請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78697完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳培哲(Pei-Jer Chen) | |
| dc.contributor.author | Pei-Chia Su | en |
| dc.contributor.author | 蘇珮嘉 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:12:56Z | - |
| dc.date.available | 2024-08-28 | |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-02 | |
| dc.identifier.citation | Chapter I
Rapti I, Hadziyannis S. Risk for hepatocellular carcinoma in the course of chronic hepatitis B virus infection and the protective effect of therapy with nucleos(t)ide analogues. World J Hepatol 2015;7:1064-1073. 2. Fattovich G, Bortolotti F, Donato F. Natural history of chronic hepatitis B: special emphasis on disease progression and prognostic factors. J Hepatol 2008;48:335-352. 3. Paganelli M, Stephenne X, Sokal EM. Chronic hepatitis B in children and adolescents. J Hepatol 2012;57:885-896. 4. Velkov S, Ott JJ, Protzer U, Michler T. The Global Hepatitis B Virus Genotype Distribution Approximated from Available Genotyping Data. Genes (Basel) 2018;9. 5. Ni YH, Chen DS. Hepatitis B vaccination in children: the Taiwan experience. Pathol Biol (Paris) 2010;58:296-300. 6. Moolla N, Kew M, Arbuthnot P. Regulatory elements of hepatitis B virus transcription. J Viral Hepat 2002;9:323-331. 7. Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife 2012;1:e00049. 8. Tuttleman JS, Pourcel C, Summers J. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell 1986;47:451-460. 9. Hu J, Seeger C. Hepadnavirus Genome Replication and Persistence. Cold Spring Harb Perspect Med 2015;5:a021386. 10. Summers J, Mason WS. Replication of the genome of a hepatitis B--like virus by reverse transcription of an RNA intermediate. Cell 1982;29:403-415. 11. Watanabe T, Sorensen EM, Naito A, Schott M, Kim S, Ahlquist P. Involvement of host cellular multivesicular body functions in hepatitis B virus budding. Proc Natl Acad Sci U S A 2007;104:10205-10210. 12. Hu J, Liu K. Complete and Incomplete Hepatitis B Virus Particles: Formation, Function, and Application. Viruses 2017;9. 13. Tang H, Delgermaa L, Huang F, Oishi N, Liu L, He F, Zhao L, et al. The transcriptional transactivation function of HBx protein is important for its augmentation role in hepatitis B virus replication. J Virol 2005;79:5548-5556. 14. Boyle DA. Hepatocellular Carcinoma: Implications for Asia-Pacific Oncology Nurses. Asia Pac J Oncol Nurs 2017;4:98-103. 15. Okada M, Enomoto M, Kawada N, Nguyen MH. Effects of antiviral therapy in patients with chronic hepatitis B and cirrhosis. Expert Rev Gastroenterol Hepatol 2017;11:1095-1104. 16. Ju YC, Jun DW, Choi J, Saeed WK, Lee HY, Oh HW. Long term outcome of antiviral therapy in patients with hepatitis B associated decompensated cirrhosis. World J Gastroenterol 2018;24:4606-4614. 17. Guerrieri F, Belloni L, Pediconi N, Levrero M. Molecular mechanisms of HBV-associated hepatocarcinogenesis. Semin Liver Dis 2013;33:147-156. 18. Levrero M, Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol 2016;64:S84-S101. 19. Kew MC. Hepatitis B virus x protein in the pathogenesis of hepatitis B virus-induced hepatocellular carcinoma. J Gastroenterol Hepatol 2011;26 Suppl 1:144-152. 20. Ali A, Abdel-Hafiz H, Suhail M, Al-Mars A, Zakaria MK, Fatima K, Ahmad S, et al. Hepatitis B virus, HBx mutants and their role in hepatocellular carcinoma. World J Gastroenterol 2014;20:10238-10248. 21. Wang SH, Yeh SH, Shiau CW, Chen KF, Lin WH, Tsai TF, Teng YC, et al. Sorafenib Action in Hepatitis B Virus X-Activated Oncogenic Androgen Pathway in Liver through SHP-1. J Natl Cancer Inst 2015;107. 22. Perkins LA, Larsen I, Perrimon N. corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell 1992;70:225-236. 23. Evren S, Wan S, Ma XZ, Fahim S, Mody N, Sakac D, Jin T, et al. Characterization of SHP-1 protein tyrosine phosphatase transcripts, protein isoforms and phosphatase activity in epithelial cancer cells. Genomics 2013;102:491-499. 24. Thomas ML. Of ITAMs and ITIMs: turning on and off the B cell antigen receptor. J Exp Med 1995;181:1953-1956. 25. Lechleider RJ, Sugimoto S, Bennett AM, Kashishian AS, Cooper JA, Shoelson SE, Walsh CT, et al. Activation of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009, on the human platelet-derived growth factor receptor. J Biol Chem 1993;268:21478-21481. 26. Zhang Z, Shen K, Lu W, Cole PA. The role of C-terminal tyrosine phosphorylation in the regulation of SHP-1 explored via expressed protein ligation. J Biol Chem 2003;278:4668-4674. 27. Poole AW, Jones ML. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cell Signal 2005;17:1323-1332. 28. Wu C, Guan Q, Wang Y, Zhao ZJ, Zhou GW. SHP-1 suppresses cancer cell growth by promoting degradation of JAK kinases. J Cell Biochem 2003;90:1026-1037. 29. Liu CY, Huang TT, Chu PY, Huang CT, Lee CH, Wang WL, Lau KY, et al. The tyrosine kinase inhibitor nintedanib activates SHP-1 and induces apoptosis in triple-negative breast cancer cells. Exp Mol Med 2017;49:e366. 30. Fan LC, Shiau CW, Tai WT, Hung MH, Chu PY, Hsieh FS, Lin H, et al. SHP-1 is a negative regulator of epithelial-mesenchymal transition in hepatocellular carcinoma. Oncogene 2017;36:5768-5769. 31. Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers (Basel) 2018;10. 32. Calvisi DF, Ladu S, Gorden A, Farina M, Conner EA, Lee JS, Factor VM, et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006;130:1117-1128. 33. Wen LZ, Ding K, Wang ZR, Ding CH, Lei SJ, Liu JP, Yin C, et al. SHP-1 Acts as a Tumor Suppressor in Hepatocarcinogenesis and HCC Progression. Cancer Res 2018;78:4680-4691. 34. Langlois M, Audet B, Legault E, Pare ME, Ouellet M, Roy J, Dumais N, et al. Activation of HTLV-I gene transcription by protein tyrosine phosphatase inhibitors. Virology 2004;329:395-411. 35. Fortin JF, Barbeau B, Robichaud GA, Pare ME, Lemieux AM, Tremblay MJ. Regulation of nuclear factor of activated T cells by phosphotyrosyl-specific phosphatase activity: a positive effect on HIV-1 long terminal repeat-driven transcription and a possible implication of SHP-1. Blood 2001;97:2390-2400. 36. Christophi GP, Massa PT. Central neuroinvasion and demyelination by inflammatory macrophages after peripheral virus infection is controlled by SHP-1. Viral Immunol 2009;22:371-387. 37. Cougot D, Allemand E, Riviere L, Benhenda S, Duroure K, Levillayer F, Muchardt C, et al. Inhibition of PP1 phosphatase activity by HBx: a mechanism for the activation of hepatitis B virus transcription. Sci Signal 2012;5:ra1. 38. Tsunematsu S, Suda G, Yamasaki K, Kimura M, Izumi T, Umemura M, Ito J, et al. Hepatitis B virus X protein impairs alpha-interferon signaling via up-regulation of suppressor of cytokine signaling 3 and protein phosphatase 2A. J Med Virol 2017;89:267-275. 39. Hsu EC, Lin YC, Hung CS, Huang CJ, Lee MY, Yang SC, Ting LP. Suppression of hepatitis B viral gene expression by protein-tyrosine phosphatase PTPN3. J Biomed Sci 2007;14:731-744. 40. Hung CS, Lin YL, Wu CI, Huang CJ, Ting LP. Suppression of hepatitis B viral gene expression by phosphoinositide 5-phosphatase SKIP. Cell Microbiol 2009;11:37-50. 41. Yang Q, Zhang Q, Zhang X, You L, Wang W, Liu W, Han Y, et al. HoxA10 Facilitates SHP-1-Catalyzed Dephosphorylation of p38 MAPK/STAT3 To Repress Hepatitis B Virus Replication by a Feedback Regulatory Mechanism. J Virol 2019;93. 42. Tai WT, Shiau CW, Chen PJ, Chu PY, Huang HP, Liu CY, Huang JW, et al. Discovery of novel Src homology region 2 domain-containing phosphatase 1 agonists from sorafenib for the treatment of hepatocellular carcinoma. Hepatology 2014;59:190-201. 43. Kundu S, Fan K, Cao M, Lindner DJ, Zhao ZJ, Borden E, Yi T. Novel SHP-1 inhibitors tyrosine phosphatase inhibitor-1 and analogs with preclinical anti-tumor activities as tolerated oral agents. J Immunol 2010;184:6529-6536. 44. Murphy CM, Xu Y, Li F, Nio K, Reszka-Blanco N, Li X, Wu Y, et al. Hepatitis B Virus X Protein Promotes Degradation of SMC5/6 to Enhance HBV Replication. Cell Rep 2016;16:2846-2854. 45. Decorsiere A, Mueller H, van Breugel PC, Abdul F, Gerossier L, Beran RK, Livingston CM, et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature 2016;531:386-389. 46. Wu HL, Chen PJ, Lin MH, Chen DS. Temporal aspects of major viral transcript expression in Hep G2 cells transfected with cloned hepatitis B virus DNA: with emphasis on the X transcript. Virology 1991;185:644-651. 47. Lee YI, Kim SO, Kwon HJ, Park JG, Sohn MJ, Jeong SS. Phosphorylation of purified recombinant hepatitis B virus-X protein by mitogen-activated protein kinase and protein kinase C in vitro. J Virol Methods 2001;95:1-10. 48. Hernandez S, Venegas M, Brahm J, Villanueva RA. The viral transactivator HBx protein exhibits a high potential for regulation via phosphorylation through an evolutionarily conserved mechanism. Infect Agent Cancer 2012;7:27. 49. Ren L, Chen X, Luechapanichkul R, Selner NG, Meyer TM, Wavreille AS, Chan R, et al. Substrate specificity of protein tyrosine phosphatases 1B, RPTPalpha, SHP-1, and SHP-2. Biochemistry 2011;50:2339-2356. 50. Subramaniam A, Shanmugam MK, Ong TH, Li F, Perumal E, Chen L, Vali S, et al. Emodin inhibits growth and induces apoptosis in an orthotopic hepatocellular carcinoma model by blocking activation of STAT3. Br J Pharmacol 2013;170:807-821. 51. Rajendran P, Li F, Manu KA, Shanmugam MK, Loo SY, Kumar AP, Sethi G. gamma-Tocotrienol is a novel inhibitor of constitutive and inducible STAT3 signalling pathway in human hepatocellular carcinoma: potential role as an antiproliferative, pro-apoptotic and chemosensitizing agent. Br J Pharmacol 2011;163:283-298. 52. Tibaldi E, Pagano MA, Frezzato F, Trimarco V, Facco M, Zagotto G, Ribaudo G, et al. Targeted activation of the SHP-1/PP2A signaling axis elicits apoptosis of chronic lymphocytic leukemia cells. Haematologica 2017;102:1401-1412. 53. Lee JH, Chiang SY, Nam D, Chung WS, Lee J, Na YS, Sethi G, et al. Capillarisin inhibits constitutive and inducible STAT3 activation through induction of SHP-1 and SHP-2 tyrosine phosphatases. Cancer Lett 2014;345:140-148. Chapter II 1. Heise T, Sommer G, Reumann K, Meyer I, Will H, Schaal H. The hepatitis B virus PRE contains a splicing regulatory element. Nucleic Acids Res 2006;34:353-363. 2. Maliniemi P, Laukkanen K, Vakeva L, Dettmer K, Lipsanen T, Jeskanen L, Bessede A, et al. Biological and clinical significance of tryptophan-catabolizing enzymes in cutaneous T-cell lymphomas. Oncoimmunology 2017;6:e1273310. 3. Chen J, Wu M, Wang F, Zhang W, Wang W, Zhang X, Zhang J, et al. Hepatitis B virus spliced variants are associated with an impaired response to interferon therapy. Sci Rep 2015;5:16459. 4. Su TS, Lui WY, Lin LH, Han SH, P'Eng F K. Analysis of hepatitis B virus transcripts in infected human livers. Hepatology 1989;9:180-185. 5. Chen PJ, Chen CR, Sung JL, Chen DS. Identification of a doubly spliced viral transcript joining the separated domains for putative protease and reverse transcriptase of hepatitis B virus. J Virol 1989;63:4165-4171. 6. Gunther S, Sommer G, Iwanska A, Will H. Heterogeneity and common features of defective hepatitis B virus genomes derived from spliced pregenomic RNA. Virology 1997;238:363-371. 7. Rosmorduc O, Petit MA, Pol S, Capel F, Bortolotti F, Berthelot P, Brechot C, et al. In vivo and in vitro expression of defective hepatitis B virus particles generated by spliced hepatitis B virus RNA. Hepatology 1995;22:10-19. 8. Soussan P, Pol J, Garreau F, Schneider V, Le Pendeven C, Nalpas B, Lacombe K, et al. Expression of defective hepatitis B virus particles derived from singly spliced RNA is related to liver disease. J Infect Dis 2008;198:218-225. 9. Bayliss J, Lim L, Thompson AJ, Desmond P, Angus P, Locarnini S, Revill PA. Hepatitis B virus splicing is enhanced prior to development of hepatocellular carcinoma. J Hepatol 2013;59:1022-1028. 10. Chen WN, Chen JY, Lin WS, Lin JY, Lin X. Hepatitis B doubly spliced protein, generated by a 2.2 kb doubly spliced hepatitis B virus RNA, is a pleiotropic activator protein mediating its effects via activator protein-1- and CCAAT/enhancer-binding protein-binding sites. J Gen Virol 2010;91:2592-2600. 11. Huang HL, Jeng KS, Hu CP, Tsai CH, Lo SJ, Chang C. Identification and characterization of a structural protein of hepatitis B virus: a polymerase and surface fusion protein encoded by a spliced RNA. Virology 2000;275:398-410. 12. Obert S, Zachmann-Brand B, Deindl E, Tucker W, Bartenschlager R, Schaller H. A splice hepadnavirus RNA that is essential for virus replication. EMBO J 1996;15:2565-2574. 13. Pol JG, Lekbaby B, Redelsperger F, Klamer S, Mandouri Y, Ahodantin J, Bieche I, et al. Alternative splicing-regulated protein of hepatitis B virus hacks the TNF-alpha-stimulated signaling pathways and limits the extent of liver inflammation. FASEB J 2015;29:1879-1889. 14. Nassal M. Conserved cysteines of the hepatitis B virus core protein are not required for assembly of replication-competent core particles nor for their envelopment. Virology 1992;190:499-505. 15. Wang YL, Liou GG, Lin CH, Chen ML, Kuo TM, Tsai KN, Huang CC, et al. The inhibitory effect of the hepatitis B virus singly-spliced RNA-encoded p21.5 protein on HBV nucleocapsid formation. PLoS One 2015;10:e0119625. 16. Marin M, Rose KM, Kozak SL, Kabat D. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med 2003;9:1398-1403. 17. Hantz O, Parent R, Durantel D, Gripon P, Guguen-Guillouzo C, Zoulim F. Persistence of the hepatitis B virus covalently closed circular DNA in HepaRG human hepatocyte-like cells. J Gen Virol 2009;90:127-135. 18. Ni Y, Lempp FA, Mehrle S, Nkongolo S, Kaufman C, Falth M, Stindt J, et al. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 2014;146:1070-1083. 19. Okuyama-Dobashi K, Kasai H, Tanaka T, Yamashita A, Yasumoto J, Chen W, Okamoto T, et al. Hepatitis B virus efficiently infects non-adherent hepatoma cells via human sodium taurocholate cotransporting polypeptide. Sci Rep 2015;5:17047. 20. Ko C, Chakraborty A, Chou WM, Hasreiter J, Wettengel JM, Stadler D, Bester R, et al. Hepatitis B virus genome recycling and de novo secondary infection events maintain stable cccDNA levels. J Hepatol 2018;69:1231-1241. 21. Nassal M, Rieger A, Steinau O. Topological analysis of the hepatitis B virus core particle by cysteine-cysteine cross-linking. J Mol Biol 1992;225:1013-1025. 22. Olsavsky Goyak KM, Laurenzana EM, Omiecinski CJ. Hepatocyte differentiation. Methods Mol Biol 2010;640:115-138. 23. Choi S, Sainz B, Jr., Corcoran P, Uprichard S, Jeong H. Characterization of increased drug metabolism activity in dimethyl sulfoxide (DMSO)-treated Huh7 hepatoma cells. Xenobiotica 2009;39:205-217. 24. Sainz B, Jr., Chisari FV. Production of infectious hepatitis C virus by well-differentiated, growth-arrested human hepatoma-derived cells. J Virol 2006;80:10253-10257. 25. Wynne SA, Crowther RA, Leslie AG. The crystal structure of the human hepatitis B virus capsid. Mol Cell 1999;3:771-780. 26. Qi Y, Gao Z, Xu G, Peng B, Liu C, Yan H, Yao Q, et al. DNA Polymerase kappa Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus. PLoS Pathog 2016;12:e1005893. 27. Miyakawa K, Matsunaga S, Yamaoka Y, Dairaku M, Fukano K, Kimura H, Chimuro T, et al. Development of a cell-based assay to identify hepatitis B virus entry inhibitors targeting the sodium taurocholate cotransporting polypeptide. Oncotarget 2018;9:23681-23694. 28. Leistner CM, Gruen-Bernhard S, Glebe D. Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell Microbiol 2008;10:122-133. 29. Hu J, Liu K. Complete and Incomplete Hepatitis B Virus Particles: Formation, Function, and Application. Viruses 2017;9. 30. Holmes K, Shepherd DA, Ashcroft AE, Whelan M, Rowlands DJ, Stonehouse NJ. Assembly Pathway of Hepatitis B Core Virus-like Particles from Genetically Fused Dimers. J Biol Chem 2015;290:16238-16245. 31. Yu X, Jin L, Jih J, Shih C, Zhou ZH. 3.5A cryoEM structure of hepatitis B virus core assembled from full-length core protein. PLoS One 2013;8:e69729. 32. Bolukbas C, Bolukbas FF, Horoz M, Aslan M, Celik H, Erel O. Increased oxidative stress associated with the severity of the liver disease in various forms of hepatitis B virus infection. BMC Infect Dis 2005;5:95. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78697 | - |
| dc.description.abstract | (1)慢性B型肝炎為導致肝癌發生之重要因子,而B型肝炎病毒(HBV)之X蛋白質(HBx)所引起的細胞內訊息傳遞路徑失調被認為是B型肝炎引發肝癌的機制之一。目前唯一許可之肝癌治療藥物蕾莎瓦膜衣錠 (Sorafenib) 可能透過SHP-1磷酸酶在肝臟內抑制由HBx所促進之致癌性路徑。許多文獻指出SHP-1為可能之抑癌因子以及癌症治療藥之作用靶點。截至目前已有許多磷酸酶被發現可能參與調控HBV複製以及基因表現,然而目前仍未有研究致力於探討SHP-1與HBV之間的關係。本篇研究利用慢病毒所攜帶的小髮夾RNA降低細胞內SHP-1的表現量,接著再進一步觀察HBV之基因產物使否受到影響。結果顯示在SHP-1表現量降低或其磷酸酶活性受抑制時皆會降低HBV之基因產物。相反地,在細胞內大量表現具磷酸酶活性之SHP-1時病毒之基因產物增加。因此,推斷SHP-1正向調控HBx所刺激之HBV基因表現可能透過其磷酸酶活性。然而目前為止SHP-1調控HBV基因表現之詳細機制仍未明。意外地,相較於其他基因產物,在SHP-1表現量降低時HBx的表現量維持可能源自於其半衰期的延長。這些因半衰期延長而累積之HBx是否為造成HBV之基因產物降低的原因還有待更多的實驗來證明。在本研究第一次闡述了細胞中SHP-1在HBV基因表現中扮演支持性角色,凸顯了開發特異性SHP-1抑制劑作為未來抗HBV藥物之可能性。
(2)慢性B 型肝炎病毒(HBV)感染至今仍為全球健康之一大負擔。在HBV 生活史中,除了一般所熟知的轉錄產物外,還有一群剪接型RNAs (SpRNAs)。儘管這些SpRNAs在先前文獻中被認為與第一型干擾素之療效與肝癌發生之風險有關,它們的生物意義仍不清楚。有研究指出在質體轉染之系統中有無SpRNAs的存在皆不影響HBV之複製。有鑑於剪接相關之蛋白對於人類免疫缺陷型病毒第一型之感染力有重要影響,我們團隊先前利用HBV感染人肝嵌合鼠的模型發現剪接功能缺失之HBV,相較野生型HBV在感染力方面有大幅下降。本研究致力於在細胞膜型中模擬近似HBV 在自然界中感染環境以及探討剪接相關之病毒蛋白是否參與病毒顆粒之組裝。持續以含二甲基亞碸(DMSO)之培養液培養細胞可增加HBV 在體外細胞模型之感染力。除此之外,額外補充HBV之表面抗原可提高有套膜之病毒顆粒,幫助體外細胞模型所產之HBV病毒更趨近其在自然界中之型態。在所有SpRNAs中,SP1所佔之比例最高,SP1所轉譯出的C 端半胱氨酸(cysteine)缺少之core蛋白質(HBc^(-Cys))在先前實驗結果中被發現可彌補剪接功能缺失之HBV感染力。本研究發現HBc^(-Cys)與全長HBc蛋白質位於同個沉降層,推測HBc^(-Cys)可能參與組裝病毒之蛋白質外殼。除此之外,野生型HBV病毒顆粒中單分子形式之HBc 明顯較剪接位點487突變之病毒顆粒中多,可能與HBc^(-Cys)參與病毒顆粒組裝所導致的蛋白質外殼完整性不同有關。這些結果顯示蛋白質外殼完整性上的差異可能影響病毒感染進程中進入細胞或是脫去蛋白質外殼的步驟。這些結果支持先前在人肝嵌合鼠上所發現之現象,也提供可操控之體外細胞感染模式,以利後續相關機制之探討。 | zh_TW |
| dc.description.abstract | (1)Chronic hepatitis B virus (HBV) infection is the major risk of hepatocellular carcinoma (HCC) in the endemic area. Dysregulation of cellular signaling pathways by HBV X (HBx) protein is one of the HBV-induced carcinogenic mechanisms. Sorafenib, the only approved drug for HCC treatment, may inhibit the HBx-enhanced oncogenic androgen pathway in livers through SH2 domain-containing phosphatase-1 (SHP-1). Accumulated evidences have indicated SHP‐1 is a potent tumor suppressor and druggable target in preclinical models. Several phosphatases were reported to participate in HBV gene expression and replication, while the interaction between HBV and SHP‐1 before HCC has not yet been explored. In this study, we knocked down endogenous SHP-1 by short hairpin RNA-bearing lentiviruses in the replicon-transfected cells and infected cells, and then determined the loss of function effect of SHP-1 on HBV transcripts and protein amounts. Our results showed that knockdown of SHP-1 or inhibition of its phosphatase activity resulted in the reduction of both HBV mRNA and protein levels in the presence of HBx. In contrast, overexpression of constitutively active form of SHP-1 but not the phosphatase-dead mutant led to the elevation of viral transcripts and proteins. Therefore, these results suggested the positive regulatory role of SHP-1 toward the HBx-enhanced HBV gene expression may through its phosphatase activity. In molecular details, this SHP-1-evoked enhancement was still uncertain though. Interestingly, in contrast with the reduced viral mRNAs, HBx protein amount was somehow maintained due to its prolonged stability in the cells when SHP-1 was knocked down. Further studies about whether SHP-1 assists HBV gene expression through temporally restraining the half-life of HBx protein are ongoing to be addressed. Hence, our current study illustrated for the first time about the role of cellular SHP-1 in supporting HBV gene expression, thus highlighting specific SHP-1 inhibitors for the development of potential anti-HBV compounds in the future.
(2) Chronic infection of hepatitis B virus (HBV) remains a severe burden of global public health. In the viral life cycle, HBV produced a panel of spliced RNAs (SpRNAs) in addition to common contiguous transcripts. However, the biological functions of these SpRNAs are still unclear, although they have been reported to be correlated with interferon treatment response and risk of hepatocellular carcinoma. Previous transfection study showed that these SpRNAs were dispensable for viral replication, as the splicing-defect mutant replicated at a comparable level as wild-type (WT). Given that the splicing-related proteins are essential for augmented infectivity of human immunodeficiency virus type 1, our preliminary results indicated that the splicing-defect HBV showed impaired infectivity over 100 to 1000-fold compared with WT in humanized liver chimera mice. In this study, we tried to refine an in vitro HBV infection culture system which mimics natural condition and evaluated whether critical splicing-related viral proteins appeared in infectious viral particles. Continuous dimethyl sulfoxide treatment enhanced HBV infectivity in cultured cells. In addition, exogenous supplementation of HBV surface protein increased the amount of enveloped virions collected from the media of replicon-transfected cells, and thus helped produce naturally-mimicked infectious particles for viral entry. Among HBV SpRNAs, SP1 is the most abundant species. In infectious HBV particles, the SP1-encoded HBV core minus cysteine (HBc^(-Cys)) protein, which was preliminarily approved to recover the infectivity of splicing-defect mutant, was found to be co-localized with the full-length core in similar sedimentation layers, implying that HBc^(-Cys) may assemble into secreted virions. In addition, the integrity of WT capsid attributed to the incorporation of HBc^(-Cys) might be different from that of the splicing-deficient mutant, as the remaining amount of core protein monomers were higher in WT viral particles under oxidized environment compared with those in the mutant. This result implied that the cysteine-mediated disulfide bridges for regulating capsid integrity may influence the steps of viral entry and uncoating processes at the early phase of HBV infection. Therefore, our present study refined the culture system for HBV infection and provided a manageable model which resembled to natural condition for mechanism study. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:12:56Z (GMT). No. of bitstreams: 1 ntu-108-R06445105-1.pdf: 5969746 bytes, checksum: 951683f336af3c6e196d4893aeb7873a (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 i
章節一 摘要 ii Chapter I Abstract iii 章節二 摘要 v Chapter II Abstract vi Contents viii Chapter I. The role of SHP-1 phosphatase in HBV gene expression. 1 1. Introduction 1 1.1. Introduction of HBV 1 1.1.1. General information and pathology 1 1.1.2. Genome and structure of HBV 2 1.1.3. HBV life cycle 2 1.1.4. Chronic HBV infection and hepatocellular carcinoma (HCC) 4 1.2. Introduction of SHP-1 5 1.2.1. The role of SHP-1 in cells 5 1.2.2. SHP-1 as a candidate tumor suppressor in HCC 6 1.2.3. The Regulatory Role of SHP-1 in Viruses 7 1.3. Phosphatases in HBV life cycle 7 1.4. Hypothesis 8 2. Materials and Methods 10 2.1. Cell culture and transfection 10 2.2. Plasmids, reagents and antibodies 10 2.3. Lentivirus production and SHP-1 knockdown 13 2.4. In vitro Infection 13 2.5. ELISA assay for HBsAg and HBeAg detection 14 2.6. Luciferase assay 14 2.7. RNA isolation and Northern blotting 15 2.8. Protein isolation and Western blotting 16 2.9. SHP-1 phosphatase inhibition assay 17 2.10. Protein stability assay 17 3. Results 18 3.1. Overexpression of SHP-1 does not affect HBV gene expression in Huh7 cells. 18 3.2. Knockdown of SHP-1 decreases HBV mRNA and protein levels in the transfected HepG2 and HepG2-NTCP (C4) cells. 18 3.4. Knockdown of SHP-1 decreases the HBV mRNA and protein levels in HBV virion-infected HepG2-NTCP (C4) cells. 19 3.3. Knockdown of SHP-1 in Huh7 and HepG2.2.15 cells shows no effect on HBV mRNA and protein levels. 20 3.5. SHP-1 downregulates HBV gene expression may through its phosphatase activity. 21 3.6. Knockdown of SHP-1 may not influence the transactivation activities of two HBV enhancers. 22 3.7. HBx-mediated SMC5/6 degradation cannot be observed in HBV-transfected or infected cell lines. 23 3.8. HBx protein stability is prolonged when SHP-1 was knocked down. 24 4. Discussion 26 5. References 32 6. Figures 36 Fig. 1 Overexpression of SHP-1 does not affect HBV gene expression in Huh7 cells. 37 Fig. 2 HBV poorly expresses in SHP-1 low expression cell lines – SK-Hep1 and Ha-22T. 39 Fig. 3 Screening the Knockdown Efficiency of sh-RNA Clones for Endogenous SHP-1. 41 Fig. 4 Knockdown of SHP-1 Decreases HBV mRNA and Protein levels in the Transfected HepG2 and HepG2-NTCP (C4) cells. 43 Fig. 5 Knockdown of SHP-1 with Another Clone of sh-SHP-1 Decreases HBV mRNA and Protein levels in the Transfected HepG2-NTCP (C4) cells. 45 Fig. 6 Knockdown of SHP-1 in Huh7 and HepG2.2.15 cells Show No Effect on HBV mRNA and Protein Levels. 47 Fig. 7 Knockdown of SHP-1 Decreases the HBV mRNA and Protein Levels in HBV Virion-Infected HepG2-NTCP (C4) cells. 49 Fig. 8 Summary Table: HBV mRNA and Protein Levels after SHP-1 Knockdown in Different Cell Culture Systems. 51 Fig. 9 SHP-1 Downregulates HBV Gene Expression May through its Phosphatase Activity. 53 Fig. 10 Knockdown of SHP-1 May Not Influence the Transactivation Activities of two HBV Enhancers. 55 Fig. 11 HBx-Mediated SMC5/6 Degradation Cannot Be Seen in HBV-Transfected or Infected Cells. 57 Fig. 12 HBx Protein Stability is Prolonged when SHP-1 was Knocked Down. 59 Fig. 13 Graphical Abstract 61 7. Appendix 62 7.1. Plasmid map – pAAV-HBV1.2 62 7.2. TCGA clinical data of SHP-1 expression comparison within tumor and non-tumor tissue. 64 7.3. mRNA Expression Levels of PTPN6 Gene Between Different Etiologies. 66 7.4. Protein Levels of SHP-1 in Clinical HCC Patients. 68 7.5. Comparison of HBx Protein Sequence with SHP-1 Specific Targeting Sequence. 70 Chapter II. Infectivity between WT and splicing-deficient HBV viruses in cell culture. 71 1. Introduction 71 1.1. HBV RNA splicing 71 1.1.1. Alternative splicing of HBV transcripts 71 1.1.2. Splicing-deficient virions and liver diseases 72 1.1.3. Novel proteins encoded by HBV spliced transcripts 73 1.1.4. HBV splicing and virion infectivity 74 1.2. Infection of HBV in cell culture system 75 1.3. Hypothesis 76 2. Materials and Methods 78 2.1. Cell culture 78 2.2. Plasmids, reagents and antibodies 78 2.3. HBV Virus preparation 79 2.4. HBV virion quantification 80 2.5. Sucrose gradient ultracentrifugation 81 2.6. Native agarose gel analysis for viral particles 81 2.7. In vitro infection 82 2.8. Oxidation by Cupper ions 83 2.9. Immunofluorescence assay 83 2.10. DNA extraction and Southern blot 84 3. Results 87 3.1. Continuous DMSO treatment enhances HBV infectivity. 87 3.2. Dissimilar composition of protein expression levels and viral particles produced from different HBV replicons. 88 3.3. Complementation of surface proteins slightly help distinguish HBV infectivity difference between WT and splicing-deficient viruses. 89 3.4. Precise quantification of HBV titers from purified virions. 91 3.5. HBc-Cys may exist in extracellular HBV virions. 93 3.6. CuSO4 treatment enhances overall HBV viral infectivity. 93 3.7. Virions from pAAV-HBV1.2 replicons are not infectious. 95 4. Discussion 97 5. References 103 6. Figures 106 Fig. 1 Continuous DMSO Treatment Enhances HBV Infectivity. 108 Fig. 2 Dissimilar Composition of Protein Expression Levels and Viral Particles Produced from Different HBV Replicons. 111 Fig. 3 Summary Table: Differences Between CMV-HBV (D) and AAV-HBV1.2 Viruses. 113 Fig. 4 Detection of HBV mRNA as well as Intracellular and Extracellular Protein Levels and Viral Particle Composition after Co-Transfection of CMV-HBV (D) and pS1X in Huh7 cells. 116 Fig. 5 Complementation of Surface Proteins Slightly Help Distinguish HBV Infectivity Difference between WT and Splicing-Deficient Viruses. 118 Fig. 6 HBV Virions Exist in # 9-11 and Naked Capsids Exist in #11-14 and Sub-Viral Particles May Exist in # 7-11 after Sucrose Gradient Ultracentrifugation. 120 Fig. 7 Precise Quantification of HBV Titers from Purified Virions. 122 Fig. 8 Purified CMV-HBV (D) Virions Successfully Infect C4 cells with Genome equivalence per cell below 1000. 124 Fig. 9 HBc-Cys May Exist in Extracellular HBV virions. 126 Fig. 10 CuSO4 Treatment Enhances Overall HBV Viral Infectivity. 128 Fig. 11 Virions Derived from pAAV-HBV1.2-Transfected Huh7 Are Not Infectious. 130 Fig. 12 Viruses Derived from pAAV-HBV1.2-Transfected Huh7 Do Not Entry C4 cells. 132 Fig. 13 Graphical Abstract 134 7. Appendix 135 7.1. Plasmid map: pCMV-HBV (D) 135 | |
| dc.language.iso | en | |
| dc.subject | B 型肝炎病毒X 蛋白 | zh_TW |
| dc.subject | SHP-1 磷酸激? | zh_TW |
| dc.subject | B型肝炎病毒(HBV) | zh_TW |
| dc.subject | 剪接型RNAs (SpRNAs) | zh_TW |
| dc.subject | 病毒感染 | zh_TW |
| dc.subject | 3’端cysteine缺少之core蛋白質(HBc^(-Cys)) | zh_TW |
| dc.subject | B 型肝炎病毒 | zh_TW |
| dc.subject | 肝癌 | zh_TW |
| dc.subject | HBV X (HBx) protein | en |
| dc.subject | hepatocellular carcinoma (HCC) | en |
| dc.subject | SH2 domaincontaining phosphatase-1 (SHP-1) | en |
| dc.subject | viral infection | en |
| dc.subject | spliced RNA (SpRNA) | en |
| dc.subject | hepatitis B virus (HBV) | en |
| dc.subject | hepatitis B virus (HBV) | en |
| dc.subject | HBV core minus cysteine protein (HBc^(-Cys)) | en |
| dc.title | (1)探討SHP-1磷酸酶對B型肝炎病毒基因表現之影響
(2)以細胞模型探討野生型及剪接突變型B型肝炎病毒之感染力 | zh_TW |
| dc.title | (1)The role of SHP-1 phosphatase in HBV gene expression
(2)Infectivity between WT and splicing-deficient HBV viruses in cell culture | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉秀慧(Shiou-Hwei Yeh),王聖涵(Sheng-Han Wang),楊宏志(Hung-Chih Yang) | |
| dc.subject.keyword | B 型肝炎病毒,肝癌,B 型肝炎病毒X 蛋白,SHP-1 磷酸激?,B型肝炎病毒(HBV),剪接型RNAs (SpRNAs),病毒感染,3’端cysteine缺少之core蛋白質(HBc^(-Cys)), | zh_TW |
| dc.subject.keyword | hepatitis B virus (HBV),hepatocellular carcinoma (HCC),SH2 domaincontaining phosphatase-1 (SHP-1),HBV X (HBx) protein,hepatitis B virus (HBV),spliced RNA (SpRNA),viral infection,HBV core minus cysteine protein (HBc^(-Cys)), | en |
| dc.relation.page | 135 | |
| dc.identifier.doi | 10.6342/NTU201902315 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-02 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-28 | - |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R06445105-1.pdf 未授權公開取用 | 5.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
