Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78706
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor盧奕璋(Yi-Chang Lu)
dc.contributor.authorYu-Chen Chouen
dc.contributor.author周育辰zh_TW
dc.date.accessioned2021-07-11T15:13:33Z-
dc.date.available2023-11-02
dc.date.copyright2020-11-09
dc.date.issued2020
dc.date.submitted2020-11-02
dc.identifier.citationM. Angelina Uy, Q.-H. Pham, B.-S. Hua, D. Thanh Nguyen, and S.-K. Yeung. Revisiting point cloud classification: A new benchmark dataset and classification model on real-world data. arXiv, pages arXiv–1908, 2019.
M. Atzmon, H. Maron, and Y. Lipman. Point convolutional neural networks by extension operators. arXiv preprint arXiv:1803.10091, 2018.
T. S. Cohen, M. Geiger, J. Köhler, and M. Welling. Spherical cnns. arXiv preprint arXiv:1801.10130, 2018.
C. Esteves, C. Allen-Blanchette, A. Makadia, and K. Daniilidis. Learning so (3) equivariant representations with spherical cnns. In Proceedings of the European Conference on Computer Vision (ECCV), pages 52–68, 2018.
H. Fan, H. Su, and L. J. Guibas. A point set generation network for 3d object reconstruction from a single image. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 605–613, 2017.
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.
D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
R. LaLonde, D. Zhang, and M. Shah. Clusternet: Detecting small objects in large scenes by exploiting spatio-temporal information. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4003–4012, 2018.
J. Li, B. M. Chen, and G. Hee Lee. So-net: Self-organizing network for point cloud analysis. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 9397–9406, 2018.
Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. Pointcnn: Convolution on xtransformed points. In Advances in neural information processing systems, pages 820–830, 2018.
T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision, pages 2980–2988, 2017.
Y. Liu, B. Fan, S. Xiang, and C. Pan. Relation-shape convolutional neural network for point cloud analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8895–8904, 2019.
I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983, 2016.
D. Maturana and S. Scherer. Voxnet: A 3d convolutional neural network for realtime object recognition. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 922–928. IEEE, 2015.
F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5115–5124, 2017.
V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, 2010.
A. Poulenard, M.-J. Rakotosaona, Y. Ponty, and M. Ovsjanikov. Effective rotationinvariant point cnn with spherical harmonics kernels. In 2019 International Conference on 3D Vision (3DV), pages 47–56. IEEE, 2019.
C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 652–660, 2017.
C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Advances in neural information processing systems, pages 5099–5108, 2017.
Y. Rao, J. Lu, and J. Zhou. Spherical fractal convolutional neural networks for point cloud recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 452–460, 2019.
S. J. Reddi, S. Kale, and S. Kumar. On the convergence of adam and beyond. arXiv preprint arXiv:1904.09237, 2019.
G. Riegler, A. Osman Ulusoy, and A. Geiger. Octnet: Learning deep 3d representations at high resolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3577–3586, 2017.
O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234–241. Springer, 2015.
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.
H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-view convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE international conference on computer vision, pages 945–953, 2015.
X. Sun, Z. Lian, and J. Xiao. Srinet: Learning strictly rotation-invariant representations for point cloud classification and segmentation. In Proceedings of the 27th ACM International Conference on Multimedia, pages 980–988, 2019.
C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI conference on artificial intelligence, 2017.
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818–2826, 2016.
H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J. Guibas. Kpconv: Flexible and deformable convolution for point clouds. In Proceedings of the IEEE International Conference on Computer Vision, pages 6411–6420, 2019.
P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong. O-cnn: Octree-based convolutional neural networks for 3d shape analysis. ACM Transactions on Graphics (TOG), 36(4):1–11, 2017.
Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (TOG), 38(5):1–12, 2019.
W. Wu, Z. Qi, and L. Fuxin. Pointconv: Deep convolutional networks on 3d point clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9621–9630, 2019.
Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1912–1920, 2015.
B. Xu, N. Wang, T. Chen, and M. Li. Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853, 2015.
Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao. Spidercnn: Deep learning on point sets with parameterized convolutional filters. In Proceedings of the European Conference on Computer Vision (ECCV), pages 87–102, 2018.
L. Yi, V. G. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su, C. Lu, Q. Huang, A. Sheffer, and L. Guibas. A scalable active framework for region annotation in 3d shape collections. ACM Transactions on Graphics (ToG), 35(6):1–12, 2016.
T. Yu, J. Meng, and J. Yuan. Multi-view harmonized bilinear network for 3d object recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 186–194, 2018.
Z. Zhang, B.-S. Hua, D. W. Rosen, and S.-K. Yeung. Rotation invariant convolutions for 3d point clouds deep learning. In 2019 International Conference on 3D Vision (3DV), pages 204–213. IEEE, 2019.
Z. Zhang, B.-S. Hua, and S.-K. Yeung. Shellnet: Efficient point cloud convolutional neural networks using concentric shells statistics. In Proceedings of the IEEE International Conference on Computer Vision, pages 1607–1616, 2019.
C. Zhao, J. Yang, X. Xiong, A. Zhu, Z. Cao, and X. Li. Rotation invariant point cloud classification: Where local geometry meets global topology. arXiv preprint arXiv:1911.00195, 2019.
H. Zhao, L. Jiang, C.-W. Fu, and J. Jia. Pointweb: Enhancing local neighborhood features for point cloud processing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5565–5573, 2019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78706-
dc.description.abstract近年來在深度學習領域,許多卷積運算子的提出在三維幾何資料中有著很好的表現。有些運算子只拿三維座標作為輸入便能有很好的表現。然而,旋轉不變性對於三維資料來說是個有挑戰性的課題。有些運算子的表現在經過旋轉之後往往會變差。在這篇論文中,我們提出了一個架構,能根據點集合的中心和參考點抽取特定不受旋轉影響的幾何特徵,且同時搜尋不同數量的最近鄰近來組成不同的點集合。在我們的設計裡,我們在特定的點雲資料中,同時搜尋不同數量的最近鄰居,然後逐步減少點雲的取樣好以取得較多不受旋轉影響的特徵資訊。我們實驗在不同且知名的點雲資料集,例如:物件辨識、物件分割等等。我們還針對我們的模型結構去做分析,而結果說明我們的設計還有所抽取的特徵著實有改善模型的表現。實驗也證實我們的方法即便在經過旋轉過後的資料依然能生成一樣的結果,且能有最先進的表現。其在ModelNet40 這個物件辨識資料集上能達到平均90.4% 的預測正確率,而在含有背景資訊的ScanObjectNN 這個物件辨識的資料集上也能達到平均76.2% 的預測正確率,在ShapeNet 這個物件分割的資料集上則可達到79.2% 的mIoU。zh_TW
dc.description.abstractRecently, a lot of convolution operators have a good performance when dealing with 3D geometric data. Some of them simply take the point set located in 3D coordinates as inputs and are able to achieve a good performance. However, rotation-invariance is a challenging task for point cloud data. Analyses for some operators are prone to degrade after arbitrary rotation. In the thesis, we propose a novel framework that extracts rotation-invariant features relative to the centroid and the reference point in a local point set, and takes different numbers of nearest neighbors simultaneously to formulate distinct local point sets and centroids. We experiment with different well-known point cloud tasks, such as object classification as well as part segmentation. We also conduct design analysis on our model architecture, and the results show that our design indeed improves the performance. Experiments demonstrate that our method generates consistent results on randomly rotated data and achieves state-of-the-art performances without any rotation augmentation. Our model is able to reach 90.4% accuracy on average on the ModelNet40 dataset. On the ScanObjectNN dataset, which includes information of background, our model is able to reach 76.2% accuracy on average. On the ShapeNet dataset, which is a part segmentation task, our model is able to achieve 79.2% mIOU.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:13:33Z (GMT). No. of bitstreams: 1
U0001-0710202015460500.pdf: 4409764 bytes, checksum: 9e16ee41b228a22ca82f7bc6974aa49d (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書iii
誌謝 v
摘要 vii
Abstract ix
1 Introduction 1
1.1 Motivation 1
1.2 Contribution 2
1.3 Arrangement 3
2 Related work 5
2.1 Multi-View Based, Volumetric-Based, and Octree-Based Networks 5
2.2 Point-Based Deep Learning Methods 7
2.3 Local Features Learning 8
2.4 Learning Point Cloud Data with Arbitrary Rotation 9
3 Background 11
3.1 Deep Learning Models 11
3.1.1 Outline of a Deep Learning Model 11
3.1.2 Method to Update Weight Matrices 13
3.2 Point-Based Deep Learning Models 15
3.3 Models Designed for Segmentation 16
3.4 Rotation Invariant Features 16
4 Methods 19
4.1 Problem Statement 19
4.2 Proposed Methods 20
4.2.1 3D Geometric-Feature Descriptor 20
4.2.2 Multi-kNN Graph 22
4.2.3 Architecture 22
4.3 Deep Learning Techniques 25
4.3.1 Loss Function 25
4.3.2 Learning Rate Scheduler and Optimizer 26
4.3.3 Way to Avoid Gradient Vanishing 27
4.3.4 Way to Avoid Overfitting 30
5 Experiments 33
5.1 Parameter Setting 33
5.2 Object Classification 34
5.2.1 ModelNet40 34
5.2.2 ScanObjectNN 35
5.3 3D Object Part Segmentation 39
6 Design Analysis 41
6.1 Raw Point Processing 41
6.1.1 Pre-Processing of Input Data 41
6.1.2 Down-Sampling Method 42
6.2 Architecture Design 44
6.2.1 Extracted Features 44
6.2.2 Number of k-NN Graphs 45
6.2.3 Aggregation Layers 45
6.3 Deep Learning Techniques 46
6.3.1 Choice of the Loss Function 46
6.3.2 Choice of the Optimizer 48
6.3.3 Effect of Batch Normalization 49
6.3.4 Effect of Data Augmentation 50
6.3.5 Effect of Dropout Layer 50
7 Conclusion 53
7.1 Conclusion 53
7.2 Prospective 53
Bibliography 55
dc.language.isoen
dc.subject深度學習zh_TW
dc.subject旋轉不變性zh_TW
dc.subject點雲zh_TW
dc.subjectdeep learningen
dc.subjectpoint clouden
dc.subjectrotation-invarianceen
dc.title一種應用於三維點雲資料的三維幾何特徵提取方法zh_TW
dc.title3D-GFE: A 3D Geometric-Feature Extractor for 3D Point Cloud Dataen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee連豊力(Feng-Li Lian),丁建均(Jian-Jiun Ding),吳沛遠(Pei-Yuan Wu)
dc.subject.keyword深度學習,點雲,旋轉不變性,zh_TW
dc.subject.keyworddeep learning,point cloud,rotation-invariance,en
dc.relation.page59
dc.identifier.doi10.6342/NTU202004242
dc.rights.note有償授權
dc.date.accepted2020-11-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
dc.date.embargo-lift2023-11-02-
Appears in Collections:電子工程學研究所

Files in This Item:
File SizeFormat 
U0001-0710202015460500.pdf
  Restricted Access
4.31 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved