Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 臨床動物醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78699
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor武敬和zh_TW
dc.contributor.advisorChing-Ho Wuen
dc.contributor.author王喜暖zh_TW
dc.contributor.authorShi-Nuan Wangen
dc.date.accessioned2021-07-11T15:13:04Z-
dc.date.available2024-08-08-
dc.date.copyright2019-08-18-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Elkins A, Pechman R, Kearney M, et al: A retrospective study evaluating the degree of degenerative joint disease in the stifle joint of dogs following surgical repair of anterior cruciate ligament rupture. Journal of the American Animal Hospital Association 27:533-540, 1991.
2. Johnson JA, Austin C, Breur GJ: Incidence of canine appendicular musculoskeletal disorders in 16 veterinary teaching hospitals from 1980 through 1989. Veterinary and Comparative Orthopaedics and Traumatology 7:56-69, 1994.
3. Innes J, Bacon D, Lynch C, et al: Long-term outcome of surgery for dogs with cranial cruciate ligament deficiency. Veterinary Record 147:325-328, 2000.
4. Wilke V, Kinghorn B, Conzemius M, et al: Prediction of inheritance for cranial cruciate ligament disease in the Newfoundland dog, Proceedings, JOURNAL OF ANIMAL SCIENCE, 2004 (available from AMER SOC ANIMAL SCIENCE 1111 NORTH DUNLAP AVE, SAVOY, IL 61874 USA)
5. Childers H: New methods for cruciate ligament repair. Repair by suture technique. Mod Vet Pract 47:59, 1966.
6. Flo GL: Modification of the lateral retinacular imbrication technique for stabilizing cruciate ligament injuries. JAAHA 11:570-576, 1975.
7. Harper TA, Martin RA, Ward DL, et al: An in vitro study to determine the effectiveness of a patellar ligament/fascia lata graft and new tibial suture anchor points for extracapsular stabilization of the cranial cruciate ligament–deficient stifle in the dog. Veterinary surgery 33:531-541, 2004.
8. Roe S, Kue J, Gemma JJV, et al: Isometry of potential suture attachment sites for the cranial cruciate ligament deficient canine stifle. 21:215-220, 2008.
9. Hulse D, Hyman W, Beale B, et al: Determination of isometric points for placement of a lateral suture in treatment of the cranial cruciate ligament deficient stifle. Veterinary and Comparative Orthopaedics and Traumatology 23:163-167, 2010.
10. Fischer C, Cherres M, Grevel V, et al: Effects of attachment sites and joint angle at the time of lateral suture fixation on tension in the suture for stabilization of the cranial cruciate ligament deficient stifle in dogs. Veterinary surgery 39:334-342, 2010.
11. Reichert EE, Kunkel KA, Suber JT, et al: Radiographic localization and isometry of the origin and insertion of the canine cranial cruciate ligament. Veterinary Surgery 42:860-866, 2013.
12. Cinti F, Signorelli C, Lopomo N, et al: Two different approaches for novel extracapsular cranial cruciate ligament reconstruction: an in vitro kinematics study. Journal of Small Animal Practice 56:398-406, 2015.
13. Witte P: Tibial anatomy in normal small breed dogs including anisometry of various extracapsular stabilizing suture attachment sites. Veterinary and Comparative Orthopaedics and Traumatology 28:331-338, 2015.
14. Thitiyanaporn C: Suture attachment sites on stifle joint of small and large dog breeds for cranial cruciate ligament rupture repair. Thai Journal of Veterinary Medicine 48:157-163, 2018.
15. Tobias KM, Johnston SA: Veterinary Surgery: Small Animal-E-BOOK: 2-Volume Set, Elsevier Health Sciences, 2013.
16. Muir P, De Rooster H: Advances in the canine cranial cruciate ligament, Wiley Online Library, 2017.
17. Heffron L, Campbell J: Morphology, histology and functional anatomy of the canine cranial cruciate ligament. The Veterinary Record 102:280-283, 1978.
18. Vasseur P, Pool R, Arnoczky S, et al: Correlative biomechanical and histologic study of the cranial cruciate ligament in dogs. American journal of veterinary research 46:1842-1854, 1985.
19. Wingfield C, Amis A, Stead A, et al: Comparison of the biornechanical properties of rottweiler and racing greyhound cranial cruciate ligaments. Journal of small animal practice 41:303-307, 2000.
20. Singleton W: The diagnosis and surgical treatment of some abnormal stifle conditions in the dog. Vet Rec 69:1387-1394, 1957.
21. Zahm H: die Ligamenta decussata in gesunden und arthrotischen Gelenken des Hundes. Kleintierpraxis 10:38-47, 1965.
22. Arnoczky S, Marshall J: The cruciate ligaments of the canine stifle: an anatomical and functional analysis. American journal of veterinary research 38:1807-1814, 1977.
23. Mann F, Wagner-Mann C, Tangner C: Manual goniometric measurement of the canine pelvic limb. The Journal of the American Animal Hospital Association (USA), 1988.
24. Solomonow M, Baratta R, D’ambrosia R: The role of the hamstrings in the rehabilitation of the anterior cruciate ligament-deficient knee in athletes. Sports Medicine 7:42-48, 1989.
25. Griffon DJ: A review of the pathogenesis of canine cranial cruciate ligament disease as a basis for future preventive strategies. Veterinary surgery 39:399-409, 2010.
26. Henderson R, Milton J: The tibial compression mechanism: a diagnostic aid in stifle injuries. Journal American Animal Hospital Association, 1978.
27. Slocum B, Devine T: Cranial tibial wedge osteotomy: a technique for eliminating cranial tibial thrust in cranial cruciate ligament repair. Journal of the American Veterinary Medical Association 184:564-569, 1984.
28. Pacchiana PD, Morris E, Gillings SL, et al: Surgical and postoperative complications associated with tibial plateau leveling osteotomy in dogs with cranial cruciate ligament rupture: 397 cases (1998–2001). Journal of the American Veterinary Medical Association 222:184-193, 2003.
29. Mostafa AA, Griffon DJ, Thomas MW, et al: Morphometric characteristics of the pelvic limbs of Labrador Retrievers with and without cranial cruciate ligament deficiency. American journal of veterinary research 70:498-507, 2009.
30. Osmond CS, MARCELLIN‐LITTLE DJ, Harrysson OL, et al: Morphometric assessment of the proximal portion of the tibia in dogs with and without cranial cruciate ligament rupture. Veterinary Radiology & Ultrasound 47:136-141, 2006.
31. Tepic S, Damur D, Montavon P: Biomechanics of the stifle joint, Proceedings, Proceedings of the 1st World Orthopaedic Veterinary Congress, 2002 (available from Munich Germany)
32. Guénégo L, Zahra A, Madelénat A, et al: Cranial cruciate ligament rupture in large and giant dogs. Veterinary and Comparative Orthopaedics and Traumatology 20:43-50, 2007.
33. Duval J, Budsberg S, Flo G, et al: Breed, sex, and body weight as risk factors for rupture of the cranial cruciate ligament in young dogs. Journal of the American Veterinary Medical Association 215:811-814, 1999.
34. Aiken S, Kass P, Toombs J: Intercondylar notch width in dogs with and without cranial cruciate ligament injuries. Veterinary and Comparative Orthopaedics and Traumatology 8:128-132, 1995.
35. Inauen R, Koch D, Bass M, et al: Tibial tuberosity conformation as a risk factor for cranial cruciate ligament rupture in the dog. Veterinary and Comparative Orthopaedics and Traumatology 22:16-20, 2009.
36. O'connor BL, Visco DM, Heck DA, et al: Gait alterations in dogs after transection of the anterior cruciate ligament. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology 32:1142-1147, 1989.
37. DeCamp C, Riggs C, Olivier N, et al: Kinematic evaluation of gait in dogs with cranial cruciate ligament rupture. American journal of veterinary research 57:120-126, 1996.
38. Korvick D, Pijanowski G, Schaeffer D: Three-dimensional kinematics of the intact and cranial cruciate ligament-deficient stifle of dogs. Journal of biomechanics 27:77-87, 1994.
39. Tashman S, Anderst W, Kolowich P, et al: Kinematics of the ACL‐deficient canine knee during gait: serial changes over two years. Journal of Orthopaedic Research 22:931-941, 2004.
40. Tinga S, Kim SE, Banks SA, et al: Femorotibial kinematics in dogs with cranial cruciate ligament insufficiency: a three-dimensional in-vivo fluoroscopic analysis during walking. BMC veterinary research 14:85, 2018.
41. Kim SE, Zann GJ, Tinga S, et al: Patellofemoral kinematics in dogs with cranial cruciate ligament insufficiency: an in-vivo fluoroscopic analysis during walking. BMC veterinary research 13:250, 2017.
42. Innes J, Costello M, Barr F, et al: Radiographic progression of osteoarthritis of the canine stifle joint: a prospective study. Veterinary Radiology & Ultrasound 45:143-148, 2004.
43. Agnello KA, Holsworth IG, Caceres AV, et al: Articular cartilage lesions of the patellofemoral joint in dogs with naturally occurring cranial cruciate ligament disease. Veterinary surgery 43:308-315, 2014.
44. Culvenor AG, Cook JL, Collins NJ, et al: Is patellofemoral joint osteoarthritis an under-recognised outcome of anterior cruciate ligament reconstruction? A narrative literature review. Br J Sports Med 47:66-70, 2013.
45. Whitehair J, Vasseur P, Willits N: Epidemiology of cranial cruciate ligament rupture in dogs. Journal of the American Veterinary Medical Association 203:1016-1019, 1993.
46. Powers MY, Martinez SA, Lincoln JD, et al: Prevalence of cranial cruciate ligament rupture in a population of dogs with lameness previously attributed to hip dysplasia: 369 cases (1994–2003). Journal of the American Veterinary Medical Association 227:1109-1111, 2005.
47. Harasen G: Canine cranial cruciate ligament rupture in profile: 2002–2007. The Canadian Veterinary Journal 49:193, 2008.
48. Witsberger TH, Villamil JA, Schultz LG, et al: Prevalence of and risk factors for hip dysplasia and cranial cruciate ligament deficiency in dogs. Journal of the American Veterinary Medical Association 232:1818-1824, 2008.
49. Duerr FM, Duncan CG, Savicky RS, et al: Risk factors for excessive tibial plateau angle in large-breed dogs with cranial cruciate ligament disease. Journal of the American Veterinary Medical Association 231:1688-1691, 2007.
50. Haynes KH, Biskup J, Freeman A, et al: Effect of tibial plateau angle on cranial cruciate ligament strain: an ex vivo study in the dog. Veterinary Surgery 44:46-49, 2015.
51. Comerford E, Tarlton J, Avery N, et al: Distal femoral intercondylar notch dimensions and their relationship to composition and metabolism of the canine anterior cruciate ligament. Osteoarthritis and cartilage 14:273-278, 2006.
52. Moore KW, Read RA: Rupture of the cranial cruciate ligament in dogs-part I. Compendium on Continuing Education for the Practicing Veterinarian 18:223-233, 1996.
53. Buote N, Fusco J, Radasch R: Age, tibial plateau angle, sex, and weight as risk factors for contralateral rupture of the cranial cruciate ligament in Labradors. Veterinary surgery 38:481-489, 2009.
54. Doverspike M, Vasseur P, Harb M, et al: Contralateral cranial cruciate ligament rupture: incidence in 114 dogs. Journal of the American Animal Hospital Association 29:167-170, 1993.
55. Ralphs SC, Whitney WO: Arthroscopic evaluation of menisci in dogs with cranial cruciate ligament injuries: 100 cases (1999–2000). Journal of the American Veterinary Medical Association 221:1601-1604, 2002.
56. Whitney W, Beale B: Arthroscopically assisted surgery of the stifle joint. Small animal arthroscopy:137-140, 2003.
57. Thieman KM, Pozzi A, LING HY, et al: Contact mechanics of simulated meniscal tears in cadaveric canine stifles. Veterinary surgery 38:803-810, 2009.
58. Luther JK, Cook CR, Cook JL: Meniscal release in cruciate ligament intact stifles causes lameness and medial compartment cartilage pathology in dogs 12 weeks postoperatively. Veterinary Surgery 38:520-529, 2009.
59. Vasseur P: Clinical results following nonoperative management for rupture of the cranial cruciate ligament in dogs. Veterinary Surgery 13:243-246, 1984.
60. Monk ML, Preston CA, McGowan CM: Effects of early intensive postoperative physiotherapy on limb function after tibial plateau leveling osteotomy in dogs with deficiency of the cranial cruciate ligament. American journal of veterinary research 67:529-536, 2006.
61. DeCamp CE, Johnston S, Déjardin L, et al: Handbook of small animal orthopedics and fracture repair. St Louis: Elsevier, 2016.
62. Spindler K, Murray M, Devin C, et al: The central ACL defect as a model for failure of intra‐articular healing. Journal of orthopaedic research 24:401-406, 2006.
63. BUTLER DL, HULSE DA, KAY MD, et al: Biomechanics of cranial cruciate ligament reconstruction in the dog II. Mechanical properties. Veterinary Surgery 12:113-118, 1983.
64. Bacon J, Pichler M, Lynd F, et al: HISTOPATHOLOGICAL EXAMINATION OF 2 CRANIAL CRUCIATE LIGAMENT RECONSTRUCTIONS. Journal of the American Animal Hospital Association 20:65-68, 1984.
65. Biskup JJ, Balogh DG, Haynes KH, et al: Mechanical strength of four allograft fixation techniques for ruptured cranial cruciate ligament repair in dogs. American journal of veterinary research 76:411-419, 2015.
66. Biskup JJ, Balogh DG, Scott RM, et al: Long‐term outcome of an intra‐articular allograft technique for treatment of spontaneous cranial cruciate ligament rupture in the dog. Veterinary surgery 46:691-699, 2017.
67. Warzee CC, Dejardin LM, Arnoczky SP, et al: Effect of tibial plateau leveling on cranial and caudal tibial thrusts in canine cranial cruciate–deficient stifles: An in vitro experimental study. Veterinary Surgery 30:278-286, 2001.
68. Apelt D, Pozzi A, Marcellin‐Little DJ, et al: Effect of cranial tibial closing wedge angle on tibial subluxation: an ex vivo study. Veterinary surgery 39:454-459, 2010.
69. Bailey C, Smith B, Black A: Geometric implications of the tibial wedge osteotomy for the treatment of cranial cruciate ligament disease in dogs. Veterinary and Comparative Orthopaedics and Traumatology 20:169-174, 2007.
70. Selmi A, Filho JP: Rupture of the cranial cruciate ligament associated with deformity of the proximal tibia in five dogs. Journal of Small Animal Practice 42:390-393, 2001.
71. Holsworth I: Clinical comparison of TPLO vs tibial closing wedge osteotomy. Proceedings, 12th European Society of Veterinary Orthopaedics and Traumatology, Munich, Germany 62, 2004.
72. Slocum B, Slocum TD: Tibial plateau leveling osteotomy for repair of cranial cruciate ligament rupture in the canine. The Veterinary clinics of North America Small Animal Practice 23:777-795, 1993.
73. Kergosien DH, Barnhart MD, Kees CE, et al: Radiographic and clinical changes of the tibial tuberosity after tibial plateau leveling osteotomy. Veterinary surgery 33:468-474, 2004.
74. Priddy NH, Tomlinson JL, Dodam JR, et al: Complications with and owner assessment of the outcome of tibial plateau leveling osteotomy for treatment of cranial cruciate ligament rupture in dogs: 193 cases (1997–2001). Journal of the American Veterinary Medical Association 222:1726-1732, 2003.
75. Stauffer KD, Tuttle TA, Elkins A, et al: Complications associated with 696 tibial plateau leveling osteotomies (2001–2003). Journal of the American Animal Hospital Association 42:44-50, 2006.
76. Carey K, Aiken S, DiResta G, et al: Radiographic and clinical changes of the patellar tendon after tibial plateau leveling osteotomy. Veterinary and Comparative Orthopaedics and Traumatology 18:235-242, 2005.
77. Mattern KL, Berry CR, Peck JN, et al: Radiographic and ultrasonographic evaluation of the patellar ligament following tibial plateau leveling osteotomy. Veterinary Radiology & Ultrasound 47:185-191, 2006.
78. Fitzpatrick N, Solano MA: Predictive variables for complications after TPLO with stifle inspection by arthrotomy in 1000 consecutive dogs. Veterinary surgery 39:460-474, 2010.
79. Kim SE, Pozzi A, Banks SA, et al: Effect of tibial plateau leveling osteotomy on femorotibial contact mechanics and stifle kinematics. Veterinary surgery 38:23-32, 2009.
80. Rutherford S, Bell JC, Ness MG: Fracture of the patella after TPLO in 6 dogs. Veterinary Surgery 41:869-875, 2012.
81. Lazar TP, Berry CR, Dehaan JJ, et al: Long‐term radiographic comparison of tibial plateau leveling osteotomy versus extracapsular stabilization for cranial cruciate ligament rupture in the dog. Veterinary Surgery 34:133-141, 2005.
82. Maquet P: Advancement of the tibial tuberosity. Clinical orthopaedics and related research:225-230, 1976.
83. Nisell R, Németh G, Ohlsén H: Joint forces in extension of the knee: analysis of a mechanical model. Acta Orthopaedica Scandinavica 57:41-46, 1986.
84. Montavon P: Advancement of the tibial tuberosity for the treatment of cranial cruciate deficient canine stifle, Proceedings, 1st World Orth Vet Congress, 2002, 2002 (available from
85. Apelt D, Kowaleski MP, Boudrieau RJ: Effect of tibial tuberosity advancement on cranial tibial subluxation in canine cranial cruciate‐deficient stifle joints: an in vitro experimental study. Veterinary Surgery 36:170-177, 2007.
86. Lafaver S, Miller NA, Stubbs WP, et al: Tibial tuberosity advancement for stabilization of the canine cranial cruciate ligament‐deficient stifle joint: surgical technique, early results, and complications in 101 dogs. Veterinary surgery 36:573-586, 2007.
87. Kipfer N, Tepic S, Damur D, et al: Effect of tibial tuberosity advancement on femorotibial shear in cranial cruciate-deficient stifles. Veterinary and Comparative Orthopaedics and Traumatology 21:385-390, 2008.
88. Hoffmann D, Miller J, Ober C, et al: Tibial tuberosity advancement in 65 canine stifles. Veterinary and comparative Orthopaedics and Traumatology 19:219-227, 2006.
89. Kim SE, Pozzi A, Banks SA, et al: Effect of tibial tuberosity advancement on femorotibial contact mechanics and stifle kinematics. Veterinary surgery 38:33-39, 2009.
90. Steinberg EJ, Prata RG, Palazzini K, et al: Tibial tuberosity advancement for treatment of CrCL injury: complications and owner satisfaction. Journal of the American Animal Hospital Association 47:250-257, 2011.
91. Wolf RE, Scavelli TD, Hoelzler MG, et al: Surgical and postoperative complications associated with tibial tuberosity advancement for cranial cruciate ligament rupture in dogs: 458 cases (2007–2009). Journal of the American Veterinary Medical Association 240:1481-1487, 2012.
92. Ragetly CA, Evans R, Mostafa AA, et al: Multivariate analysis of morphometric characteristics to evaluate risk factors for cranial cruciate ligament deficiency in Labrador retrievers. Veterinary Surgery 40:327-333, 2011.
93. Conzemius MG, Evans RB, Besancon MF, et al: Effect of surgical technique on limb function after surgery for rupture of the cranial cruciate ligament in dogs. Journal of the American Veterinary Medical Association 226:232-236, 2005.
94. Au KK, GORDON‐EVANS WJ, Dunning D, et al: Comparison of short‐and long‐term function and radiographic osteoarthrosis in dogs after postoperative physical rehabilitation and tibial plateau leveling osteotomy or lateral fabellar suture stabilization. Veterinary Surgery 39:173-180, 2010.
95. Cook JL, Luther JK, Beetem J, et al: Clinical comparison of a novel extracapsular stabilization procedure and tibial plateau leveling osteotomy for treatment of cranial cruciate ligament deficiency in dogs. Veterinary Surgery 39:315-323, 2010.
96. Smith G, Torg J: Fibular head transposition for repair of cruciate-deficient stifle in the dog. Journal of the American Veterinary Medical Association 187:375-383, 1985.
97. McCurnin D, Pearson P, Wass W: Clinical and pathologic evaluation of ruptured cranial cruciate ligament repair in the dog. American journal of veterinary research 32:1517-1524, 1971.
98. Pearson P, McCurnin D, Carter J, et al: Lembert suture technique to surgically correct ruptured cruciate ligaments. Amer Coll Vet Toxicol News, 1971.
99. Chauvet AE, Johnson AL, Pijanowski GJ, et al: Evaluation of fibular head transposition, lateral fabellar suture, and conservative treatment of cranial cruciate ligament rupture in large dogs: a retrospective study. Journal of the American Animal Hospital Association 32:247-255, 1996.
100. Casale SA, McCarthy RJ: Complications associated with lateral fabellotibial suture surgery for cranial cruciate ligament injury in dogs: 363 cases (1997–2005). Journal of the American Veterinary Medical Association 234:229-235, 2009.
101. Beale B: Clinical use of suture anchors for treatment of trauma induced joint instability in small animals. Baton Rouge, LA: DocuTech Services, Inc, American Canine Sports Medicine Association Newsletter 4:1-3, 1998.
102. Bertocci GE, Brown NP, Embleton NA, et al: Canine stifle biomechanics associated with a novel extracapsular articulating implant predicted using a computer model. Veterinary Surgery 45:327-335, 2016.
103. Burgess R, Elder S, McLaughlin R, et al: In vitro biomechanical evaluation and comparison of FiberWire, FiberTape, OrthoFiber, and nylon leader line for potential use during extraarticular stabilization of canine cruciate deficient stifles. Veterinary surgery 39:208-215, 2010.
104. Rose ND, Goerke D, Evans RB, et al: Mechanical testing of orthopedic suture material used for extra‐articular stabilization of canine cruciate ligament‐deficient stifles. Veterinary Surgery 41:266-272, 2012.
105. Banwell MN, Kerwin SC, Hosgood G, et al: In vitro evaluation of the 18 and 36 kg Securos Cranial Cruciate Ligament Repair System™. Veterinary surgery 34:283-288, 2005.
106. Muro N, Lanz O: Use of a novel extracapsular bone anchor system for stabilisation of cranial cruciate ligament insufficiency. Journal of Small Animal Practice 58:284-292, 2017.
107. Banks SA, Hodge WA: Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Transactions on Biomedical Engineering 43:638-649, 1996.
108. Li G, DeFrate LE, Rubash HE, et al: In vivo kinematics of the ACL during weight‐bearing knee flexion. Journal of orthopaedic research 23:340-344, 2005.
109. You B-M, Siy P, Anderst W, et al: In vivo measurement of 3-D skeletal kinematics from sequences of biplane radiographs: application to knee kinematics. IEEE transactions on medical imaging 20:514-525, 2001.
110. Georgoulis AD, Papadonikolakis A, Papageorgiou CD, et al: Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. The American journal of sports medicine 31:75-79, 2003.
111. Tsai TY, Lu TW, Chen CM, et al: A volumetric model‐based 2D to 3D registration method for measuring kinematics of natural knees with single‐plane fluoroscopy. Medical physics 37:1273-1284, 2010.
112. Brainerd EL, Baier DB, Gatesy SM, et al: X‐ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in comparative biomechanics research. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 313:262-279, 2010.
113. DeCamp C, Soutas-Little R, Hauptman J, et al: Kinematic gait analysis of the trot in healthy greyhounds. American journal of veterinary research 54:627-634, 1993.
114. Clements D, Owen M, Carmichael S, et al: Kinematic analysis of the gait of 10 labrador retrievers during treadmill locomotion. Veterinary Record 156:478-481, 2005.
115. Bockstahler BA, Prickler B, Lewy E, et al: Hind limb kinematics during therapeutic exercises in dogs with osteoarthritis of the hip joints. American journal of veterinary research 73:1371-1376, 2012.
116. Bennett R, DeCamp C, Flo G, et al: Kinematic gait analysis in dogs with hip dysplasia. American journal of veterinary research 57:966-971, 1996.
117. Tashman S, Anderst W: In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. Transactions-American Society of Mechanical Engineers Journal of Biomechanical Engineering 125:238-245, 2003.
118. Fregly BJ, Rahman HA, Banks SA: Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy. Journal of biomechanical engineering 127:692-699, 2005.
119. Jones SC, Kim SE, Banks SA, et al: Accuracy of noninvasive, single-plane fluoroscopic analysis for measurement of three-dimensional femorotibial joint poses in dogs. American journal of veterinary research 75:477-485, 2014.
120. Kernkamp WA, Van de Velde SK, Tsai T-Y, et al: An in vivo simulation of isometry of the anterolateral aspect of the healthy knee. The Journal of bone and joint surgery American volume 99:1111, 2017.
121. Lin C-C, Chang C-L, Lu M, et al: Quantification of three-dimensional soft tissue artifacts in the canine hindlimb during passive stifle motion. BMC veterinary research 14:389, 2018.
122. Brebner NS, Moens N, Runciman J: Evaluation of a treadmill with integrated force plates for kinetic gait analysis of sound and lame dogs at a trot. Veterinary and Comparative Orthopaedics and Traumatology 19:205-212, 2006.
123. Torres BT, Moëns NM, Al-Nadaf S, et al: Comparison of overground and treadmill-based gaits of dogs. American journal of veterinary research 74:535-541, 2013.
124. Keebaugh AE, Redman-Bentley D, Griffon DJ: Influence of leash side and handlers on pressure mat analysis of gait characteristics in small-breed dogs. Journal of the American Veterinary Medical Association 246:1215-1221, 2015.
125. Tonks C, Lewis D, Pozzi A: A review of extra-articular prosthetic stabilization of the cranial cruciate ligament-deficient stifle. Veterinary and Comparative Orthopaedics and Traumatology 24:167-177, 2011.
126. Savio G, Baroni T, Concheri G, et al: Computation of Femoral Canine Morphometric Parameters in Three‐Dimensional Geometrical Models. Veterinary Surgery 45:987-995, 2016.
127. Vedrine B, Guillemot A, Fontaine D, et al: Comparative anatomy of the proximal tibia in healthy Labrador Retrievers and Yorkshire Terriers. Veterinary and Comparative Orthopaedics and Traumatology 26:266-270, 2013.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78699-
dc.description.abstract前十字韌帶疾病是造成犬後肢跛行最常見的疾病之一,目前雖發展出許多治療方式,然而目前在臨床上對於何種治療方式較佳尚無定論。囊外固定術因為其術式簡單、成本便宜、侵入性低,且手術預後良好,目前仍是獸醫領域中最為廣泛選擇的手術治療方式。囊外固定提供支撐的線材必須在關節受力時保持一定張力,當線材張力過小將無法提供穩定膝關節的功能;相反地,當線材承受過大張力則會導致提早斷裂,並且限制關節運動範圍。因此,需要在股骨與脛骨上找到在膝關節活動範圍中相對距離不會改變的兩點,稱之為等距點(Isometric point)。過去十年間也有不少相關研究,但礙於研究方法差異,受限於二維研究、體外試驗,在這幾篇研究中對於等距點之選擇都各自推翻或歸納出不同的結論。基於過去研究的限制性,本研究旨在整合透視攝影和以電腦斷層骨模型為基礎的影像追蹤與定位技術,重建犬後肢在三維空間之膝關節運動學,並計算出骨模型上兩點之最短距離。研究最終共納入十隻健康台灣犬,結果顯示FD1-TA3, FD1-TA4, FD1-TA5, FD1-TA7, FE1-TA5, FE1-TA6, FE1-TA7, 與FE1-TB6於犬隻行走期間在三維空間中測量之最大距離長度百分比變化量小於6%。不論是以FD1或FE1為股骨固定位置,其越往前側接近脛骨脊近端等距性越佳,若以TA7為脛骨固定位置,其股骨固定位置以種子骨正下方之等距性最佳,越遠離種子骨其等距性越差。除此之外,本研究亦提供了在步態週期間兩點距離之波形變化,在FD1之所有分析組合中,在步態週期之擺盪期(Swing phase),其兩點距離會最大,此時膝關節角度最小,約為100至110°;然而,在FE1之所有分析組合中,在此階段兩點距離則會最小,可能會因為線材張力下降,導致患犬出現膝關節的不穩定。
本研究亦分析比較了過去文獻的潛在等距組合,其中,腸趾伸肌溝前後皆非適合之等距點,而脛骨粗隆近端則可以作為近端脛骨脊之外的第二替代等距點。臨床上仍須考量到囊外固定其預防脛骨前移與內轉之功能性。若將兩點連線之張力分成垂直分量和水平分量來看,FD1-TA3, FD1-TA4, 與TA5因為其兩點連線過於平行脛骨長軸,預期此組合預防脛骨前移或內轉之能力亦可能較差,可能不是臨床上較佳之囊外固定位置。
總結來說, FD1-TA7, FE1-TA6, FE1-TA7, 與FE1-TB6皆為較佳之潛在囊外等距組合。從解剖位置來看,以種子骨正下方與後側之外側髁作為股骨等距點,近端脛骨脊為較佳之脛骨等距點;但當選擇較後側的股骨等距點,會使擺盪期時兩點距離縮短,線材張力下降,可能導致患犬出現膝關節的不穩定。本研究之結論可在臨床上提供囊外固定較佳之等距組合,以維持患犬膝關節纖維化穩定前之線材張力,在不限制關節活動的前提下,穩定膝關節,並減少術後發生線材提早延長、斷裂的併發症。
zh_TW
dc.description.abstractCranial cruciate ligament deficiency (CCLD) was one of the most common causes of hind limb lameness in canine. Many treatments have been developed, but the most recommended treatment still remained controversial. Extracapsular stabilization was a widely used treatment for CCLD in canine because of its advantages including simple procedure, low cost, low invasiveness, and good prognosis. Appropriate suture points on the femur and tibia that can keep the suture under stable tension were crucial to optimize the post-operative performance of the stifle joint. Quasi-isometric suture sites on the stifle joint have been investigated with 2-D measurements or cadaveric studies, but the optimal suture point locations still remain controversial. Therefore, the study aimed to assess the isometric points of extracapsular stabilization in canine stifle joint based on the reconstructed 3-D stifle kinematics. Therefore, the purpose of the study was to assess the isometric points of extracapsular stabilization in canine stifle joint based on the reconstructed 3-D kinematics of the stifle joint. The stifle kinematics during the treadmill gait was determined using a real-time fluoroscopy analysis method. Wrapping distance variations of the candidate suture sites on the bone models were calculated. Ten healthy dogs were enrolled in the study. The results showed the suture pairs FD1-TA3, FD1-TA4, FD1-TA5, FD1-TA7, FE1-TA5, FE1-TA6, FE1-TA7, and FE1-TB6 presented the max length percentage changes less than 6% over entire gait cycle. However, the connection pairs of FD1-TA3, FD1-TA4 and FD1-TA5 are considered too vertical to provide sufficient parallel tension force to resist cranial tibial thrust and tibial internal rotation. For the femoral attachments on the FD1 and FE1, the connection sites on those points more cranial to proximal tibial crest, the better the isometry. On the other hand, with the TA7 as tibial attachment, the best isometric femoral attachment was just caudal and below the fabella. The farther away from the fabella, the worse the isometry. Waveforms of the two-points distance during the gait cycle were also presented in this study. Among all the suture combinations of FD1, the distances of pairs would be largest in the swing phase of the gait cycle with stifle angle within 100 to 110°; however, among all the suture combination of FE1, the distances of pairs would be smallest during the same motion period, which may cause stifle instability.
Potential quasi-isometric points determined in the literature were also analyzed in our study, in which the long digital extensor groove was shown to be not isometric, while the tibial tuberosity could be the second alternative to the proximal tibial crest. In summary, suture pairs FD1-TA7, FE1-TA6, FE1-TA7, and FE1-TB6 could yield the most isometric outcome comparing to other combinations, which may be suggested as an appropriate suture points in clinical practice. The femoral attachment of FD1 or FE1 is a location just distal or caudodistal to the fabella, while the tibial attachment of TA6, TA7, or TB6 is near the proximal tibial crest.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:13:04Z (GMT). No. of bitstreams: 1
ntu-108-R05643007-1.pdf: 8722259 bytes, checksum: 1f6bee89deaedaf1f05948603228bc66 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 I
中文摘要 II
ABSTRACT IV
目錄 VI
圖目錄 IX
表目錄 XII
第一章 序論 1
第二章 文獻回顧與研究目標 3
第一節 前十字韌帶斷裂 3
第一項 解剖構造及功能 3
第二項 病生理機制 5
一、 膝關節受力模型理論分析 5
二、 膝關節運動力學分析 8
三、 急性前十字韌帶斷裂 9
四、 慢性前十字韌帶退化 10
五、 半月板受損 10
第三項 內科治療 13
第四項 外科治療 14
一、 囊內固定 14
二、 骨切開校正術 17
三、 囊外固定 23
第二節 囊外固定技術之探討 28
第三節 囊外等距點分析之文獻探討與研究小結 32
第四節 三維動態分析 42
第五節 研究目標 46
第六節 預期研究成果 46
第三章 材料與方法 47
第一節 整體實驗架構與流程 47
第二節 受試犬 48
第三節 實驗儀器與設備 48
第一項 電腦斷層掃描儀 48
第二項 C-型臂X光透視攝影儀 50
第三項 光學式動作捕捉系統 51
第四項 跑步機 53
第四節 實驗流程 53
第一項 儀器設備配置與校正 53
第二項 系統座標轉換 56
第三項 皮膚表面反光標記黏貼 56
第四項 資料收集 58
一、 受試犬校正 58
二、 動態資料擷取 59
第五節 資料處理 59
第一項 透視攝影圖像處理 59
第二項 Vicon系統資料處理 60
第三項 三維骨頭模型建立 61
第四項 二維影像對三維模型之契合 62
第六節 數據分析 63
第一項 囊外等距點分析 63
第二項 統計分析 65
第四章 結果 66
第一節 受試犬資料統計 66
第二節 受試者內實驗之可重複性之分析 67
第三節 分析點最大距離長度變化 68
第四節 分析點平均距離長度變化 81
第五節 與過去文獻方法之分析差異 100
第五章 討論 103
第一節 受試者內之實驗可重複性分析 103
第二節 與過去文獻方法之分析差異 104
第三節 分析點最大與最小距離長度變化 109
第四節 分析點平均距離長度變化 113
第五節 研究限制 114
第六節 未來展望 115
第六章 結論 118
文獻探討 120
-
dc.language.isozh_TW-
dc.subject等距點分析zh_TW
dc.subject前十字韌帶疾病zh_TW
dc.subject囊外固定zh_TW
dc.subject以模型為基礎之追蹤定位術zh_TW
dc.subjectextracapsular stabilizationen
dc.subjectmodel-based trackingen
dc.subjectisometric points analysisen
dc.subjectcranial cruciate ligament deficiencyen
dc.title使用三維運動學分析犬膝關節囊外等距點之研究zh_TW
dc.titleDetermination of potential isometric points for extracapsular stabilization in canine using 3D kinematics measurementen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.coadvisor林正忠zh_TW
dc.contributor.coadvisorCheng-Chung Linen
dc.contributor.oralexamcommittee王廷明;呂東武zh_TW
dc.contributor.oralexamcommitteeTing-Ming Wang;Tung-Wu Luen
dc.subject.keyword前十字韌帶疾病,囊外固定,等距點分析,以模型為基礎之追蹤定位術,zh_TW
dc.subject.keywordcranial cruciate ligament deficiency,extracapsular stabilization,isometric points analysis,model-based tracking,en
dc.relation.page126-
dc.identifier.doi10.6342/NTU201902019-
dc.rights.note未授權-
dc.date.accepted2019-08-02-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept臨床動物醫學研究所-
dc.date.embargo-lift2024-08-18-
顯示於系所單位:臨床動物醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
8.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved