請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78672
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭柏秀(Po-Hsiu Kuo) | |
dc.contributor.author | Jun-Ru Wei | en |
dc.contributor.author | 魏君如 | zh_TW |
dc.date.accessioned | 2021-07-11T15:11:15Z | - |
dc.date.available | 2022-08-28 | |
dc.date.copyright | 2019-08-28 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-06 | |
dc.identifier.citation | 1. Bobulescu, I.A. and O.W. Moe, Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis, 2012. 19(6): p. 358-71.
2. Maiuolo, J., et al., Regulation of uric acid metabolism and excretion. Int J Cardiol, 2016. 213: p. 8-14. 3. El Ridi, R. and H. Tallima, Physiological functions and pathogenic potential of uric acid: A review. J Adv Res, 2017. 8(5): p. 487-493. 4. Zhu, Y., B.J. Pandya, and H.K. Choi, Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum, 2011. 63(10): p. 3136-41. 5. Kuo, C.F., et al., Rising burden of gout in the UK but continuing suboptimal management: a nationwide population study. Ann Rheum Dis, 2015. 74(4): p. 661-7. 6. Liu, R., et al., Prevalence of Hyperuricemia and Gout in Mainland China from 2000 to 2014: A Systematic Review and Meta-Analysis. Biomed Res Int, 2015. 2015: p. 762820. 7. Kim, Y., J. Kang, and G.T. Kim, Prevalence of hyperuricemia and its associated factors in the general Korean population: an analysis of a population-based nationally representative sample. Clin Rheumatol, 2018. 37(9): p. 2529-2538. 8. Kim, J.W., et al., Prevalence and incidence of gout in Korea: data from the national health claims database 2007-2015. Rheumatol Int, 2017. 37(9): p. 1499-1506. 9. Chuang, S.Y., et al., Trends in hyperuricemia and gout prevalence: Nutrition and Health Survey in Taiwan from 1993-1996 to 2005-2008. Asia Pac J Clin Nutr, 2011. 20(2): p. 301-8. 10. Vitart, V., et al., SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet, 2008. 40(4): p. 437-42. 11. Dehghan, A., et al., High serum uric acid as a novel risk factor for type 2 diabetes. Diabetes Care, 2008. 31(2): p. 361-2. 12. Johnson, R.J., et al., Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes, 2013. 62(10): p. 3307-15. 13. Nakanishi, N., Serum uric acid and risk for development of hypertension and impaired fasting glucose or Type II diabetes in Japanese male office workers. Eur. J. Epidemiol., 2002. 14. Liu, C.Q., et al., Serum uric acid is independently and linearly associated with risk of nonalcoholic fatty liver disease in obese Chinese adults. Sci Rep, 2016. 6: p. 38605. 15. Culleton, B.F., et al., Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med, 1999. 131(1): p. 7-13. 16. Kim, S.Y., et al., Hyperuricemia and coronary heart disease: a systematic review and meta-analysis. Arthritis Care Res (Hoboken), 2010. 62(2): p. 170-80. 17. Chang, C.C., et al., Association between serum uric acid and cardiovascular risk in nonhypertensive and nondiabetic individuals: The Taiwan I-Lan Longitudinal Aging Study. Sci Rep, 2018. 8(1): p. 5234. 18. Li, M., et al., Hyperuricemia and the risk for coronary heart disease morbidity and mortality a systematic review and dose-response meta-analysis. Sci Rep, 2016. 6: p. 19520. 19. Li, X., et al., Serum uric acid levels and multiple health outcomes: umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies. BMJ, 2017. 357: p. j2376. 20. Chen, J.H., et al., Serum uric acid level as an independent risk factor for all-cause, cardiovascular, and ischemic stroke mortality: a Chinese cohort study. Arthritis Rheum, 2009. 61(2): p. 225-32. 21. Alvarez-Lario, B. and J. Macarron-Vicente, Uric acid and evolution. Rheumatology (Oxford), 2010. 49(11): p. 2010-5. 22. Xiu, S., et al., Serum uric acid and impaired cognitive function in community-dwelling elderly in Beijing. Neurosci Lett, 2017. 637: p. 182-187. 23. Lu, N., et al., Gout and the risk of Alzheimer's disease: a population-based, BMI-matched cohort study. Ann Rheum Dis, 2016. 75(3): p. 547-51. 24. Wium-Andersen, M.K., et al., Association between the antioxidant uric acid and depression and antidepressant medication use in 96 989 individuals. Acta Psychiatr Scand, 2017. 136(4): p. 424-433. 25. de Oliveira, E.P. and R.C. Burini, High plasma uric acid concentration: causes and consequences. Diabetol Metab Syndr, 2012. 4: p. 12. 26. Narang, R.K., et al., Interactions between serum urate-associated genetic variants and sex on gout risk: analysis of the UK Biobank. Arthritis Res Ther, 2019. 21(1): p. 13. 27. Dehghan, A., et al., Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet, 2008. 372(9654): p. 1953-61. 28. Krishnan, E., et al., Nature versus nurture in gout: a twin study. Am J Med, 2012. 125(5): p. 499-504. 29. Yang, Q., et al., Genome-wide search for genes affecting serum uric acid levels: the Framingham Heart Study. Metabolism, 2005. 54(11): p. 1435-41. 30. Fan, C.T., J.C. Lin, and C.H. Lee, Taiwan Biobank: a project aiming to aid Taiwan's transition into a biomedical island. Pharmacogenomics, 2008. 9(2): p. 235-46. 31. Purcell, S., et al., PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007. 81(3): p. 559-75. 32. Wakabayashi, I., Alcohol intake and triglycerides/high-density lipoprotein cholesterol ratio in men with hypertension. Am J Hypertens, 2013. 26(7): p. 888-95. 33. Allen, L.A., et al., Liver function abnormalities and outcome in patients with chronic heart failure: data from the Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) program. Eur J Heart Fail, 2009. 11(2): p. 170-7. 34. Alba, G.A., et al., Diagnostic and Prognostic Utility of Procalcitonin in Patients Presenting to the Emergency Department with Dyspnea. Am J Med, 2016. 129(1): p. 96-104 e7. 35. R Core Team, R: A language and environment for statistical computing. 2019, R Foundation for Statistical Computing: Vienna, Austria. . 36. Price, A.L., et al., Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet, 2006. 38(8): p. 904-9. 37. de Leeuw, C.A., et al., MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol, 2015. 11(4): p. e1004219. 38. Shim, H., et al., A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS One, 2015. 10(4): p. e0120758. 39. Ward, L.D. and M. Kellis, HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res, 2012. 40(Database issue): p. D930-4. 40. Ward, L.D. and M. Kellis, HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res, 2016. 44(D1): p. D877-81. 41. Watanabe, K., et al., Functional mapping and annotation of genetic associations with FUMA. Nat Commun, 2017. 8(1): p. 1826. 42. Pruim, R.J., et al., LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics, 2010. 26(18): p. 2336-7. 43. Bulik-Sullivan, B., et al., An atlas of genetic correlations across human diseases and traits. Nat Genet, 2015. 47(11): p. 1236-41. 44. Nkeck, J.R., et al., Genetic analysis for rs2280205 (A>G) and rs2276961 (T>C) in SLC2A9 polymorphism for the susceptibility of gout in Cameroonians: a pilot study. BMC Res Notes, 2018. 11(1): p. 230. 45. Sun, X., et al., Serum uric acid levels are associated with polymorphisms in the SLC2A9, SF1, and GCKR genes in a Chinese population. Acta Pharmacol Sin, 2014. 35(11): p. 1421-7. 46. Kim, Y.S., et al., Genetic analysis of ABCG2 and SLC2A9 gene polymorphisms in gouty arthritis in a Korean population. Korean J Intern Med, 2015. 30(6): p. 913-20. 47. Giri, A.K., et al., Genome wide association study of uric acid in Indian population and interaction of identified variants with Type 2 diabetes. Sci Rep, 2016. 6: p. 21440. 48. Stiburkova, B., et al., Metabolic syndrome, alcohol consumption and genetic factors are associated with serum uric acid concentration. PLoS One, 2014. 9(5): p. e97646. 49. Matsuo, H., et al., Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet, 2008. 83(6): p. 744-51. 50. Woodward, O.M., et al., Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A, 2009. 106(25): p. 10338-42. 51. Zhou, D., et al., Functional polymorphisms of the ABCG2 gene are associated with gout disease in the Chinese Han male population. Int J Mol Sci, 2014. 15(5): p. 9149-59. 52. Merriman, T.R., An update on the genetic architecture of hyperuricemia and gout. Arthritis Res Ther, 2015. 17: p. 98. 53. Kottgen, A., et al., Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet, 2013. 45(2): p. 145-54. 54. Topless, R.K., et al., Association of SLC2A9 genotype with phenotypic variability of serum urate in pre-menopausal women. Front Genet, 2015. 6: p. 313. 55. Evangelou, E., et al., Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet, 2018. 50(10): p. 1412-1425. 56. Roselli, C., et al., Multi-ethnic genome-wide association study for atrial fibrillation. Nat Genet, 2018. 50(9): p. 1225-1233. 57. Matsuo, H., et al., Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes. Ann Rheum Dis, 2016. 75(4): p. 652-9. 58. Lee, J., et al., Genome-wide association analysis identifies multiple loci associated with kidney disease-related traits in Korean populations. PLoS One, 2018. 13(3): p. e0194044. 59. Kolz, M., et al., Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet, 2009. 5(6): p. e1000504. 60. Okada, Y., et al., Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat Genet, 2012. 44(8): p. 904-9. 61. Barral, S., et al., A Dopamine Receptor genetic variant enhances perceptual speed in cognitive healthy subjects. Alzheimers Dement (N Y), 2017. 3(2): p. 254-261. 62. Reitz, C., et al., Independent and epistatic effects of variants in VPS10-d receptors on Alzheimer disease risk and processing of the amyloid precursor protein (APP). Transl Psychiatry, 2013. 3(5): p. e256. 63. Comuzzie, A.G., et al., Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. PLoS One, 2012. 7(12): p. e51954. 64. Kaplan, R.C., et al., A genome-wide association study identifies novel loci associated with circulating IGF-I and IGFBP-3. Hum Mol Genet, 2011. 20(6): p. 1241-51. 65. Feldt-Rasmussen, B. and M. El Nahas, Potential role of growth factors with particular focus on growth hormone and insulin-like growth factor-1 in the management of chronic kidney disease. Semin Nephrol, 2009. 29(1): p. 50-8. 66. Brainstorm, C., et al., Analysis of shared heritability in common disorders of the brain. Science, 2018. 360(6395). 67. Huffman, J.E., et al., Modulation of genetic associations with serum urate levels by body-mass-index in humans. PLoS One, 2015. 10(3): p. e0119752. 68. Conen, D., et al., Prevalence of hyperuricemia and relation of serum uric acid with cardiovascular risk factors in a developing country. BMC Public Health, 2004. 4: p. 9. 69. Mason, J.E., R.D. Starke, and J.E. Van Kirk, Gamma-glutamyl transferase: a novel cardiovascular risk biomarker. Prev Cardiol, 2010. 13(1): p. 36-41. 70. Banderas, D.Z., et al., gamma-Glutamyl transferase: a marker of nonalcoholic fatty liver disease in patients with the metabolic syndrome. Eur J Gastroenterol Hepatol, 2012. 24(7): p. 805-10. 71. Ryu, S., et al., Serum uric acid levels predict incident nonalcoholic fatty liver disease in healthy Korean men. Metabolism, 2011. 60(6): p. 860-6. 72. Loomba, R., et al., Genetic covariance between gamma-glutamyl transpeptidase and fatty liver risk factors: role of beta2-adrenergic receptor genetic variation in twins. Gastroenterology, 2010. 139(3): p. 836-45, 845 e1. 73. Lim, J.S., et al., Is serum gamma-glutamyltransferase inversely associated with serum antioxidants as a marker of oxidative stress? Free Radic Biol Med, 2004. 37(7): p. 1018-23. 74. Lee, S.H., K.M. Kim, and K.N. Kim, Combined effect of serum gamma-glutamyltransferase and uric acid on incidence of diabetes mellitus: A longitudinal study. Medicine (Baltimore), 2017. 96(19): p. e6901. 75. Roughley, M.J., et al., Gout and risk of chronic kidney disease and nephrolithiasis: meta-analysis of observational studies. Arthritis Res Ther, 2015. 17: p. 90. 76. Kim, S., et al., Development of Nephrolithiasis in Asymptomatic Hyperuricemia: A Cohort Study. Am J Kidney Dis, 2017. 70(2): p. 173-181. 77. Ferraro, P.M. and G.C. Curhan, Serum Uric Acid and Risk of Kidney Stones. Am J Kidney Dis, 2017. 70(2): p. 158-159. 78. Duncan, L., et al., Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide Association Study of Anorexia Nervosa. Am J Psychiatry, 2017. 174(9): p. 850-858. 79. Hill, W.D., et al., Age-Dependent Pleiotropy Between General Cognitive Function and Major Psychiatric Disorders. Biol Psychiatry, 2016. 80(4): p. 266-273. 80. Cheng, L.S., et al., Genomewide scan for gout in taiwanese aborigines reveals linkage to chromosome 4q25. Am J Hum Genet, 2004. 75(3): p. 498-503. 81. Tu, H.P., et al., Monoamine oxidase A gene polymorphisms and enzyme activity associated with risk of gout in Taiwan aborigines. Hum Genet, 2010. 127(2): p. 223-9. 82. Ko, A.M., et al., ALPK1 genetic regulation and risk in relation to gout. Int J Epidemiol, 2013. 42(2): p. 466-74. 83. Chen, C.J., et al., ABCG2 contributes to the development of gout and hyperuricemia in a genome-wide association study. Sci Rep, 2018. 8(1): p. 3137. 84. Lee, M.G., et al., Integrative Genome-Wide Association Studies of eQTL and GWAS Data for Gout Disease Susceptibility. Sci Rep, 2019. 9(1): p. 4981. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78672 | - |
dc.description.abstract | 尿酸是嘌呤代謝後的最終產物,也是人體中重要的生化指標之一。高尿酸血症與代謝症候群及心血管疾病有正向關係,同時研究亦指出尿酸的抗氧化特性也可能是認知功能相關疾病的保護因子。尿酸濃度受到遺傳因子與飲食習慣所影響,然而飲食習慣僅造成短期尿酸濃度的小幅度升降,尿酸的遺傳度約為37-63%,遺傳因子決定人體尿酸的代謝平衡。遺傳變異與環境因素導致台灣高尿酸血症與痛風的盛行率高於世界各國,本研究旨在於台灣族群中偵測影響血清尿酸濃度的遺傳變異位點,並且探討尿酸與其他健康相關性狀的遺傳相關性,有助於瞭解調控尿酸代謝相關的基因及生理機制。
我們分析臺灣人體生物資料庫(Taiwan Biobank)11,300人的遺傳資訊,進行全基因組關聯性研究,使用線性回歸模型,校正年齡、性別及調整人口分層(在模型中納入十個主成分因子),檢驗單核甘酸變異(SNP)與尿酸濃度在加成基因模型下(Additive genetic model)的關聯性,更進一步使用條件分析(Conditional analysis)探究達顯著的基因位點與尿酸濃度的關聯性是否獨立。接著運用連鎖不平衡分數迴歸方法(Linkage disequilibrium score regression, LDSC),藉由計算尿酸與其他健康相關性狀的遺傳相關性(Genetic correlation)來探討尿酸與其他性狀的遺傳重疊性。 研究結果發現48個連鎖不平衡區塊(LD block)與尿酸濃度值有顯著關聯(P <5×10^(-8)),48個顯著位點(Index SNP)對應到7個基因:SORCS2、SLC2A9、WDR1、PKD2、ABCG2、SLC22A11與NRXN2。條件分析的結果指出SORCS2、SLC2A9、ABCG2上的位點與尿酸濃度有獨立的關聯性,SLC2A9、ABCG2與尿酸、痛風的關聯已在多個族群的研究中被指出,而SORCS2則是首次被發現與尿酸相關。 尿酸相關性狀與尿酸具有高度且顯著遺傳相關性,例如高尿酸血症 (rG=0.93)、痛風(rG=0.77)、腎結石(rG=-0.47),與肥胖指標、代謝性症候群及肝功能指標亦有顯著的遺傳相關性,包含:身體質量指數 (rG=0.32), 體重(rG=0.25)、體脂率(rG=0.29)、三酸甘油酯(rG=0.45)以及γ-谷氨醯轉肽酶 (rG=0.40),顯現有相當比例的遺傳因子得以共同解釋這些性狀的變異。 本研究探討影響台灣族群尿酸濃度的基因變異,重現SLC2A9、ABCG2基因與尿酸的關聯,新發現SORCS2基因在台灣族群中與尿酸的顯著相關,亦量化尿酸與其他健康相關性狀的遺傳重疊性,尿酸與其他性狀或正或負的遺傳相關性顯現尿酸在人體中的特殊定位,後續研究可進一步探討其背後的生物途徑與調控機制。 | zh_TW |
dc.description.abstract | Background
Uric acid (UA), the final product of purine metabolism, is one of the most important biomarkers in human bodies, associating with many health conditions positively or negatively. Genetic factor plays a key role in the concentration of uric acid levels in the blood that the heritability of uric acid level is estimated from 37-63%. Taiwan has the comparatively higher prevalence of hyperuricemia and gout around the world, indicating that there might be specific genetic and environmental determinants influencing uric acid levels in Taiwanese population. Understanding the genetic architecture behind UA and other health-related traits may help investigate the evidence of co-regulation or shared physiological pathways, provide useful etiological insights, and enhance the therapeutic strategies. This study aims to identify genetic determinants of uric acid and assess genetic correlations between uric acid and other health-related traits in Taiwanese population. Materials and Methods We conducted a genome-wide association study (GWAS) to identify UA-related genetic variants in the Taiwanese general population with 11,300 subjects from Taiwan Biobank. Linear models were constructed with sex, age and 10 principle components as covariates to test the association between uric acid and single genetic marker. Conditional analyses were performed to confirm the independent effect of markers. LD score regression was applied to compute the genetic correlations between uric acid and health-related traits. Results Forty-eight significantly associated with uric acid levels (P<5×10-8) SNPs were retained after clumping, tagging to seven genes including SORCS2, SLC2A9, WDR1, PKD2, ABCG2, SLC22A11 and NRXN2. There were considerable genetic correlations between UA and UA-related traits including hyperuricemia (rG=0.93), gout (rG=0.77), and kidney stone (rG=-0.47). Besides UA-related traits, we also found significant SNP-based genetic correlation between UA and anthropometric, metabolic and liver-function-related traits including BMI (rG=0.32), weight (rG=0.25), fat rate (rG=0.29) triglyceride (rG=0.45), and GAMMA-GT (rG=0.40). Conclusions We replicated two well-known gene regions SLC2A9 and ABCG2 and identified one genetic variant locating on a novel gene SORCS2 showing associations with uric acid in Taiwanese population. Also, we demonstrated the shared genetic architecture background between uric acid and other phenotypes. Our study emphasizes the special role of uric acid in human bodies under the genetic basis and sheds the light on the investigation strategies for biological etiology of uric acid. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:11:15Z (GMT). No. of bitstreams: 1 ntu-108-R06849021-1.pdf: 3037723 bytes, checksum: 59bb991b78f1c6e44287eab0db3b0c8d (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審訂書 i
致謝 ii 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF TABLES ix LIST OF FIGURES x LIST OF SUPPLEMENTS xi Chapter 1 Introduction 1 1.1 Homeostasis of uric acid in human bodies 1 1.2 High prevalence of hyperuricemia in Taiwan 2 1.3 Comorbidities in hyperuricemia patients 3 1.4 Antioxidant properties of uric acid 4 1.5 Factors influencing uric acid levels in blood 5 1.6 Aim of the current study 6 Chapter 2 Materials and Methods 7 2.1 Samples and data collection: Taiwan Biobank 7 2.2 Genotyping and imputation 9 2.3 Quality control process 10 2.3.1 Quality control for genotypic data 10 2.3.2 Quality control for phenotypic data 11 2.4 Genome-wide association analyses 12 2.5 Genetic correlation analyses: LD Score Regression 14 2.6 Statistical analysis 15 Chapter 3 Results 16 3.1 Demographic characteristics 16 3.2 Genome-wide association study of uric acid 17 3.3 Genetic correlation analyses: LD Score Regression 19 Chapter 4 Discussion 20 4.1 Identification of SNPs and genes associated with uric acid 20 4.2 Strong effect of SLC2A9 and ABCG2 gene on uric acid 22 4.3 Novel gene identified for uric acid levels: SORCS2 23 4.4 Positive genetic correlations among uric acid and anthropometric and metabolic traits 24 4.5 Genetic correlations between uric acid and GAMMA-GT 26 4.6 Negative genetic correlation between uric acid and kidney stones 27 4.7 Strengths and limitations 29 4.8 Conclusions 30 References 31 Tables and Figures 36 Supplements 52 | |
dc.language.iso | en | |
dc.title | 探討台灣族群尿酸的遺傳變異及其與健康相關性狀的遺傳重疊性 | zh_TW |
dc.title | Genome-wide Association Study of Serum Uric Acid Level and Genetic Overlap with Health-related Traits in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳為堅(Wei-Jen Chen),林菀俞(Wan-Yu Lin),李建璋(Chien-Chang Lee) | |
dc.subject.keyword | 尿酸,全基因組關聯性研究,臺灣人體生物資料庫,遺傳相關性,連鎖不平衡分數迴歸(LDSC), | zh_TW |
dc.subject.keyword | Uric acid,GWAS,Taiwan Biobank,Genetic correlation,Linkage disequilibrium score regression,LDSC, | en |
dc.relation.page | 55 | |
dc.identifier.doi | 10.6342/NTU201902665 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-07 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-R06849021-1.pdf 目前未授權公開取用 | 2.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。