請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78683完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾秀如 | |
| dc.contributor.author | Jing-Ying Kuo | en |
| dc.contributor.author | 郭靜瑩 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:11:59Z | - |
| dc.date.available | 2024-08-28 | |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-05 | |
| dc.identifier.citation | 1.Ferlay, J., et al., Global cancer observatory: cancer today. Lyon, France: International Agency for Research on Cancer, 2018.
2.Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 2018. 68(6): p. 394-424. 3.Kane, R.C., et al., Sorafenib for the treatment of unresectable hepatocellular carcinoma. The oncologist, 2009. 14(1): p. 95-100. 4.Davis, G.L., et al. Hepatocellular carcinoma: management of an increasingly common problem. in Baylor University Medical Center Proceedings. 2008. Taylor & Francis. 5.Hai, H., A. Tamori, and N. Kawada, Role of hepatitis B virus DNA integration in human hepatocarcinogenesis. World J Gastroenterol, 2014. 20(20): p. 6236-43. 6.Zhang, T., et al., Hepatitis B virus X protein modulates oncogene Yes-associated protein by CREB to promote growth of hepatoma cells. Hepatology, 2012. 56(6): p. 2051-9. 7.Cha, M.Y., et al., Hepatitis B virus X protein is essential for the activation of Wnt/beta-catenin signaling in hepatoma cells. Hepatology, 2004. 39(6): p. 1683-93. 8.Gotink, K.J. and H.M.W. Verheul, Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis, 2009. 13(1): p. 1-14. 9.Liu, Y. and N.S. Gray, Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol, 2006. 2(7): p. 358-64. 10.Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. New England journal of medicine, 2008. 359(4): p. 378-390. 11.Takeyama, H., et al., Impact of surgical treatment after sorafenib therapy for advanced hepatocellular carcinoma. Surgery Today, 2017. 48(4): p. 431-438. 12.Tsuei, D.-J., et al., RBMY, a male germ cell-specific RNA-binding protein, activated in human liver cancers and transforms rodent fibroblasts. Oncogene, 2004. 23(34): p. 5815-5822. 13.Venables, J., et al., RBMY, a probable human spermatogenesis factor, and other hnRNP G proteins interact with Tra2β and affect splicing. Human molecular genetics, 2000. 9(5): p. 685-694. 14.Skrisovska, L., et al., The testis-specific human protein RBMY recognizes RNA through a novel mode of interaction. EMBO reports, 2007. 8(4): p. 372-379. 15.Chai, N.-N., et al., Structure and Organization of theRBMYGenes on the Human Y Chromosome: Transposition and Amplification of an Ancestral AutosomalhnRNPGGene. Genomics, 1998. 49(2): p. 283-289. 16.Abid, S., et al., Cellular ontogeny of RBMY during human spermatogenesis and its role in sperm motility. Journal of Biosciences, 2012. 38(1): p. 85-92. 17.Chua, H.-H., et al., RBMY, a novel inhibitor of glycogen synthase kinase 3β, increases tumor stemness and predicts poor prognosis of hepatocellular carcinoma. Hepatology, 2015. 62(5): p. 1480-1496. 18.Minna, J.D., et al., Male Germ Cell-Specific RNA Binding Protein RBMY: A New Oncogene Explaining Male Predominance in Liver Cancer. PLoS ONE, 2011. 6(11). 19.Samse, K., N. Hariharan, and M.A. Sussman, Personalizing cardiac regenerative therapy: At the heart of Pim1 kinase. Pharmacological Research, 2016. 103: p. 13-16. 20.Brault, L., et al., PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica, 2010. 95(6): p. 1004-1015. 21.Allen, J.D., et al., Pim-2 transgene induces lymphoid tumors, exhibiting potent synergy with c-myc. Oncogene, 1997. 15(10): p. 1133. 22.Tursynbay, Y., et al., Pim-1 kinase as cancer drug target: An update. Biomedical Reports, 2016. 4(2): p. 140-146. 23.Magnuson, N.S., et al., Why target PIM1 for cancer diagnosis and treatment? Future Oncology, 2010. 6(9): p. 1461-1478. 24.Leung, C.O.-n., et al., PIM1 regulates glycolysis and promotes tumor progression in hepatocellular carcinoma. Oncotarget, 2015. 6(13): p. 10880. 25.Pan, X., et al., miRNA-370 acts as a tumor suppressor via the downregulation of PIM1 in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci, 2017. 21(6): p. 1254-1263. 26.Pang, W., et al., Pim-1 kinase is a target of miR-486-5p and eukaryotic translation initiation factor 4E, and plays a critical role in lung cancer. Molecular cancer, 2014. 13(1): p. 240. 27.Zhao, W., et al., PIM1: a promising target in patients with triple-negative breast cancer. Medical Oncology, 2017. 34(8). 28.Qian, K.C., et al., Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase. Journal of Biological Chemistry, 2005. 280(7): p. 6130-6137. 29.Aho, T.L.T., et al., Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112gatekeeper site. FEBS Letters, 2004. 571(1-3): p. 43-49. 30.Nihira, K., et al., Pim-1 controls NF-κB signalling by stabilizing RelA/p65. Cell Death & Differentiation, 2009. 17(4): p. 689-698. 31.Wang, Z., et al., Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2002. 1593(1): p. 45-55. 32.Morishita, D., et al., Pim Kinases Promote Cell Cycle Progression by Phosphorylating and Down-regulating p27Kip1 at the Transcriptional and Posttranscriptional Levels. Cancer Research, 2008. 68(13): p. 5076-5085. 33.Wang, Z., et al., Pim-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. Journal of veterinary science, 2001. 2(3): p. 167-179. 34.Bullock, A.N., et al., Structure and Substrate Specificity of the Pim-1 Kinase. Journal of Biological Chemistry, 2005. 280(50): p. 41675-41682. 35.Mizuno, K., et al., Regulation of Pim-1 by Hsp90. Biochem Biophys Res Commun, 2001. 281(3): p. 663-9. 36.Shay, K.P., et al., Pim-1 kinase stability is regulated by heat shock proteins and the ubiquitin-proteasome pathway. Molecular Cancer Research, 2005. 3(3): p. 170-181. 37.Wilhelm, S., et al., Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature Reviews Drug Discovery, 2006. 5(10): p. 835-844. 38.Mondello, P., S. Cuzzocrea, and M. Mian, Pim kinases in hematological malignancies: where are we now and where are we going? Journal of hematology & oncology, 2014. 7(1): p. 95. 39.Dakin, L.A., et al., Discovery of novel benzylidene-1,3-thiazolidine-2,4-diones as potent and selective inhibitors of the PIM-1, PIM-2, and PIM-3 protein kinases. Bioorg Med Chem Lett, 2012. 22(14): p. 4599-604. 40.Garcia, P.D., et al., Pan-PIM Kinase Inhibition Provides a Novel Therapy for Treating Hematologic Cancers. Clinical Cancer Research, 2014. 20(7): p. 1834-1845. 41.Ogawa, N., H. Yuki, and A. Tanaka, Insights from Pim1 structure for anti-cancer drug design. Expert Opinion on Drug Discovery, 2012. 7(12): p. 1177-1192. 42.Thaimattam, R., et al., Protein Kinase Inhibitors: Structural Insights Into Selectivity. Current Pharmaceutical Design, 2007. 13(27): p. 2751-2765. 43.Fischer, K.M., et al., Pim-1 kinase inhibits pathological injury by promoting cardioprotective signaling. Journal of Molecular and Cellular Cardiology, 2011. 51(4): p. 554-558. 44.Morishita, D., et al., Cell-permeable Carboxyl-terminal p27Kip1Peptide Exhibits Anti-tumor Activity by Inhibiting Pim-1 Kinase. Journal of Biological Chemistry, 2011. 286(4): p. 2681-2688. 45.Ma, Y.-T., Structural Characterization of the Interactions between RNA-Binding Motif on Y Chromosome and Pim1 kinase, in Graduate Institute of Biochemistry and Molecular Biology. 2018, National Taiwan University: Taipei. 46.Montrose, K., Y. Yang, and G.W. Krissansen, The tetrapeptide core of the carrier peptide Xentry is cell-penetrating: novel activatable forms of Xentry. Scientific Reports, 2014. 4(1). 47.Durzy ska, J., et al., Viral and Other Cell-Penetrating Peptides as Vectors of Therapeutic Agents in Medicine. Journal of Pharmacology and Experimental Therapeutics, 2015. 354(1): p. 32-42. 48.Joliot, A. and A. Prochiantz, Transduction peptides: from technology to physiology. Nature cell biology, 2004. 6(3): p. 189. 49.Sagan, S., et al., Homeoproteins and Homeoprotein-derived Peptides: Going in and Out. Current Pharmaceutical Design, 2013. 19(16): p. 2851-2862. 50.Milletti, F., Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today, 2012. 17(15-16): p. 850-60. 51.Chugh, A., F. Eudes, and Y.S. Shim, Cell-penetrating peptides: Nanocarrier for macromolecule delivery in living cells. IUBMB Life, 2010. 62(3): p. 183-93. 52.Gautam, A., et al., CPPsite: a curated database of cell penetrating peptides. Database (Oxford), 2012. 2012: p. bas015. 53.Montrose, K., et al., Xentry, a new class of cell-penetrating peptide uniquely equipped for delivery of drugs. Scientific Reports, 2013. 3(1). 54.Cerrato, C.P., et al., Novel cell-penetrating peptide targeting mitochondria. The FASEB Journal, 2015. 29(11): p. 4589-4599. 55.Krautwald, S., et al., Inhibition of regulated cell death by cell-penetrating peptides. Cellular and Molecular Life Sciences, 2016. 73(11-12): p. 2269-2284. 56.Wang, Q., X. Chen, and N. Hay, Akt as a target for cancer therapy: more is not always better (lessons from studies in mice). British Journal of Cancer, 2017. 117(2): p. 159-163. 57.Mundi, P.S., et al., AKT in cancer: new molecular insights and advances in drug development. British Journal of Clinical Pharmacology, 2016. 82(4): p. 943-956. 58.Hu, X.F., et al., PIM-1-specific mAb suppresses human and mouse tumor growth by decreasing PIM-1 levels, reducing Akt phosphorylation, and activating apoptosis. J Clin Invest, 2009. 119(2): p. 362-75. 59.Cen, B., et al., The Pim-1 Protein Kinase Is an Important Regulator of MET Receptor Tyrosine Kinase Levels and Signaling. Molecular and Cellular Biology, 2014. 34(13): p. 2517-2532. 60.Cao, L., et al., PIM1 kinase promotes cell proliferation, metastasis and tumor growth of lung adenocarcinoma by potentiating the c-MET signaling pathway. Cancer Letters, 2019. 444: p. 116-126. 61.Stone, R.C., et al., Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell and Tissue Research, 2016. 365(3): p. 495-506. 62.Zhang, J. and A. Babic, Regulation of theMEToncogene: molecular mechanisms. Carcinogenesis, 2016. 37(4): p. 345-355. 63.Chmielowiec, J., et al., c-Met is essential for wound healing in the skin. The Journal of Cell Biology, 2007. 177(1): p. 151-162. 64.Birchmeier, C., et al., Met, metastasis, motility and more. Nature Reviews Molecular Cell Biology, 2003. 4(12): p. 915-925. 65.Mazzone, M. and P.M. Comoglio, The Met pathway: master switch and drug target in cancer progression. The FASEB Journal, 2006. 20(10): p. 1611-1621. 66.Harrison, J.K., et al., Pim Kinases Promote Migration and Metastatic Growth of Prostate Cancer Xenografts. Plos One, 2015. 10(6). 67.Bleul, C.C., et al., The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 1996. 382(6594): p. 829. 68.Chatterjee, S., B. Behnam Azad, and S. Nimmagadda, The Intricate Role of CXCR4 in Cancer, in Emerging Applications of Molecular Imaging to Oncology. 2014. p. 31-82. 69.Miller, R.J., G. Banisadr, and B.J. Bhattacharyya, CXCR4 signaling in the regulation of stem cell migration and development. Journal of Neuroimmunology, 2008. 198(1-2): p. 31-38. 70.Grundler, R., et al., Dissection of PIM serine/threonine kinases in FLT3-ITD–induced leukemogenesis reveals PIM1 as regulator of CXCL12–CXCR4-mediated homing and migration. The Journal of Experimental Medicine, 2009. 206(9): p. 1957-1970. 71.Wang, J., et al., Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma. Oncogene, 2010. 29(17): p. 2477-2487. 72.Zhang, Y., et al., Pim kinase-dependent inhibition of c-Myc degradation. Oncogene, 2008. 27(35): p. 4809-4819. 73.Miller, D.M., et al., c-Myc and Cancer Metabolism. Clinical Cancer Research, 2012. 18(20): p. 5546-5553. 74.Ullah, Z., C.Y. Lee, and M.L. DePamphilis, Cip/Kip cyclin-dependent protein kinase inhibitors and the road to polyploidy. Cell Division, 2009. 4(1). 75.Denicourt, C., Cip/Kip proteins: more than just CDKs inhibitors. Genes & Development, 2004. 18(8): p. 851-855. 76.Bretones, G., M.D. Delgado, and J. León, Myc and cell cycle control. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2015. 1849(5): p. 506-516. 77.Child, E.S. and D.J. Mann, The intricacies of p21 phosphorylation: protein/protein interactions, subcellular localization and stability. Cell cycle, 2006. 5(12): p. 1313-1319. 78.Warfel, N.A. and A.S. Kraft, PIM kinase (and Akt) biology and signaling in tumors. Pharmacol Ther, 2015. 151: p. 41-9. 79.Turkay, E., et al., The Effects of Glucocorticoids on Fetal and Placental Development, in Glucocorticoids - New Recognition of Our Familiar Friend. 2012. 80.Kale, J., E.J. Osterlund, and D.W. Andrews, BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ, 2018. 25(1): p. 65-80. 81.Bellon, M., L. Lu, and C. Nicot, Constitutive activation of Pim1 kinase is a therapeutic target for adult T-cell leukemia. Blood, 2016. 127(20): p. 2439-50. 82.Ito, T., et al., Bcl-2 phosphorylation required for anti-apoptosis function. Journal of Biological Chemistry, 1997. 272(18): p. 11671-11673. 83.Deng, X., et al., Bcl2's flexible loop domain regulates p53 binding and survival. Mol Cell Biol, 2006. 26(12): p. 4421-34. 84.Sahai, E., Mechanisms of cancer cell invasion. Curr Opin Genet Dev, 2005. 15(1): p. 87-96. 85.Thoma, C.R., et al., 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv Drug Deliv Rev, 2014. 69-70: p. 29-41. 86.Zanoni, M., et al., 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Scientific Reports, 2016. 6(1). 87.Cao, L., et al., Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterology, 2011. 11(1). 88.Manning, B.D. and A. Toker, AKT/PKB Signaling: Navigating the Network. Cell, 2017. 169(3): p. 381-405. 89.Chipuk, J.E. and D.R. Green, How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol, 2008. 18(4): p. 157-64. 90.Kulandavelu, S., et al., Pim1 Kinase Overexpression Enhances ckit(+) Cardiac Stem Cell Cardiac Repair Following Myocardial Infarction in Swine. J Am Coll Cardiol, 2016. 68(22): p. 2454-2464. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78683 | - |
| dc.description.abstract | 肝細胞癌為全世界發生普及且致死率較高的癌症之一,其中男性的好發率又較女性高,由於目前肝癌第一線藥物Sorafenib副作用較大,為達到更好的療效仍需找尋更好的治療方法。在先前研究中發現,Y染色體上RNA結合模體蛋白 (RBMY) 原先僅表現在精子細胞及發育中的肝細胞中,但卻在男性肝細胞癌患者的肝癌組織中卻異常活化及表現。RBMY蛋白帶有核醣核酸識別模體 (RRM) 及四段由絲胺酸、精胺酸、甘胺酸、酪胺酸的重複片段 (SRGY boxes),然而RBMY蛋白僅N端RRM區域具有結構,SRGY區域為固有無序化胺基酸 (intrinsically disordered amino acids) 序列,序列靈活度高並且易與多種蛋白結合,藉此調控生物功能,但其序列並沒有固定三級結構,不易作為藥物設計之標靶,因此我們針對RBMY的上游激酶Pim1進行研究,藉由找出可與Pim1結合之特定序列,並以RBMY的胺基酸序列設計多段短片段胜肽,欲藉拮抗Pim1與下游蛋白的結合,減緩肝細胞癌的惡化情形,並為了讓胜肽更能有效被細胞吞噬,在其胜肽N端接上細胞穿透胜肽。在本篇論文中,我們首先藉由免疫螢光染色確定Pim1及RBMY皆表現在細胞粒線體位置,並利用螢光胜肽證實當RBMY胜肽被肝癌細胞吞噬後同樣會進入到粒線體胞器中。接著為了測試RBMY胜肽在不同細胞中的抑制效果,我們利用三種不同的肝癌細胞PLC/PRF/5、Huh-7及SNU423,先透過西方點墨法了解細胞本身Pim1及RBMY蛋白的表現差異,並將RBMY胜肽加入不同細胞後,探討三段RBMY胜肽在細胞的抑制效果。首先我同樣利用西方點墨法確認Pim1下游受質磷酸化受到抑制的蛋白,並利用相關的細胞功能試驗分別測試細胞的爬行、穿透及幹性能力。我們發現在三種細胞中SR08最能抑制細胞形成3D團塊,而在細胞爬行試驗中,SR08及SG08分別可減緩細胞爬行能力。此外,YR08及SR08皆可抑制細胞穿透,顯示RBMY胜肽可能具有作為肝癌之胜肽抑制劑的潛力,未來可將YR08、SR08及SG08三種胜肽協同使用於肝癌細胞中,藉由同時抑制細胞多條路徑而使胜肽抑制劑的抑制效果加成。 | zh_TW |
| dc.description.abstract | Hepatocellular carcinoma (HCC) is one of the leading cancers with high incidence rate in male and high mortality in the world. The first approved drug for HCC is Sorafenib, which causes severe side effects and shows limited survival improvement. Our previous studies showed that RNA Binding-Motif on Y chromosome (RBMY) reactivated and highly phosphorylated in male HCC tissues. RBMY protein is characterized by an RNA recognition motif (RRM) and C-terminal with four repetitive segments rich in serine, arginine, glycine and tyrosine residues (SRGY boxes), which is identified as intrinsically disordered proteins and generally considered difficult for developing drugs. Though intrinsically disordered sequences lack of constant protein structure, its flexibility make it easily target with multiple proteins and regulate cell functions. We therefore targeting the upstream kinase of RBMY, Proviral Integration in Moloney-1 (Pim1). To develop membrane-permeable peptide inhibitors which prevent the phosphorylation-activation of RBMY by Pim1, several candidate peptide sequences identified from RBMY sequence were synthesized with conjugated cell penetrating peptide (CPP) to their N-terminus terminus for higher endocytosis efficiency. In the study, we tested the efficacy of peptides inhibitors by different cell functional assays in three HCC cell lines. First, we confirmed that Pim1, RBMY proteins and our RBMY peptides were located at mitochondria. Besides, we treated peptide inhibitors in three HCC cell lines PLC/PRF/5, Huh-7 and SNU423. We used Western blot assay to investigate which Pim1 downstream proteins can be affected by RBMY peptides. Then, we used wound healing, transwell and spheroid formation assays to test cell migration, invasion and stemness abilities, respectively. The results showed that SR08 peptide could inhibit HCC cells to form spheroid cells. Furthermore, SR08 and SG08 peptides could slow down cell migration; YR08 and SR08 could inhibit cell invasion progression. In conclusion, our studies confirm that RBMY peptide inhibitors have potential prospects in HCC treatment. In the future, three peptide inhibitors could combined in HCC cell lines for better effect by inhibiting multiple pathways. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:11:59Z (GMT). No. of bitstreams: 1 ntu-108-R05442008-1.pdf: 4702612 bytes, checksum: a2ae99b9b88fca8597160d1fdb0abe14 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III Abstract V 目錄 VII 圖目錄 X 表目錄 XI 縮寫表 XII 一、引言 1 1.1 肝細胞癌 (Hepatocellular carcinoma, HCC) 1 1.2 Y染色體上核醣核酸結合模體蛋白 (RBMY) 2 1.3 Pim1激酶在疾病中的重要性 3 1.4 Pim1激酶與RBMY的交互作用 4 1.5 以Pim1作為標靶蛋白設計藥物抑制劑之發展 5 1.6 RBMY胜肽設計及篩選 5 1.7 細胞穿透胜肽提升胜肽傳送至細胞內之效率 6 1.8 實驗動機及目的 8 二、實驗材料及方法 9 2.1實驗材料 9 2.1.1細胞培養所需材料及實驗緩衝液配置 9 2.1.2RBMY胜肽 (RBMY peptides) 9 2.1.3實驗所需之抗體 9 2.2實驗方法 10 2.2.1繼代培養 (Sub-culture) 10 2.2.2細胞冷凍保存 (cell freeze) 及細胞解凍 (cell recovery) 10 2.2.3細胞增生試驗 (cell proliferation assay) 11 2.2.4 3D細胞團塊分析試驗 (Spheroid assay) 11 2.2.5傷口癒合試驗 (Wound healing assay) 12 2.2.6細胞穿透試驗 (Transwell invasion assay) 12 2.2.7西方點墨法 (Western blot assay) 13 2.2.8細胞攝入螢光胜肽試驗 15 2.2.9免疫螢光染色 (Immuno-fluorescence assay) 15 2.2.10細胞能量試驗 (ATPlite 1 step 3D assay) 15 2.2.11細胞粒線體能量試驗 (Mitochondrial ATP assay) 16 2.2.12統計分析 16 三、實驗結果 17 3.1 利用RBMY胜肽找出Pim1的受質結合位 17 3.2 Pim1及RBMY皆位在肝癌細胞粒線體 17 3.3 RBMY胜肽位於肝癌細胞粒線體的位置 18 3.4 不同肝癌細胞株中Pim1的表現量差異大 18 3.5 RBMY胜肽在PLC/PRF/5細胞中造成的影響 19 3.5.1 RBMY胜肽影響Pim1下游蛋白磷酸化 19 3.5.1.1 Pim1的表現情形及RBMY的磷酸化 19 3.5.1.2 RBMY胜肽不影響PLC/PRF/5細胞中AKT激酶磷酸化 19 3.5.1.3 RBMY胜肽在PLC/PRF/5細胞中僅抑制CXCR4蛋白磷酸化 20 3.5.1.4 在肝癌細胞中c-Myc磷酸化受到RBMY胜肽抑制 21 3.5.1.5 細胞週期抑制蛋白p21Cip1/Waf1受RBMY胜肽抑制 22 3.5.1.6 RBMY胜肽減少細胞凋亡蛋白Bcl2的磷酸化 22 3.5.2 RBMY胜肽對PLC/PRF/5細胞轉移能力的影響 23 3.5.2.1 RBMY胜肽可降低PLC/PRF/5細胞爬行能力 23 3.5.2.2 RBMY胜肽抑制肝癌細胞的侵犯穿透能力 24 3.5.3 RBMY胜肽阻礙肝癌細胞形成3D團塊細胞的能力 24 3.6 RBMY胜肽在Huh-7細胞造成之影響 25 3.6.1 RBMY胜肽在Huh-7細胞中可抑制Pim1下游蛋白磷酸化 25 3.6.2 RBMY胜肽減緩Huh-7細胞形成3D團塊細胞的能力 25 3.7 RBMY胜肽在SNU423細胞造成之影響 26 3.7.1 RBMY胜肽抑制Pim1下游蛋白磷酸化 26 3.7.2 RBMY胜肽對SNU423細胞轉移的抑制效果 27 3.7.2.1 RBMY胜肽可抑制肝癌細胞爬行能力 27 3.7.2.2 RBMY胜肽抑制SNU423細胞的侵犯穿透能力 27 3.8 RBMY胜肽不影響肝癌細胞之增生情形 27 四、討論 28 五、圖 31 六、表 54 七、參考文獻 63 八、附錄 70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 肝細胞癌 | zh_TW |
| dc.subject | Pim1激? | zh_TW |
| dc.subject | Y染色體上RNA結合模體蛋白 | zh_TW |
| dc.subject | 胜?抑制劑 | zh_TW |
| dc.subject | Pim1 kinase | en |
| dc.subject | RBMY | en |
| dc.subject | HCC | en |
| dc.subject | peptide inhibitors | en |
| dc.title | Pim1-RBMY交互作用之拮抗胜肽對於肝癌細胞活性之研究 | zh_TW |
| dc.title | Cellular studies of potential peptides targeting Pim1-RBMY interaction in hepatocellular carcinoma cell lines | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張美惠 | |
| dc.contributor.oralexamcommittee | 倪衍玄 | |
| dc.subject.keyword | Pim1激?,Y染色體上RNA結合模體蛋白,肝細胞癌,胜?抑制劑, | zh_TW |
| dc.subject.keyword | Pim1 kinase,RBMY,HCC,peptide inhibitors, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU201902228 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-06 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-28 | - |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R05442008-1.pdf 未授權公開取用 | 4.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
