Jiang, X. & Chen, Z.J. The role of ubiquitylation in immune defence and pathogen evasion. Nat Rev Immunol 12, 35-48 (2011). 97. Lin, W.W. & Karin, M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117, 1175-1183 (2007). 98. Naka, T., Nishimoto, N. & Kishimoto, T. The paradigm of IL-6: from basic science to medicine. Arthritis Res 4 Suppl 3, S233-242 (2002). 99. Kishimoto, T. Interleukin-6: from basic science to medicine--40 years in immunology. Annu Rev Immunol 23, 1-21 (2005). 100. Heo, I. et al. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 151, 521-532 (2012). 101. Warkocki, Z. et al. Uridylation by TUT4/7 Restricts Retrotransposition of Human LINE-1s. Cell 174, 1537-1548 e1529 (2018). 102. Chang, H. et al. Terminal Uridylyltransferases Execute Programmed Clearance of Maternal Transcriptome in Vertebrate Embryos. Mol Cell 70, 72-82 e77 (2018). 103. Morgan, M. et al. mRNA 3' uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature 548, 347-351 (2017). 104. Sement, F.M. et al. Uridylation prevents 3' trimming of oligoadenylated mRNAs. Nucleic Acids Res 41, 7115-7127 (2013). 105. Behrens, G. et al. A translational silencing function of MCPIP1/Regnase-1 specified by the target site context. Nucleic Acids Res 46, 4256-4270 (2018). 106. Zhou, Q. et al. Global pairwise RNA interaction landscapes reveal core features of protein recognition. Nat Commun 9, 2511 (2018). 107. Malecki, M. et al. The exoribonuclease Dis3L2 defines a novel eukaryotic RNA degradation pathway. EMBO J 32, 1842-1854 (2013). 108. Thomas, M.P. et al. Apoptosis Triggers Specific, Rapid, and Global mRNA Decay with 3' Uridylated Intermediates Degraded by DIS3L2. Cell Rep 11, 1079-1089 (2015). 109. Chen, S.T. et al. CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453, 672-676 (2008). 110. Chen, S.T. et al. CLEC5A regulates Japanese encephalitis virus-induced neuroinflammation and lethality. PLoS Pathog 8, e1002655 (2012). 111. Chen, S.T. et al. CLEC5A is a critical receptor in innate immunity against Listeria infection. Nat Commun 8, 299 (2017). 112. Qin, Z. et al. ZNF536, a novel zinc finger protein specifically expressed in the brain, negatively regulates neuron differentiation by repressing retinoic acid-induced gene transcription. Mol Cell Biol 29, 3633-3643 (2009). 113. Conn, K.L. et al. Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response. J Virol 90, 4807-4826 (2016). 114. Greten, F.R. et al. NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell 130, 918-931 (2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78715 | - |
| dc.description.abstract | 先天性免疫反應之於宿主的重要性在於其能有效地清除病原體及修復受傷的組織,然失去調控的免疫反應則會導致許多疾病,例如:癌症、敗血症及代謝疾病等。目前已知,許多機制已被證實能有效地調節免疫反應,其中包含轉錄後調控(post-transcriptional regulation/PTR)。針對免疫相關基因的表現,轉錄後調控是一種快速且有效率的方式。第七終端尿醯苷轉移酶(Terminal uridyltransferase 7,TUT7),亦稱為ZCCHC6;目前的研究已知TUT7藉由轉移尿醯苷至其標的核醣核酸(RNA)的方式,調控核糖核酸(RNA)的穩定度及生合成。然而,TUT7在先天性免疫系統中所扮演的角色仍未釐清。於本論文中,我們發現以脂多醣(LPS)刺激第四型類鐸受體(TLR4)的活化,會誘發TUT7的表現。再者,利用慢病毒攜帶短片段RNAi (shTut7)或是特定基因剔除鼠(Tut7-/-)減少或去除巨噬細胞裡TUT7的表現並施以LPS,導致部分的細胞激素表現失衡,如:細胞介白素6 (interleukin-6/IL-6)。另外,我們更進一步證實TUT7利用其尿醯苷轉移之能力,將調節型核糖核酸內切酶(Regulatory riboendonuclease-1/Regnase-1)的RNA進行尿醯化的修飾以減少其蛋白質產生,進而對IL-6 mRNA達到保護作用,最終使IL-6得以適時地產生作用。另外,與先前的研究一致,我們也發現尿醯化的Regnase-1 mRNA具有較短的腺苷鏈。綜合前述,我們證實了TUT7藉由尿醯化調節Regnase-1 mRNA穩定度降低Regnase-1蛋白質的表現,以此使IL-6可以適時地參與TLR4所誘導之免疫反應。 | zh_TW |
| dc.description.abstract | Innate immune responses play a crucial role for the host to effectively clear pathogens and repair damaged tissues, but their dysregulation has been associated with numerous illnesses, such as cancer, sepsis and metabolic disorders. Different mechanisms have been demonstrated to elaborately regulate inflammatory response, including post-transcriptional regulation (PTR), which is a fast and effective way to modulate the expression of inflammatory-related genes. Terminal uridyltransferase 7 (TUT7), also named ZCCHC6, is known to be involved in the regulation of RNA stability or microRNA biogenesis by the addition of uridine tails to the end of their RNA substrates. Nevertheless, the role of TUT7 in the innate immune response remains unclear. Here we reveal that TUT7 is induced upon TLR4 activation, and selectively controls the expression of a subset of inflammatory cytokines. Depletion of TUT7 in macrophages leads to dysregulation of several cytokines production including IL-6 upon LPS challenge. We further demonstrate that TUT7 mediates IL-6 expression by controlling its mRNA stability through Regnase-1 after LPS stimulation. Mechanistically, TUT7 directly interacts with and uridylates Regnase-1 for degradation following stimulation LPS, which required the stem-loop structure in its 3’-UTR. Consistently, Regnase-1 mRNAs possess uridylated ends and shorter poly(A) tails in TUT7-proficient macrophages after LPS treatment, whereas Regnase-1 transcripts carries long poly(A) length without uridylation in Tut7-/- cells. Taken together, our findings reveal the functional role of TUT7 in sculpting TLR4-driven responses by modulating the mRNA stability of certain inflammatory mediators. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:14:11Z (GMT). No. of bitstreams: 1 ntu-108-D00448008-1.pdf: 7288823 bytes, checksum: b37da61a33ae8dbdabc3e2d63c61442e (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Contents
摘要 i Abstract ii Contents 1 Introduction 9 Innate immunity 9 Regulation of TLR4-mediated cytokines expression 10 TLR4 Signal transduction 11 Regulation of TLR4-driven immune response by translation and post-transcriptional modification (PTM) 13 Post-transcriptional regulation (PTR) in TLR4-triggered inflammation 14 Regnase-1 and its physiological functions in innate immunity 15 The terminal RNA uridyltransferases (TUTases/TUTs) family 17 ZCCHC6/TUTase 7/TUT7 20 TUT7 in the innate immunity 23 TUT7 modulates the expression of cytokines upon LPS challenge 23 Specific aim 25 Materials and Methods 26 Plasmids 26 Reagents and Antibodies 27 Mice 29 Cell cultures and preparation of bone marrow-derived macrophages 30 RNA extraction and Real-time quantitative PCR 30 shRNA-based gene silencing and lentiviral infection 31 mRNA stability assay 32 Immunoblotting 33 Immunoprecipitation 34 In vitro dephosphorylation 34 Dual-Luciferase reporter assay 35 Enzyme-Linked Immunosorbent Assays (ELISA) 36 In vitro transcription and In vitro uridylation 37 RNA-immunoprecipitation 38 Preparation of 3'-ligation rapid amplification of cDNA ends (RACE) library 39 RNA sequencing 40 Mass spectrometry (MS) analysis 41 Immunofluorescence 42 The endotoxemia mice model 43 Statistical analysis 43 Results 44 TUT7 expression is induced by various TLR ligands in BMDMs 44 Depletion of TUT7 modulates cytokines production in response to LPS in RAW 264.7 macrophages 45 Depletion of TUT7 influences the expression of TLR4-driven pro-inflammatory cytokines in response to various TLR ligands in BMDMs 46 TUT7 is involved in a subset of inflammatory cytokine expression in response to LPS in macrophages 49 TUT7 regulates Il6 mRNA stability through the stem-loop structure of Il6 3’-UTR 50 TUT7 controls Il6 mRNA destabilization through Regnase-1 54 TUT7 alters Regnase-1 mRNA stability via its 3’-UTR 56 TUT7 binds to and uridylates Regnase-1 58 TUT4 and TUT7 regulate Regnase-1 expression through different mechanisms 61 The exonuclease, Dis3L2, regulates LPS-induced cytokines expression like TUT7 61 Deletion of TUT7 reduces SerpinB2 expression 63 Discussion 64 Figures and Tables 73 Figure 1. Schematic diagram of the human TUTases. 73 Figure 2. TUT7 is induced by various TLRs ligands in BMDMs. 74 Figure 3. Deficiency of TUT7 alters the mRNA expression of pro-inflammatory cytokines in response to LPS in RAW 264.7 macrophages. 75 Figure 4. Deficiency of TUT7 affects the protein levels of pro-inflammatory cytokines in response to LPS in RAW 264.7 macrophages. 77 Figure 5. Deficiency of TUT7 does not influence activation of mitogen-activated protein kinases (MAPKs) and IKK in RAW 264.7 macrophages. 78 Figure 6. The nucleotidyltransferase activity of TUT7 is required for TUT-modulated LPS-induced Il6 and Il12b expression. 79 Figure 7. Generation of conventional Tut7-deleted mice. 80 Figure 8. Depletion of Tut7 has no significant effect on in vitro differentiation of bone marrow cells into macrophages, body weight, and spleen weight. 81 Figure 9. TUT7 deficiency in BMDMs alters the mRNA expression of LPS-induced pro-inflammatory cytokines. 82 Figure 10. TUT7 Deficiency regulates the production of LPS-induced pro-inflammatory cytokines in BMDMs. 83 Figure 11. Depletion of TUT7 does not change activation of mitogen-activated protein kinases and IKK in BMDMs. 84 Figure 12. Deletion of TUT7 alters the mRNA expression of pro-inflammatory cytokines in response to TLR-ligands in BMDMs. 85 Figure 13. Generation of mice whose Tut7 gene is specifically deleted in type I interferon-responsive cells. 87 Figure 14. TUT7 deficiency alters the expression of LPS-induced pro-inflammatory cytokine mRNAs in BMDMs isolated from Tut7Δ mice. 88 Figure 15. TUT7 deficiency alters innate immune response-related gene expression profile in response to LPS in BMDMs. 89 Figure 16. Depletion of TUT7 influences Il6 mRNA stability but not transcription. 90 Figure 17. TUT7 regulates Il6 mRNA stability via the stem-loop structure in its 3’UTR56-104. 91 Figure 18. TUT7 downregulates Regnase-1 mRNA and protein expression. 92 Figure 19. TUT7 does not influence Zc3h12c expression. 93 Figure 20. LPS induces Regnase-1 phosphorylation in RAW 264.7 macrophages. 94 Figure 21. Depletion of TUT7 influences Regnase-1 mRNA stability. 95 Figure 22. The nucleotidyltransferase activity of TUT7 is required for its regulation of Regnase-1 mRNA expression after TLR4 activation. 96 Figure 23. TUT7-modulated mRNA expression of a subset of TLR4-triggered inflammatory cytokines is dependent on Regnase-1. 97 Figure 24. TUT7 regulates the mRNA stability of Regnase-1 via its 3’-UTR1-358 in response to LPS in RAW 264.7 macrophages. 99 Figure 25. TUT7 downregulates Regnase-1 expression via 3’-UTR100-250. 100 Figure 26. TUT7-regulated Regnase-1 expression requires the stem-loop structure in its 3’-UTR100-250. 102 Figure 27. TUT7 associates with Regnase-1. 104 Figure 28. TUT7 uridylates Regnase-1. 105 Figure 29. TUT7 mediates oligo-uridylation on Regnase-1 3’end in response to LPS. 106 Figure 30. 3’end sequences of Il6 from LPS-treated BMDMs. 108 Figure 31. Deletion of TUT7 does not affect Tut4 expression in response to LPS in RAW 264.7 macrophages and BMDMs. 109 Figure 32. Deletion of TUT4 decreases the mRNA and protein expression of Regnase-1 in response to LPS in RAW 264.7 macrophages. 110 Figure 33. TUT7 associates with Dis3L2, and depletion of Dis3L2 impacts the mRNA expression of LPS-induced Il6, Il12b, and Regnase-1 in BMDMs. 111 Figure 34. TUT7 does not associate with Dcp1. 113 Figure 35. The sera concentrations of cytokines are decreased in Tut7-/- mice after challenge with low-dose LPS. 114 Figure 36. Depletion of TUT7 alters the mRNA expression of SerpinB2. 115 Figure 37. Model for the regulation of TUT7-mediated Reganse-1 expression 116 Supplementary figure 1. The TLR4 signaling pathway. 117 Supplementary figure 2. TUT7 is induced by various TLR ligands in BMDMs and RAW 264.7 macrophages. 119 Supplementary figure 3. Alignments of the conserved residue of catalytic core of TUT7. 120 Supplementary figure 4. TUT7 regulates Il6 mRNA expression via its 3’-UTR. 121 Table 1. TUTases 123 Table 2. Complete blood counts of Tut7+/+ and Tut7-/- mice 124 Table 3. Downregulated genes in Tut7-/- BMDMs upon LPS treatment. 125 Table 4. Upregulated genes in Tut7-/- BMDMs upon LPS treatment. 129 Table 5. Identification of TUT7-associated proteins in RAW264.7 macrophages upon LPS treatment. 132 Table 6. Primer list 133 References 137 | |
| dc.language.iso | en | |
| dc.subject | 尿醯化 | zh_TW |
| dc.subject | 先天性免疫 | zh_TW |
| dc.subject | 第四型類鐸受體 | zh_TW |
| dc.subject | 轉錄後調控 | zh_TW |
| dc.subject | 第七終端尿醯?轉移? | zh_TW |
| dc.subject | 調節型核糖核酸內切? | zh_TW |
| dc.subject | Innate immune responses | en |
| dc.subject | Toll-like receptor 4 (TLR4) | en |
| dc.subject | post-transcriptional regulation (PTR) | en |
| dc.subject | uridylation | en |
| dc.subject | regulatory ribonuclease 1 (Regnase-1) | en |
| dc.subject | Terminal uridyltransferase 7 (TUT7) | en |
| dc.title | 終端尿醯苷轉移酶TUT7在類鐸受體4引發發炎反應扮演之角色及機制探討 | zh_TW |
| dc.title | The functional role of terminal uridyltransferase 7 in TLR4-mediated inflammatory response | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 詹世鵬(Shih-Peng Chan),蔡欣祐(Hsin-Yue Tsai),曾炳輝(Ping-Hui Tseng),李建國(Chien-Kuo Lee) | |
| dc.subject.keyword | 先天性免疫,第四型類鐸受體,轉錄後調控,第七終端尿醯?轉移?,調節型核糖核酸內切?,尿醯化, | zh_TW |
| dc.subject.keyword | Innate immune responses,Toll-like receptor 4 (TLR4),post-transcriptional regulation (PTR),Terminal uridyltransferase 7 (TUT7),regulatory ribonuclease 1 (Regnase-1),uridylation, | en |
| dc.relation.page | 147 | |
| dc.identifier.doi | 10.6342/NTU201902241 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-31 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-28 | - |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-D00448008-1.pdf 未授權公開取用 | 7.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
