請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78691
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳明汝 | zh_TW |
dc.contributor.author | 許貴淵 | zh_TW |
dc.contributor.author | Kuei-Yuan Hsu | en |
dc.date.accessioned | 2021-07-11T15:12:32Z | - |
dc.date.available | 2024-08-07 | - |
dc.date.copyright | 2019-08-07 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 中華民國內政部。2019。內政統計年報。
王聖耀。2011。探討克弗爾粒與viili菌元之菌群分布並研究其分離菌株之生物膜形成機制。國立臺灣大學動物科學技術學研究所。博士論文。台北。臺灣。 沈郁芳。2012。阿茲海默症簡介。藥學雜誌電子報,28:99-104。 林慶文。1996。乳品加工學。台北。臺灣。 陳希嘉。2009。藉由變性梯度膠體電泳及寡核苷酸微陣列技術鑑定乳酸菌之研究。國立臺灣大學動物科學技術學研究所。博士論文。台北。臺灣。 黃舜瑜。2017。探討Lactobacillus kefiri K影響第一型糖尿病之可能機制。國立臺灣大學動物科學技術學研究所。碩士論文。台北。臺灣。 黃聖閔。2009。具機能性水解乳清蛋白肽之開發研究。國立臺灣大學動物科學技術學研究所。碩士論文。台北。臺灣。 黃鉦翔、林志信、李承榆、簡虹琪、陳廷碩、李琦玫及李桂楨。2013。以Amyloid-β聚集為目標的阿茲海默氏症治療策略。Bio Formosa,48:55-62。 謝岳彤。2016。篩選具抗氧化能力之益生菌及探討其延緩老化之研究。國立臺灣大學動物科學技術學研究所。碩士論文。台北。臺灣。 滕祖廷。2018。藉由體外試驗評估國產羊乳對腸道抗發炎之效果。國立臺灣大學動物科學技術學研究所。碩士論文。台北。臺灣。 魏士弘。2014。篩選可刺激類升糖素胜肽-1分泌之益生菌及探討其減緩高血糖症之研究。國立臺灣大學動物科學技術學研究所。碩士論文。台北。臺灣。 Anastasiadou, C., A. Malousi, N. Maglaveras, and S. Kouidou. 2011. Human epigenome data reveal increased CpG methylation in alternatively spliced sites and putative exonic splicing enhancers. DNA Cell Biol. 30:267-275. Ano, Y., T. Kutsukake, A. Hoshi, A. Yoshida, and H. Nakayama. 2015. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum. PloS ONE 10:e0116598. Athari Nik Azm, S., A. Djazayeri, M. Safa, K. Azami, B. Ahmadvand, F. Sabbaghziarani, M. Sharifzadeh, and M. Vafa. 2018. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1–42) injected rats. Appl. Physiol. Nutr. Metab. 43:718-726. Ausmees, K., K. Ehrlich-Peets, M. Vallas, A. Veskioja, K. Rammul, A. Rehema, M. Zilmer, E. Songisepp, and T. Kullisaar. 2018. Fermented whey-based product improves the quality of life of males with moderate lower urinary tract symptoms: A randomized double-blind study. PloS ONE 13:e0191640. Barber, S. C., and P. J. Shaw. 2010. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic. Biol. Med. 48:629-641. Barnhart, C. D., D. Yang, and P. J. Lein. 2015. Using the Morris water maze to assess spatial learning and memory in weanling mice. PLoS ONE 10:e0124521. Bart, A., I. G. Schuurman, M. Achtman, D. A. Caugant, J. Dankert, and A. Van Der Ende. 1998. Randomly amplified polymorphic DNA genotyping of serogroup A meningococci yields results similar to those obtained by multilocus enzyme electrophoresis and reveals new genotypes. J. Clin. Microbiol. 36:1746-1749. Bastola, T., R.-B. An, Y.-C. Kim, J. Kim, and J. Seo. 2017. Cearoin induces autophagy, ERK activation and apoptosis via ROS generation in SH-SY5Y neuroblastoma cells. Molecules 22:242. Bélanger, M., I. Allaman, and P. J. Magistretti. 2011. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14:724-738. Berger, B., R. D. Pridmore, C. Barretto, F. Delmas-Julien, K. Schreiber, F. Arigoni, and H. Brüssow. 2007. Similarity and differences in the Lactobacillus acidophilus group identified by polyphasic analysis and comparative genomics. J. Bacteriol. 189:1311-1321. Bonfili, L., V. Cecarini, S. Berardi, S. Scarpona, J. S. Suchodolski, C. Nasuti, D. Fiorini, M. C. Boarelli, G. Rossi, and A. M. Eleuteri. 2017. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci. Rep. 7:2426-2446. Bonfili, L., V. Cecarini, M. Cuccioloni, M. Angeletti, S. Berardi, S. Scarpona, G. Rossi, and A. M. Eleuteri. 2018. SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Mol. Neurobiol. 55:7987-8000. Bourassa, M. W., I. Alim, S. J. Bultman, and R. R. Ratan. 2016. Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci. Lett. 625:56-63. Chen, H. C., S. Y. Wang, and M. J. Chen. 2008. Microbiological study of lactic acid bacteria in kefir grains by culture-dependent and culture-independent methods. Food Microbiol. 25:492-501. Cho, Y. H., I. S. Shin, S. M. Hong, and C. H. Kim. 2015. Production of functional high-protein beverage fermented with lactic acid bacteria isolated from Korean traditional fermented food. Korean J. Food Sci. An. 35:189-196. Deacon, R. M. 2006. Assessing nest building in mice. Nat. Protoc. 1:1117-1119. Dikalov, S. 2011. Cross talk between mitochondria and NADPH oxidases. Free Radic. Biol. Med. 51:1289-1301. El, S. N., S. Karakaya, S. Simsek, D. Dupont, E. Menfaatli, and A. T. Eker. 2015. In vitro digestibility of goat milk and kefir with a new standardised static digestion method (INFOGEST cost action) and bioactivities of the resultant peptides. Food Funct. 6:2322-2330. Erta, M., A. Quintana, and J. Hidalgo. 2012. Interleukin-6, a major cytokine in the central nervous system. Int. J. Biol. 8:1254. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolation. 39:783-791. Feng, P., X. Zhang, D. Li, C. Ji, Z. Yuan, R. Wang, G. Xue, G. Li, and C. Hölscher. 2018. Two novel dual GLP-1/GIP receptor agonists are neuroprotective in the MPTP mouse model of Parkinson's disease. Neuropharmacology 133:385-394. Filali, M., and R. Lalonde. 2009. Age-related cognitive decline and nesting behavior in an APPswe/PS1 bigenic model of Alzheimer's disease. Brain Res. 1292:93-99. Folstein, M. F., S. E. Folstein, and P. R. McHugh. 1975. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12:189-198. Francis, P. T., A. M. Palmer, M. Snape, and G. K. Wilcock. 1999. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 66:137-147. Friedlander, R. M. 2003. Apoptosis and caspases in neurodegenerative diseases. N. Engl. J. Med. 348:1365-1375. Garcimartín, A., J. J. Merino, M. P. González, M. I. Sánchez-Reus, F. J. Sánchez-Muniz, S. Bastida, and J. Benedí. 2014. Organic silicon protects human neuroblastoma SH-SY5Y cells against hydrogen peroxide effects. BMC Complement. Altern. Med. 14:384. Garg, G., S. Singh, A. K. Singh, and S. I. Rizvi. 2017. Whey protein concentrate supplementation protects rat brain against aging-induced oxidative stress and neurodegeneration. Appl. Physiol. Nutr. Metab. 43:437-444. Gemma, C., J. Vila, A. Bachstetter, and P. C. Bickford. 2007. Oxidative stress and the aging brain: from theory to prevention. CRC Press . Oxfordshire, UK Ghavami, S., S. Shojaei, B. Yeganeh, S. R. Ande, J. R. Jangamreddy, M. Mehrpour, J. Christoffersson, W. Chaabane, A. R. Moghadam, and H. H. Kashani. 2014. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol. 112:24-49. Golde, T. E. 2003. Alzheimer disease therapy: can the amyloid cascade be halted? The J. Clin. Investig. 11111-11118. Gräff, J., D. Kim, M. M. Dobbin, and L.-H. Tsai. 2011. Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol. Rev. 91:603-649. Grand'Maison, M., S. P. Zehntner, M.-K. Ho, F. Hébert, A. Wood, F. Carbonell, A. P. Zijdenbos, E. Hamel, and B. J. Bedell. 2013. Early cortical thickness changes predict β-amyloid deposition in a mouse model of Alzheimer's disease. Neurobiol. Dis. 54:59-67. Hameed, S., and H. Hsiung. 2011. The role of mitochondria in aging, neurodegenerative disease, and future therapeutic options. B. C. Med. J. 53:92. Han, C.H., Y.S. Lin, T.L. Lee, H.J. Liang, and W.C. Hou. 2014. Asn-Trp dipeptides improve the oxidative stress and learning dysfunctions in D-galactose-induced BALB/c mice. Food Funct. 5:2228-2236. Harrigan, W. 1998. Sampling methods for the selection and examination of microbial colonies, Laboratory methods in food microbiology. Academic Press San Diego, CA. p. 89-91. Hölscher, C. 2014. Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. J. Endocrinol. 221:T31-T41. Hong, S. M., E. C. Chung, and C. H. Kim. 2015. Anti-obesity effect of fermented whey beverage using lactic acid bacteria in diet-induced obese rats. Korean J. Food Sci. Anim. Resour. 35:653. Hwang, O. 2013. Role of oxidative stress in Parkinson's disease. Exp. Neurol. 22:11-17. Ignowski, E., A. N. Winter, N. Duval, H. Fleming, T. Wallace, E. Manning, L. Koza, K. Huber, N. J. Serkova, and D. A. Linseman. 2018. The cysteine-rich whey protein supplement, Immunocal®, preserves brain glutathione and improves cognitive, motor, and histopathological indices of traumatic brain injury in a mouse model of controlled cortical impact. Free Radic. Biol. Med. 124:328-341. Ismail, N., M. Ismail, S. Farhana Fathy, A. Musa, S. Nor, M. Umar Imam, J. B. Foo, and S. Iqbal. 2012. Neuroprotective effects of germinated brown rice against hydrogen peroxide induced cell death in human SH-SY5Y cells. Int. J. Mol. Sci. 13:9692-9708. Jirkof, P. 2014. Burrowing and nest building behavior as indicators of well-being in mice. J. Neurosci. Methods 234:139-146. Jin, M. M., L. Zhang, H. X. Yu, J. Meng, Z. Sun, and R. R. Lu. 2013. Protective effect of whey protein hydrolysates on H2O2-induced PC12 cells oxidative stress via a mitochondria-mediated pathway. Food Chem. 141:847-852. Kabadjova-Hristova, P., S. Bakalova, B. Gocheva, and P. Moncheva. 2006. Evidence for proteolytic activity of lactobacilli isolated from kefir grains. Biotechnol. Equip. 20:89-94. Kametani, F., and M. Hasegawa. 2018. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer's disease. Front. Neurosci. 12:25. Kausar, S., F. Wang, and H. Cui. 2018. The role of mitochondria in reactive oxygen species generation and its implications for neurodegenerative diseases. Cells 7:274. Kawahara, M., and M. Kato-Negishi. 2011. Link between aluminum and the pathogenesis of Alzheimer's disease: the integration of the aluminum and amyloid cascade hypotheses. Int. J. Alzheimers Dis. 2011: 276393. Kern, J. K., B. D. Grannemann, J. Gutman, and M. H. Trivedi. 2008. Oral tolerability of cysteine-rich whey protein isolate in autism–a pilot study. J. Am. Nutraceutical Assoc. 11:36-41. Kesmen, Z., and N. Kacmaz. 2011. Determination of lactic microflora of kefir grains and kefir beverage by using culture‐dependent and culture‐independent methods. J. Food Sci. 76:M276-M283. Kim, B., V. M. Hong, J. Yang, H. Hyun, J. J. Im, J. Hwang, S. Yoon, and J. E. Kim. 2016. A review of fermented foods with beneficial effects on brain and cognitive function. Prev. Nutr. Food Sci. 21:297-309. Kim, H. Y., D. K. Lee, B.-R. Chung, H. V. Kim, and Y. Kim. 2016. Intracerebroventricular injection of amyloid-β peptides in normal mice to acutely induce Alzheimer-like cognitive deficits. J. Vis. Exp. :e53308. Kim, Y. J., J. Y. Kim, S. W. Kang, G. S. Chun, and J. Y. Ban. 2015. Protective effect of geranylgeranylacetone against hydrogen peroxide-induced oxidative stress in human neuroblastoma cells. Life Sci. 131:51-56. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120. Kita, M., K. Obara, S. Kondo, S. Umeda, and Y. Ano. 2018. Effect of supplementation of a whey peptide rich in tryptophan-tyrosine-related peptides on cognitive performance in healthy adults: A randomized, double-blind, placebo-controlled study. Nutrients 10:899-912. Kobayashi, Y., H. Sugahara, K. Shimada, E. Mitsuyama, T. Kuhara, A. Yasuoka, T. Kondo, K. Abe, and J.-z. Xiao. 2017. Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci. Rep. 7:13510-13519. Kontopoulos, E., J. D. Parvin, and M. B. Feany. 2006. α-Synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum. Mol. Genet. 15:3012-3023. Kullisaar, T., M. Zilmer, M. Mikelsaar, T. Vihalemm, H. Annuk, C. Kairane, and A. Kilk. 2002. Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol. 72:215-224. Kumar, S., G. Stecher, and K. Tamura. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870-1874. Lardenoije, R., D. L. van den Hove, M. Havermans, A. Van Casteren, K. X. Le, R. Palmour, C. A. Lemere, and B. P. Rutten. 2018. Age-related epigenetic changes in hippocampal subregions of four animal models of Alzheimer's disease. Mol. Cell. Neurosci. 86:1-15. Laurijssens, B., F. Aujard, and A. Rahman. 2013. Animal models of Alzheimer's disease and drug development. Drug Discov. Today Technol. 10:e319-e327. Lazar, A. N., C. Bich, M. Panchal, N. Desbenoit, V. W. Petit, D. Touboul, L. Dauphinot, C. Marquer, O. Laprévote, and A. Brunelle. 2013. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging reveals cholesterol overload in the cerebral cortex of Alzheimer disease patients. Acta Neuropathol. 125:133-144. Leal, N. C., M. Sobreira, T. Leal‐Balbino, A. de Almeida, M. da Silva, D. Mello, L. Seki, and E. Hofer. 2004. Evaluation of a RAPD‐based typing scheme in a molecular epidemiology study of Vibrio cholerae O1, Brazil. J. Appl. Microbiol. 96:447-454. Lee, J., K. T. Hwang, M. Y. Chung, D. H. Cho, and C. S. Park. 2005. Resistance of Lactobacillus casei KCTC 3260 to reactive oxygen species (ROS): role for a metal ion chelating effect. J. Food Sci. 70:m388-m391. Lee, J., Y. J. Hwang, K. Y. Kim, N. W. Kowall, and H. Ryu. 2013. Epigenetic mechanisms of neurodegeneration in Huntington’s disease. Neurotherapeutics 10:664-676. Lei, E., K. Vacy, and W. C. Boon. 2016. Fatty acids and their therapeutic potential in neurological disorders. Neurochem. Int. 95:75-84. Li, L., J. Ding, C. Marshall, J. Gao, G. Hu, and M. Xiao. 2011. Pretraining affects Morris water maze performance with different patterns between control and ovariectomized plus D-galactose-injected mice. Behav. Brain Res. 217:244-247. Li, X., D. Song, and S. X. Leng. 2015. Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment. Clin. Interv. Aging 10:549-560. Lian, W., H. Jia, L. Xu, W. Zhou, D. Kang, A. Liu, and G. Du. 2017. Multi-protection of DL0410 in ameliorating cognitive defects in D-galactose induced aging mice. Front. Aging Neurosci. 9:409-426. Liguori, I., G. Russo, F. Curcio, G. Bulli, L. Aran, D. Della-Morte, G. Gargiulo, G. Testa, F. Cacciatore, and D. Bonaduce. 2018. Oxidative stress, aging, and diseases. Clin. Interv. Aging 13:757-772. Liu, Y., J. Zhang, M. Jiang, Q. Cai, J. Fang, and L. Jin. 2018. MANF improves the MPP+/MPTP-induced Parkinson’s disease via improvement of mitochondrial function and inhibition of oxidative stress. Am. J. Transl. Res. 10:1284. Lotharius, J., and P. Brundin. 2002. Pathogenesis of Parkinson's disease: dopamine, vesicles and α-synuclein. Nat. Rev. Neurosci. 3:932-942. Lu, J., D. M. Wu, Y. L. Zheng, B. Hu, Z. F. Zhang, Q. Ye, C.M. Liu, Q. Shan, and Y. J. Wang. 2010. Ursolic acid attenuates D-galactose-induced inflammatory response in mouse prefrontal cortex through inhibiting AGEs/RAGE/NF-κB pathway activation. Cereb. Cortex 20:2540-2548. Mallikarjuna, N., K. Praveen, and K. Yellamma. 2016. Role of Lactobacillus plantarum MTCC1325 in membrane-bound transport ATPases system in Alzheimer’s disease-induced rat brain. BioImpacts 6:203-209. Markus, C. R., L. M. Jonkman, J. H. Lammers, N. E. Deutz, M. H. Messer, and N. Rigtering. 2005. Evening intake of α-lactalbumin increases plasma tryptophan availability and improves morning alertness and brain measures of attention. Am. J. Clin. Nutr. 81:1026-1033. Markus, C. R., B. Olivier, and E. H. de Haan. 2002. Whey protein rich in α-lactalbumin increases the ratio of plasma tryptophan to the sum of the other large neutral amino acids and improves cognitive performance in stress-vulnerable subjects. Am. J. Clin. Nutr. 75:1051-1056. Markus, C. R., B. Olivier, G. E. Panhuysen, J. Van der Gugten, M. S. Alles, A. Tuiten, H. G. Westenberg, D. Fekkes, H. F. Koppeschaar, and E. E. de Haan. 2000. The bovine protein α-lactalbumin increases the plasma ratio of tryptophan to the other large neutral amino acids, and in vulnerable subjects raises brain serotonin activity, reduces cortisol concentration, and improves mood under stress. Am. J. Clin. Nutr. 71:1536-1544. Min, Z., S. Wang, J. Wu, and S. Zhang. 2013. Impairment of nesting behavior in APPswe/PS1dE9 mice. Life Sci. J. 10:1942-1945 Naser, S. M., P. Dawyndt, B. Hoste, D. Gevers, K. Vandemeulebroecke, I. Cleenwerck, M. Vancanneyt, and J. Swings. 2007. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int. J. Syst. Evol. Microbiol. 57:2777-2789. Ohsawa, K., N. Uchida, K. Ohki, Y. Nakamura, and H. Yokogoshi. 2015. Lactobacillus helveticus–fermented milk improves learning and memory in mice. Nutr. Neurosci. 18:232-240. Orta‐Salazar, E., I. Vargas‐Rodríguez, S. A. Castro‐Chavira, A. I. Feria‐Velasco, and S. Díaz‐Cintra. 2016. Alzheimer's Disease: From Animal Models to the Human Syndrome, Update on Dementia. IntechOpen. Peng, X., B. Kong, H. Yu, and X. Diao. 2014. Protective effect of whey protein hydrolysates against oxidative stress in D-galactose-induced ageing rats. Int. Dairy J. 34:80-85. Pescuma, M., E. M. Hébert, F. Mozzi, and G. F. De Valdez. 2010. Functional fermented whey-based beverage using lactic acid bacteria. Int. J. of Food Microbiol. 141:73-81. Petrof, E. O., K. Kojima, M. J. Ropeleski, M. W. Musch, Y. Tao, C. De Simone, and E. B. Chang. 2004. Probiotics inhibit nuclear factor-κB and induce heat shock proteins in colonic epithelial cells through proteasome inhibition. Gastroenterology 127(5):1474-1487. Pinto, T., K. L. Lanctôt, and N. Herrmann. 2011. Revisiting the cholinergic hypothesis of behavioral and psychological symptoms in dementia of the Alzheimer's type. Ageing Res. Rev. 10:404-412. Power, A. E., A. Vazdarjanova, and J. L. McGaugh. 2003. Muscarinic cholinergic influences in memory consolidation. Neurobiol. Learn. Mem. 80:178-193. Prado, M. R., L. M. Blandón, L. P. Vandenberghe, C. Rodrigues, G. R. Castro, V. Thomaz-Soccol, and C. R. Soccol. 2015. Milk kefir: composition, microbial cultures, biological activities, and related products. Front. Microbiol. 6:1177-1186. Reisi, P., A. R. Ghaedamini, M. Golbidi, M. Shabrang, Z. Arabpoor, and B. Rashidi. 2015. Effect of cholecystokinin on learning and memory, neuronal proliferation and apoptosis in the rat hippocampus. Adv. Biome. Res. 4: 227 Roos, R. A. 2010. Huntington's disease: a clinical review. Orphanet J. Rare Dis. 5:40-47. Ross, E., A. Winter, H. Wilkins, W. Sumner, N. Duval, D. Patterson, and D. Linseman. 2014. A cystine-rich whey supplement (Immunocal®) delays disease onset and prevents spinal cord glutathione depletion in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Antioxidants 3:843-865. Rothaug, M., C. Becker-Pauly, and S. Rose-John. 2016. The role of interleukin-6 signaling in nervous tissue. Biochim. Biophys. Acta 1863:1218-1227. Saito, S., M. Kobayashi, H. Kimoto-Nira, R. Aoki, K. Mizumachi, S. Miyata, K. Yamamoto, Y. Kitagawa, and C. Suzuki. 2011. Intraspecies discrimination of Lactobacillus paraplantarum by PCR. FEMS Microbiol. Lett. 316:70-76. Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425. Salcedo, I., D. Tweedie, Y. Li, and N. H. Greig. 2012. Neuroprotective and neurotrophic actions of glucagon‐like peptide‐1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Br. J. Pharmacol. 166:1586-1599. Sennvik, K., J. Fastbom, M. Blomberg, L.-O. Wahlund, B. Winblad, and E. Benedikz. 2000. Levels of α-and β-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer's disease patients. Neurosci. Lett. 278:169-172. Seth, A., F. Yan, D. B. Polk, and R. Rao. 2008. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC and MAP kinase-dependent mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 294:G1060-G1069 Shertzer, H. G., M. Krishan, and M. B. Genter. 2013. Dietary whey protein stimulates mitochondrial activity and decreases oxidative stress in mouse female brain. Neurosci. Lett. 548:159-164. Shimada, K., K. Fujikawa, K. Yahara, and T. Nakamura. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40:945-948. Shipley, M. M., C. A. Mangold, and M. L. Szpara. 2016. Differentiation of the SH-SY5Y human neuroblastoma cell line. J. Vis. Exp. 17:e53193. Shwe, T., W. Pratchayasakul, N. Chattipakorn, and S. C. Chattipakorn. 2018. Role of D-galactose-induced brain aging and its potential used for therapeutic interventions. Exp. Gerontol. 101:13-36. Soleymanzadeh, N., S. Mirdamadi, and M. Kianirad. 2016. Antioxidant activity of camel and bovine milk fermented by lactic acid bacteria isolated from traditional fermented camel milk (Chal). Dairy Sci. Technol. 96:443-457. Song, W., A. Tavitian, M. Cressatti, C. Galindez, A. Liberman, and H. M. Schipper. 2017. Cysteine-rich whey protein isolate (Immunocal®) ameliorates deficits in the GFAP. HMOX1 mouse model of schizophrenia. Free Radic. Biol. Med. 110:162-175. Stefanis, L. 2012. α-Synuclein in Parkinson's disease. Cold Spring Harb. Perspect. Med. 2:a009399. Strozzi, G. P., and L. Mogna. 2008. Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. J. Clin. Gastroenterol. 42:S179-S184. Tai, J., W. Liu, Y. Li, L. Li, and C. Hölscher. 2018. Neuroprotective effects of a triple GLP-1/GIP/glucagon receptor agonist in the APP/PS1 transgenic mouse model of Alzheimer's disease. Brain Res. 1678:64-74. Teppola, H., J. R. Sarkanen, T. O. Jalonen, and M. L. Linne. 2016. Morphological differentiation towards neuronal phenotype of SH-SY5Y neuroblastoma cells by estradiol, retinoic acid and cholesterol. Neurochem. Res. 41:731-747. Tominaga, H., M. Ishiyama, F. Ohseto, K. Sasamoto, T. Hamamoto, K. Suzuki, and M. Watanabe. 1999. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal. Commun. 36:47-50. Tosukhowong, P., C. Boonla, T. Dissayabutra, L. Kaewwilai, S. Muensri, C. Chotipanich, J. Joutsa, J. Rinne, and R. Bhidayasiri. 2016. Biochemical and clinical effects of whey protein supplementation in Parkinson's disease: A pilot study. J. Neurol. Sci. 367:162-170. Tu, D. G., Y. L. Chang, C. H. Chou, Y. L. Lin, C. C. Chiang, Y. Y. Chang, and Y. C. Chen. 2018. Preventive effects of taurine against D-galactose-induced cognitive dysfunction and brain damage. Food Funct. 9:124-133. Ventura, M., V. Meylan, and R. Zink. 2003. Identification and tracing of Bifidobacterium species by use of enterobacterial repetitive intergenic consensus sequences. Appl. Environ. Microbiol. 69:4296-4301. Ventura, M., C. Canchaya, A. Tauch, G. Chandra, G. F. Fitzgerald, K. F. Chater, and D. van Sinderen. 2007. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 71:495-548. Vorhees, C. V., and M. T. Williams. 2006. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 1:848-858. Walstra, P., T. J. Geurts, P. Walstra, and J. T. Wouters. 2005. Dairy science and technology. CRC Press. Oxfordshire, UK. Wang, Y., Y. Wu, Y. Wang, H. Xu, X. Mei, D. Yu, Y. Wang, and W. Li. 2017. Antioxidant properties of probiotic bacteria. Nutrients 9:521-535. Wang, J., Y. Zhao, B. Zhang, and C. Guo. 2015. Protective effect of total phenolic compounds from inula helenium on hydrogen peroxide-induced oxidative stress in SH-SY5Y cells. Indian J. Pharm. Sci. 77:163. Watanabe, K., J. Fujimoto, M. Sasamoto, J. Dugersuren, T. Tumursuh, and S. Demberel. 2008. Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia. World J. Microbiol. Biotechnol. 24:1313-1325. Waturangi, D. E., I. Joanito, Y. Yogi, and S. Thomas. 2012. Use of REP-and ERIC-PCR to reveal genetic heterogeneity of Vibrio cholerae from edible ice in Jakarta, Indonesia. Gut Pathog. 4:2-10. Winter, A. N., E. K. Ross, V. Daliparthi, W. A. Sumner, D. M. Kirchhof, E. Manning, H. M. Wilkins, and D. A. Linseman. 2017. A cystine-rich whey supplement (Immunocal®) provides neuroprotection from diverse oxidative stress-inducing agents in vitro by preserving cellular glutathione. Oxid. Med. Cell Longev. 2017:3103272 World Health Organization. 2018. Ageing and health. Wyss-Coray, T. 2016. Ageing, neurodegeneration and brain rejuvenation. Nature 539:180-186. Yacoubian, T. 2017. Neurodegenerative fisorders: Why do we need new therapies? Drug Discovery Approaches for the Treatment of Neurodegenerative Disorders. Elsevier. Cambridge, UK p. 1-16. Yen, C. H., C. H. Wang, W. T. Wu, and H. L. Chen. 2017. Fructo-oligosaccharide improved brain β-amyloid, β-secretase, cognitive function, and plasma antioxidant levels in D-galactose-treated BALB/cJ mice. Nutr. Neurosci. 20:228-237. Yu, X., S. Li, D. Yang, L. Qiu, Y. Wu, D. Wang, N. P. Shah, F. Xu, and H. Wei. 2016. A novel strain of Lactobacillus mucosae isolated from a Gaotian villager improves in vitro and in vivo antioxidant as well as biological properties in D-galactose-induced aging mice. J. Dairy Sci. 99:903-914. Zatta, P., R. Giordano, B. Corain, and G. Bombi. 1988. Alzheimer dementia and the aluminum hypothesis. Med. Hypotheses 26:139-142. Zeng, X. S., W. S. Geng, and J. J. Jia. 2018. Neurotoxin-induced animal models of Parkinson disease: pathogenic mechanism and assessment. ASN neuro. 10:1759091418777438. Zhang, J., X. Zhao, Y. Jiang, W. Zhao, T. Guo, Y. Cao, J. Teng, X. Hao, J. Zhao, and Z. Yang. 2017. Antioxidant status and gut microbiota change in an aging mouse model as influenced by exopolysaccharide produced by Lactobacillus plantarum YW11 isolated from Tibetan kefir. J. Dairy Sci. 100:6025-6041. Zhang, Q. X., M. M. Jin, L. Zhang, H. X. Yu, Z. Sun, and R. R. Lu. 2015. Hydrophobicity of whey protein hydrolysates enhances the protective effect against oxidative damage on PC 12 cells. J. Dairy Res. 82:1-7. Zhang, Q. X., Y. F. Ling, Z. Sun, L. Zhang, H. X. Yu, S. M. Kamau, and R. R. Lu. 2012. Protective effect of whey protein hydrolysates against hydrogen peroxide-induced oxidative stress on PC12 cells. Biotechnol. Lett. 34:2001-2006. Zhao, J., F. Tian, S. Yan, Q. Zhai, H. Zhang, and W. Chen. 2018. Lactobacillus plantarum CCFM10 alleviating oxidative stress and restoring the gut microbiota in d-galactose-induced aging mice. Food Funct. 9:917-924. Zhao, Y. R., W. Qu, W. Y. Liu, H. Hong, F. Feng, H. Chen, and N.Xie. 2015. YGS40, an active fraction of Yi-Gan San, reduces hydrogen peroxide-induced apoptosis in PC12 cells. Chin. J. Nat. Med. 13:438-444. Zhou, X. Q., Z. W. Yao, Y. Peng, S. S. Mao, D. Xu, X. F. Qin, and R. J. Zhang. 2018. PQQ ameliorates D-galactose induced cognitive impairments by reducing glutamate neurotoxicity via the GSK-3β/Akt signaling pathway in mouse. Sci. Rep. 8:8894. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78691 | - |
dc.description.abstract | 隨著現代醫學的進步,全球人口老化的問題日漸嚴重,其中老年人口的疾病預防及照顧則是我們迫切面臨到的挑戰。神經退化性疾病是一類常出現在老年人的慢性疾病,其病因主要為環境因素、發炎以及氧化壓力等,其中又以氧化壓力與神經細胞的慢性退化最為相關。目前有許多方式包含營養補充等致力於減少氧化壓力,去抵抗神經退化性疾病的病程,而乳清蛋白以及益生菌皆被證實具有抗氧化及神經保護的能力。然而目前鮮少文獻結合兩者發展機能性產品以抵抗神經退化性疾病,因此本研究將篩選乳酸菌用於發酵乳清蛋白,並以體外試驗及動物試驗驗證其神經保護能力。
在體外試驗,首先本研究篩選40株克菲爾粒的分離菌株,並且利用革蘭氏染色保留35株革蘭氏陽性菌,接續利用1,1-二苯基-2-三硝基苯肼 (DPPH) 試驗作為初篩依據,經初篩後本試驗保留15株分離菌株。接著本研究利用15株分離菌株去發酵乳清蛋白,並測定發酵乳清蛋白的抗氧化能力及發酵特性,結果顯示4株分離菌株所發酵的乳清蛋白擁有最佳的抗氧化活性,並且利用16S rRNA及rpoA基因序列搭配系統分類樹分析4株分離菌株皆屬於Lactobacillus kefiri。發酵乳清蛋白首先經過體外消化再測定其保護效應,而體外試驗將以SH-SY5Y 細胞株當作神經模式並以過氧化氫當作氧化壓力來源。結果顯示所有的消化發酵產物皆能顯著提升細胞存活率且有劑量效應 (p < 0.05)。而本研究也發現經消化發酵產物處理與不處理的細胞相比能夠顯著提升抗氧化酵素之活性以及減少活性氧化物質的產生 (p < 0.05),此外消化發酵產物的處理能顯著抑制粒線體膜電位的減少以及截切後凋亡蛋白3的表現量 (p < 0.05)。透過體外試驗的結果本研究篩選出L. kefiri M09 (M09) 及其發酵乳清蛋白進行後續動物試驗。 動物試驗方面本研究採用D-半乳糖誘導老化小鼠模式,並且給予小鼠未發酵乳清蛋白、M09以及M09發酵乳清蛋白。在行為表現方面,各處理組對於小鼠在水迷宮的表現無顯著影響 (p > 0.05),而在築巢試驗中給予未發酵乳清蛋白、M09以及M09發酵乳清蛋白相對老化組能夠顯著提升小鼠築巢得分 (p < 0.05)。此外,M09以及M09發酵乳清蛋白能夠顯著減少老化小鼠腦部活性氧化物質的含量 (p < 0.05),以及減少血及腦中脂質過氧化程度 (p < 0.05),並從切片結果中觀察到給予M09以及M09發酵乳清蛋白能夠保持腦部皮質的厚度。 總結本篇研究,利用L. kefiri發酵乳清蛋白能夠展現良好的抗氧化活性,並且能夠作為預防神經退化性疾病的潛力產品。 | zh_TW |
dc.description.abstract | As the medical advances, the global ageing issue becomes severe. We are facing the challenge of the elderly care and disease prevention. Neurodegenerative disease has a higher occurrence in the elderly due to environmental changes, inflammation, and oxidative stress. Among these causes, oxidative stress has been reported to directly associate with chronic degeneration of neurons. Different approaches were used to eliminate oxidative stress including nutritional method. Recently, both whey protein and probiotics have been proven to possess antioxidative and neuroprotective effects, respectively. However, few researches combine these two ingredients together for developing novel functional product. Thus, in the present study, we aimed to select lactic acid bacteria to produce fermented whey product with a neuroprotective effect in vitro and in vivo models.
In vitro, we isolated 40 bacteria from the kefir grains. After Gram staining, 35 Gram positive isolates were tested their anti-oxidative effect by DPPH (1,1-diphenyl-2-picrylhydrazyl) assay, and 15 isolates were selected. Then, we used 15 isolates to produce fermented whey protein and evaluated their antioxidative and fermentation abilities. The 4 fermented whey samples with the highest antioxidative were all fermented by Lactobacillus kefiri, which were identified by 16S rRNA and house-keeping gene (rpoA gene) combining with phylogenetic analysis. The fermented whey protein samples were then in vitro digested and determined their neuroprotective effect by SH-SY5Y cell line as neuron model and H2O2 as oxidative stress. All digested fermented whey protein significantly elevated cell viability with dose-dependent manner under oxidative stress (p < 0.05). Meanwhile, we also found that the reactive oxygen species (ROS) production significantly decreased and antioxidative enzyme activity was increased as compared with non-treated cell (p < 0.05). Besides, the levels of cleaved caspase-3 was significantly reduced (p < 0.05) and the mitochondrial membrane potential reduction was inhibited after treatment, contributing to the cell viability. L. kefiri M09 (M09) and its fermented whey protein product were selected for the following in vivo study. In vivo, D-galactose induced ageing mice were fed with unfermed whey protein, M09 and its fermented whey protein product. In the behavior test, all treatment didn’t significantly affect the performance from each other in Morris water maze (p > 0.05). However, mice fed with whey protein, M09 and M09 fermented whey protein product scored significantly higher than ageing group (p < 0.05) in nest building test. Besides, M09 and M09 fermented whey protein product could significantly reduce ROS level in brain (p < 0.05). Meanwhile, mice fed with M09 and M09 fermented whey protein product showed siginificantly lower lipid oixidative levels in blood and brain comparing with ageing group (p < 0.05). Last, supplement of M09 and M09 fermented whey protein product also exhibited protection of brain cortex thickness. In conclusion, whey protein fermented by L. kefiri demonstrated a potential ability in ameliorating oxidative stress and preventing neurodegenerative disease. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:12:32Z (GMT). No. of bitstreams: 1 ntu-108-R06626006-1.pdf: 80343094 bytes, checksum: 74614adf3085a18420439eb9601a10fa (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 謝誌 i
前言 iii 中文摘要 iv 英文摘要 vi 壹、文獻探討 1 第一節、神經退化性疾病 1 一、神經退化性疾病定義及種類 1 二、老化 6 三、氧化壓力 7 四、細胞凋亡 9 第二節、乳清蛋白之機能性 13 一、乳清蛋白對於神經細胞之保護能力 13 二、乳清蛋白緩解動物模式之神經退化 14 三、人體臨床試驗 15 第三節、發酵產品與益生菌之機能性 16 一、發酵產品與益生菌之抗氧化與神經保護能力 16 二、益生菌緩解神經退化 17 三、腦腸軸可能的途徑 18 第四節、結合乳清蛋白與益生菌之機能性 21 第五節、神經退化性疾病動物模式選擇 21 小結 23 研究目的及假說 23 貳、材料與方法 24 第一節:製備發酵乳清 25 一、菌株分離純化 25 二、革蘭氏染色 27 三、篩選抗氧化潛力菌株 27 四、製備發酵乳清蛋白 27 (一)發酵乳清蛋白之可滴定酸度 28 (二)發酵乳清蛋白之蛋白質水解程度 28 (三)清除自由基能力 29 (四)體外消化 29 第二節:菌株鑑定 30 一、DNA萃取 30 二、腸桿菌基因間重複序列聚合酶連鎖反應 31 三、隨機增幅多態性DNA聚合酶連鎖反應 31 四、16S rRNA基因序列擴增及定序分析 32 五、持家基因序列擴增及定序分析 33 第三節:體外試驗 39 一、SH-SY5Y細胞維持及保存 39 二、SH-SY5Y誘導分化 40 三、氧化壓力選擇及細胞存活率測試 40 四、消化產物之細胞保護效果 41 五、截切凋亡蛋白-3表現量 43 六、觸酶活性測定 44 七、胞內氧化壓力測定 46 八、粒線體膜電位測定 46 第四節:動物試驗 47 一、誘導老化小鼠及產品抗氧化及神經保護能力評估 47 (一) 誘導動物老化及試驗設計 47 (二) 行為觀察 49 (三) 切片觀察 50 二、機制探討 50 (一)細胞激素測定 50 (二)脂質氧化程度測定 50 (三)氧化壓力測定 51 第五節、 統計分析 51 參、結果 52 第一節、分離、鑑定菌株暨發酵產品特性 52 一、菌株初篩 52 二、發酵乳清蛋白製備 53 三、菌株鑑定 54 第二節、利用體外試驗篩選具較佳神經保護之發酵乳清蛋白 62 一、保護試驗 62 第三節、動物試驗 75 一、體重及行為觀察 75 二、發酵乳清蛋白免疫調節能力 81 三、發酵乳清蛋白抗氧化能力 84 四、切片觀察 85 肆、討論 89 第一節、分離、鑑定菌株暨發酵產品特性 89 第二節、細胞試驗篩選菌株 91 第三節、動物試驗 93 伍、結論 99 陸、附件 100 柒、參考文獻 101 | - |
dc.language.iso | zh_TW | - |
dc.title | 探討發酵乳清蛋白之抗氧化及神經保護力對抗神經退化性疾病 | zh_TW |
dc.title | Investigation of antioxidative and neuroprotective effects of fermented whey protein against neurodegenerative disease | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 廖啟成;劉?睿;蔡英傑;郭卿雲 | zh_TW |
dc.contributor.oralexamcommittee | ;;; | en |
dc.subject.keyword | 神經退化性疾病,氧化壓力,益生菌,乳清蛋白,發酵, | zh_TW |
dc.subject.keyword | Neurodegenerative disease,oxidative stress,probiotics,whey protein,fermentation, | en |
dc.relation.page | 118 | - |
dc.identifier.doi | 10.6342/NTU201902070 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-05 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 動物科學技術學系 | - |
dc.date.embargo-lift | 2024-08-07 | - |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 78.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。