Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78669
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉宏輝(Horng-Huei Liou)
dc.contributor.authorZhe-Wen Caien
dc.contributor.author蔡哲文zh_TW
dc.date.accessioned2021-07-11T15:11:04Z-
dc.date.available2024-08-28
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-08-07
dc.identifier.citationAbe, N., S. H. Borson, M. J. Gambello, F. Wang and V. Cavalli (2010). 'Mammalian target of rapamycin (mTOR) activation increases axonal growth capacity of injured peripheral nerves.' J Biol Chem 285(36): 28034-28043.
Bao, H., B. Asrican, W. Li, B. Gu, Z. Wen, S. A. Lim, I. Haniff, C. Ramakrishnan, K. Deisseroth, B. Philpot and J. Song (2017). 'Long-Range GABAergic Inputs Regulate Neural Stem Cell Quiescence and Control Adult Hippocampal Neurogenesis.' Cell Stem Cell 21(5): 604-617.e605.
Battaglia, D., D. Chieffo, R. Siracusano, C. Waure, C. Brogna, D. Ranalli, I. Contaldo, G. Tortorella, C. Dravet, E. Mercuri and F. Guzzetta (2013). 'Cognitive decline in Dravet syndrome: is there a cerebellar role?' Epilepsy Res 106(1-2): 211-221.
Battelli, C. and D. C. Cho (2011). 'mTOR inhibitors in renal cell carcinoma.' Therapy 8(4): 359-367.
Bender, A. C., R. P. Morse, R. C. Scott, G. L. Holmes and P. P. Lenck-Santini (2012). 'SCN1A mutations in Dravet syndrome: impact of interneuron dysfunction on neural networks and cognitive outcome.' Epilepsy Behav 23(3): 177-186.
Bockaert, J. and P. Marin (2015). 'mTOR in Brain Physiology and Pathologies.' 95(4): 1157-1187.
Brazel, C. Y., J. L. Nunez, Z. Yang and S. W. Levison (2005). 'Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone.' Neuroscience 131(1): 55-65.
Castaneda-Cabral, J. L., C. Beas-Zarate, L. L. Rocha-Arrieta, S. A. Orozco-Suarez, M. Alonso-Vanegas, R. Guevara-Guzman and M. E. Urena-Guerrero (2019). 'Increased protein expression of VEGF-A, VEGF-B, VEGF-C and their receptors in the temporal neocortex of pharmacoresistant temporal lobe epilepsy patients.' J Neuroimmunol 328: 68-72.
Cha, B. H., C. Akman, D. C. Silveira, X. Liu and G. L. Holmes (2004). 'Spontaneous recurrent seizure following status epilepticus enhances dentate gyrus neurogenesis.' Brain Dev 26(6): 394-397.
Chipaux, M., N. Villeneuve, P. Sabouraud, I. Desguerre, N. Boddaert, C. Depienne, C. Chiron, O. Dulac and R. Nabbout (2010). 'Unusual consequences of status epilepticus in Dravet syndrome.' Seizure 19(3): 190-194.
Cho, K. O., Z. R. Lybrand, N. Ito, R. Brulet, F. Tafacory, L. Zhang, L. Good, K. Ure, S. G. Kernie, S. G. Birnbaum, H. E. Scharfman, A. J. Eisch and J. Hsieh (2015). 'Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline.' Nat Commun 6: 6606.
Citraro, R., A. Leo, A. Constanti, E. Russo and G. De Sarro (2016). 'mTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis.' Pharmacol Res 107: 333-343.
Deblon, N., L. Bourgoin, C. Veyrat-Durebex, M. Peyrou, M. Vinciguerra, A. Caillon, C. Maeder, M. Fournier, X. Montet, F. Rohner-Jeanrenaud and M. Foti (2012). 'Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats.' Br J Pharmacol 165(7): 2325-2340.
Dravet, C. and H. Oguni (2013). 'Dravet syndrome (severe myoclonic epilepsy in infancy).' Handb Clin Neurol 111: 627-633.
Eddy, C. M., H. E. Rickards and A. E. Cavanna (2011). 'The cognitive impact of antiepileptic drugs.' Ther Adv Neurol Disord 4(6): 385-407.
Elfving, B. and G. Wegener (2012). 'Electroconvulsive seizures stimulate the vegf pathway via mTORC1.' 66(4): 340-345.
Escayg, A. and A. L. Goldin (2010). 'Sodium channel SCN1A and epilepsy: mutations and mechanisms.' Epilepsia 51(9): 1650-1658.
Feast, A., L. Martinian, J. Liu, C. B. Catarino, M. Thom and S. M. Sisodiya (2012). 'Investigation of hypoxia-inducible factor-1alpha in hippocampal sclerosis: a postmortem study.' Epilepsia 53(8): 1349-1359.
Gao, L., A. R. Lyons and L. J. Greenfield, Jr. (2004). 'Hypoxia alters GABAA receptor function and subunit expression in NT2-N neurons.' Neuropharmacology 46(3): 318-330.
Gataullina, S. and O. Dulac (2017). 'From genotype to phenotype in Dravet disease.' Seizure 44: 58-64.
Grasselli, C., D. Ferrari, C. Zalfa, M. Soncini, G. Mazzoccoli, F. A. Facchini, L. Marongiu, F. Granucci, M. Copetti, A. L. Vescovi, F. Peri and L. De Filippis (2018). 'Toll-like receptor 4 modulation influences human neural stem cell proliferation and differentiation.' Cell Death Dis 9(3): 280.
Griffin, A., K. R. Hamling, S. Hong, M. Anvar, L. P. Lee and S. C. Baraban (2018). 'Preclinical Animal Models for Dravet Syndrome: Seizure Phenotypes, Comorbidities and Drug Screening.' Front Pharmacol 9: 573.
Han, W., X. Song, R. He, T. Li, L. Cheng, L. Xie, H. Chen and L. Jiang (2017). 'VEGF regulates hippocampal neurogenesis and reverses cognitive deficits in immature rats after status epilepticus through the VEGF R2 signaling pathway.' Epilepsy Behav 68: 159-167.
Henske, E. P., S. Jozwiak, J. C. Kingswood, J. R. Sampson and E. A. Thiele (2016). 'Tuberous sclerosis complex.' Nat Rev Dis Primers 2: 16035.
Houghton, P. J. (2010). 'Everolimus.' Clin Cancer Res 16(5): 1368-1372.
Jansson, L. C. and K. E. Akerman (2014). 'The role of glutamate and its receptors in the proliferation, migration, differentiation and survival of neural progenitor cells.' J Neural Transm (Vienna) 121(8): 819-836.
Jessberger, S. and J. M. Parent (2015). 'Epilepsy and Adult Neurogenesis.' Cold Spring Harb Perspect Biol 7(12).
Jin, K., Y. Zhu, Y. Sun, X. O. Mao, L. Xie and D. A. Greenberg (2002). 'Vascular endothelial growth factor (VEGF) stimulates neurogenesis <em>in vitro</em> and <em>in vivo</em>.' 99(18): 11946-11950.
Joo, J. Y., B. W. Kim, J. S. Lee, J. Y. Park, S. Kim, Y. J. Yun, S. H. Lee, S. H. Lee, H. Rhim and H. Son (2007). 'Activation of NMDA receptors increases proliferation and differentiation of hippocampal neural progenitor cells.' J Cell Sci 120(Pt 8): 1358-1370.
Kaplan, J. S., N. Stella, W. A. Catterall and R. E. Westenbroek (2017). 'Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome.' Proc Natl Acad Sci U S A 114(42): 11229-11234.
Kearney, J. (2013). 'Sudden unexpected death in dravet syndrome.' Epilepsy Curr 13(6): 264-265.
Klawitter, J., B. Nashan and U. Christians (2015). 'Everolimus and sirolimus in transplantation-related but different.' Expert Opin Drug Saf 14(7): 1055-1070.
Koyama, R. and Y. Ikegaya (2004). 'Mossy fiber sprouting as a potential therapeutic target for epilepsy.' Curr Neurovasc Res 1(1): 3-10.
Lado, F. A. and S. L. Moshé (2008). 'How do seizures stop?' Epilepsia 49(10): 1651-1664.
Leibinger, M., A. Andreadaki and D. Fischer (2012). 'Role of mTOR in neuroprotection and axon regeneration after inflammatory stimulation.' Neurobiol Dis 46(2): 314-324.
Li, B. M., X. R. Liu, Y. H. Yi, Y. H. Deng, T. Su, X. Zou and W. P. Liao (2011). 'Autism in Dravet syndrome: prevalence, features, and relationship to the clinical characteristics of epilepsy and mental retardation.' Epilepsy Behav 21(3): 291-295.
LiCausi, F. and N. W. Hartman (2018). 'Role of mTOR Complexes in Neurogenesis.' Int J Mol Sci 19(5).
Licht, T., G. Rothe, T. Kreisel, B. Wolf, O. Benny, A. G. Rooney, C. ffrench-Constant, G. Enikolopov and E. Keshet (2016). 'VEGF preconditioning leads to stem cell remodeling and attenuates age-related decay of adult hippocampal neurogenesis.' 113(48): E7828-E7836.
Linke, M., S. D. Fritsch, N. Sukhbaatar, M. Hengstschläger and T. Weichhart (2017). 'mTORC1 and mTORC2 as regulators of cell metabolism in immunity.' FEBS Lett 591(19): 3089-3103.
Liu, L., Y. Luo, L. Chen, T. Shen, B. Xu, W. Chen, H. Zhou, X. Han and S. Huang (2010). 'Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity.' J Biol Chem 285(49): 38362-38373.
Lu, Y. C., W. C. Yeh and P. S. Ohashi (2008). 'LPS/TLR4 signal transduction pathway.' Cytokine 42(2): 145-151.
Luikart, B. W., E. Schnell, E. K. Washburn, A. L. Bensen, K. R. Tovar and G. L. Westbrook (2011). 'Pten knockdown in vivo increases excitatory drive onto dentate granule cells.' J Neurosci 31(11): 4345-4354.
Mackenzie, F. and C. Ruhrberg (2012). 'Diverse roles for VEGF-A in the nervous system.' Development 139(8): 1371-1380.
Marini, C., I. E. Scheffer, R. Nabbout, A. Suls, P. De Jonghe, F. Zara and R. Guerrini (2011). 'The genetics of Dravet syndrome.' Epilepsia 52 Suppl 2: 24-29.
Meng, X. F., J. T. Yu, J. H. Song, S. Chi and L. Tan (2013). 'Role of the mTOR signaling pathway in epilepsy.' J Neurol Sci 332(1-2): 4-15.
Miller, S. M., S. M. Sullivan, Z. Ireland, K. K. Chand, P. B. Colditz and S. T. Bjorkman (2016). 'Neonatal seizures are associated with redistribution and loss of GABAA α-subunits in the hypoxic-ischaemic pig.' 139(3): 471-484.
Na, X., G. Wu, C. K. Ryan, S. R. Schoen, P. A. di'Santagnese and E. M. Messing (2003). 'Overproduction of vascular endothelial growth factor related to von Hippel-Lindau tumor suppressor gene mutations and hypoxia-inducible factor-1 alpha expression in renal cell carcinomas.' J Urol 170(2 Pt 1): 588-592.
Neuberger, E. J., B. Swietek, L. Corrubia, A. Prasanna and V. Santhakumar (2017). 'Enhanced Dentate Neurogenesis after Brain Injury Undermines Long-Term Neurogenic Potential and Promotes Seizure Susceptibility.' Stem Cell Reports 9(3): 972-984.
Nguyen, L. H., T. Mahadeo and A. Bordey (2019). 'mTOR Hyperactivity Levels Influence the Severity of Epilepsy and Associated Neuropathology in an Experimental Model of Tuberous Sclerosis Complex and Focal Cortical Dysplasia.' J Neurosci 39(14): 2762-2773.
Oakley, J. C., A. R. Cho, C. S. Cheah, T. Scheuer and W. A. Catterall (2013). 'Synergistic GABA-enhancing therapy against seizures in a mouse model of Dravet syndrome.' J Pharmacol Exp Ther 345(2): 215-224.
Otero, J. J., W. Fu, L. Kan, A. E. Cuadra and J. A. Kessler (2004). 'Beta-catenin signaling is required for neural differentiation of embryonic stem cells.' Development 131(15): 3545-3557.
Papazian, I., V. Kyrargyri, M. Evangelidou, A. Voulgari-Kokota and L. Probert (2018). 'Mesenchymal Stem Cell Protection of Neurons against Glutamate Excitotoxicity Involves Reduction of NMDA-Triggered Calcium Responses and Surface GluR1, and Is Partly Mediated by TNF.' Int J Mol Sci 19(3).
Parent, J. M. (2002). 'The role of seizure-induced neurogenesis in epileptogenesis and brain repair.' Epilepsy Res 50(1-2): 179-189.
Parent, J. M., T. W. Yu, R. T. Leibowitz, D. H. Geschwind, R. S. Sloviter and D. H. Lowenstein (1997). 'Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus.' J Neurosci 17(10): 3727-3738.
Park, S. P. and S. H. Kwon (2008). 'Cognitive effects of antiepileptic drugs.' J Clin Neurol 4(3): 99-106.
Qi, C., J. Zhang, X. Chen, J. Wan, J. Wang, P. Zhang and Y. Liu (2017). 'Hypoxia stimulates neural stem cell proliferation by increasing HIF‑1α expression and activating Wnt/β-catenin signaling.' Cell Mol Biol (Noisy-le-grand) 63(7): 12-19.
Quadrato, G., M. Y. Elnaggar and S. Di Giovanni (2014). 'Adult neurogenesis in brain repair: cellular plasticity vs. cellular replacement.' Front Neurosci 8: 17.
Rakhade, S. N. and F. E. Jensen (2009). 'Epileptogenesis in the immature brain: emerging mechanisms.' Nat Rev Neurol 5(7): 380-391.
Randle, S. C. (2017). 'Tuberous Sclerosis Complex: A Review.' Pediatr Ann 46(4): e166-e171.
Roitbak, T., Z. Surviladze and L. A. Cunningham (2011). 'Continuous expression of HIF-1alpha in neural stem/progenitor cells.' Cell Mol Neurobiol 31(1): 119-133.
Rolls, A., R. Shechter, A. London, Y. Ziv, A. Ronen, R. Levy and M. Schwartz (2007). 'Toll-like receptors modulate adult hippocampal neurogenesis.' Nat Cell Biol 9(9): 1081-1088.
Russo, E., A. Leo, R. Crupi, R. Aiello, P. Lippiello, R. Spiga, S. Chimirri, R. Citraro, S. Cuzzocrea, A. Constanti and G. De Sarro (2016). 'Everolimus improves memory and learning while worsening depressive- and anxiety-like behavior in an animal model of depression.' J Psychiatr Res 78: 1-10.
Ryskalin, L., G. Lazzeri, M. Flaibani, F. Biagioni, S. Gambardella, A. Frati and F. Fornai (2017). 'mTOR-Dependent Cell Proliferation in the Brain.' Biomed Res Int 2017: 7082696.
Saxton, R. A. and D. M. Sabatini (2017). 'mTOR Signaling in Growth, Metabolism, and Disease.' Cell 168(6): 960-976.
Schwartz-Bloom, R. D. and R. Sah (2001). 'γ-Aminobutyric acidA neurotransmission and cerebral ischemia.' 77(2): 353-371.
Segi-Nishida, E., J. L. Warner-Schmidt and R. S. Duman (2008). 'Electroconvulsive seizure and VEGF increase the proliferation of neural stem-like cells in rat hippocampus.' 105(32): 11352-11357.
Selten, M., H. van Bokhoven and N. Nadif Kasri (2018). 'Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders.' F1000Res 7: 23.
Shi, X., W. He, S. Guo, B. Zhang, S. Ren, K. Liu, T. Sun and J. Cui (2019). 'RNA-seq Analysis of the SCN1A-KO Model based on CRISPR/Cas9 Genome Editing Technology.' Neuroscience 398: 1-11.
Singh, P. and S. Subbian (2018). 'Harnessing the mTOR Pathway for Tuberculosis Treatment.' Front Microbiol 9: 70.
Slipczuk, L., P. Bekinschtein, C. Katche, M. Cammarota, I. Izquierdo and J. H. Medina (2009). 'BDNF activates mTOR to regulate GluR1 expression required for memory formation.' PLoS One 4(6): e6007.
Song, J., J. Sun, J. Moss, Z. Wen, G. J. Sun, D. Hsu, C. Zhong, H. Davoudi, K. M. Christian, N. Toni, G. L. Ming and H. Song (2013). 'Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus.' Nat Neurosci 16(12): 1728-1730.
Sutula, T. (2002). 'Seizure-Induced Axonal Sprouting: Assessing Connections Between Injury, Local Circuits, and Epileptogenesis.' Epilepsy Curr 2(3): 86-91.
Swaminathan, A., R. Hassan-Abdi, S. Renault, A. Siekierska, R. Riche, M. Liao, P. A. M. de Witte, C. Yanicostas, N. Soussi-Yanicostas, P. Drapeau and E. Samarut (2018). 'Non-canonical mTOR-Independent Role of DEPDC5 in Regulating GABAergic Network Development.' Curr Biol 28(12): 1924-1937.e1925.
Tanimoto, K., Y. Makino, T. Pereira and L. Poellinger (2000). 'Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein.' Embo j 19(16): 4298-4309.
Tsai, M. S., M. L. Lee, C. Y. Chang, H. H. Fan, I. S. Yu, Y. T. Chen, J. Y. You, C. Y. Chen, F. C. Chang, J. H. Hsiao, O. Khorkova, H. H. Liou, Y. Yanagawa, L. J. Lee and S. W. Lin (2015). 'Functional and structural deficits of the dentate gyrus network coincide with emerging spontaneous seizures in an Scn1a mutant Dravet Syndrome model during development.' Neurobiol Dis 77: 35-48.
Vaure, C. and Y. Liu (2014). 'A comparative review of toll-like receptor 4 expression and functionality in different animal species.' Front Immunol 5: 316.
Warner, T. A., Z. Liu, R. L. Macdonald and J. Q. Kang (2017). 'Heat induced temperature dysregulation and seizures in Dravet Syndrome/GEFS+ Gabrg2(+/Q390X) mice.' Epilepsy Res 134: 1-8.
Weston, M. C., H. Chen and J. W. Swann (2012). 'Multiple roles for mammalian target of rapamycin signaling in both glutamatergic and GABAergic synaptic transmission.' J Neurosci 32(33): 11441-11452.
Wirrell, E. C. (2016). 'Treatment of Dravet Syndrome.' Can J Neurol Sci 43 Suppl 3: S13-18.
Wirrell, E. C., L. Laux, E. Donner, N. Jette, K. Knupp, M. A. Meskis, I. Miller, J. Sullivan, M. Welborn and A. T. Berg (2017). 'Optimizing the Diagnosis and Management of Dravet Syndrome: Recommendations From a North American Consensus Panel.' Pediatr Neurol 68: 18-34.e13.
Yang, M. T., Y. C. Lin, W. H. Ho, C. L. Liu and W. T. Lee (2017). 'Everolimus is better than rapamycin in attenuating neuroinflammation in kainic acid-induced seizures.' J Neuroinflammation 14(1): 15.
Zhang, Y., F. Ji, G. Wang, D. He, L. Yang and M. Zhang (2018). 'BDNF Activates mTOR to Upregulate NR2B Expression in the Rostral Anterior Cingulate Cortex Required for Inflammatory Pain-Related Aversion in Rats.' Neurochem Res 43(3): 681-691.
Zhao, J. P. and A. Yoshii (2019). 'Hyperexcitability of the local cortical circuit in mouse models of tuberous sclerosis complex.' Mol Brain 12(1): 6.
Zupanc, G. K. and R. F. Sirbulescu (2011). 'Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish.' Eur J Neurosci 34(6): 917-929.
徐瑞鴻 (2015). Scn1a基因突變 (Dravet症候群) 調控神經幹細胞之增生與分化. 碩士, 國立臺灣大學.
許筠 (2016). 細胞週期在SCN1A突變中對於神經幹細胞發育之調控角色研究. 碩士, 國立臺灣大學.
陳恩莉 (2018). Scn1a基因缺陷影響微膠細胞的功能與活化. 碩士, 國立臺灣大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78669-
dc.description.abstractDravet症候群是一種頑固型的癲癇疾病,80%以上的病患都是由於SCN1A基因發生突變而致病的;SCN1A編碼電壓敏感型鈉離子通道Nav1.1的α次單元,Nav1.1因基因突變而喪失功能會導致抑制型的神經元減少GABA的釋出,使得興奮型的神經元過度興奮造成癲癇的症狀;除了明瞭GABA的釋出減少可能是致病的原因之外,目前對於Dravet症候群之發病機制的了解還很薄弱。在我們實驗室過去的研究當中發現Scn1a+/-小鼠海馬迴的神經新生會不正常增加,且Scn1a+/-神經幹細胞有偏向增生及分化的趨勢;不正常增加的神經新生被認為會改變腦部結構造成自發性的重覆癲癇,因此我們推測除了GABA的釋出減少之外,不正常增加的神經新生也是造成Dravet症候群的頑固型癲癇之原因。如果能找到一個分子標的能同時調控神經元的興奮性與神經新生,再以適合的藥物控制,可能就會對Dravet症候群的癲癇症狀有良好的控制效果。哺乳動物雷帕黴素標靶蛋白(mTOR)已經被証實與腦部結構改變及癲癇的形成相關,且其抑制劑能夠降低興奮型神經元釋出榖胺酸(glutamate),因此在本篇研究中,我們希望藉由測試mTOR抑制劑everolimus能否改善Scn1a+/-小鼠的癲癇症狀以及能否改善Scn1a+/-神經幹細胞偏向增生及分化的特性來評估everolimus治療Dravet症候群的潛力。我們觀察到短期給予everolimus確實能改善Scn1a+/-小鼠在高溫下的癲癇易感性,且在細胞實驗中everolimus能有效抑制Scn1a+/-神經幹的增生及分化。為了進一步了解everolimus抑制神經幹細胞增生及分化的機制,我們測試everolimus能否降低神經幹細胞中與神經新生相關的基因之表現量,結果顯示Scn1a+/-神經幹細胞之中的mTOR, Hif-1α以及Vegf-a有不正常增加的趨勢,而everolimus則能轉扭這些不正常的增加。以上實驗結果顯示everolimus能改善Scn1a+/-小鼠的癲癇症狀也能改善Scn1a+/-神經幹細胞偏向增生及分化的特性,everolimus對於治療Dravet症候群的是有潛力的。zh_TW
dc.description.abstractDravet syndrome is an epilepsy disorder results from a heterozygous loss-of-function mutation in SCN1A which encodes the α subunit of the voltage-gated sodium channel Nav1.1. The dysfunction of Nav1.1 in GABAergic inhibitory neurons in Dravet syndrome decreases the release of GABA and then causes excitatory neurons hyperexcitability. However, the pathogenesis of Dravet syndrome is still unclear. In our previous studies, we demonstrated that the dysfunction of Nav1.1 in neural stem cells (NSCs) significantly enhances the cellular proliferation and neural lineage differentiation. Abnormal neurogenesis is proposed to contribute to epileptogenesis and cause spontaneous recurrent seizures. We, therefore, hypothesize that the intractable epilepsy in Dravet syndrome may be caused not only by a decreased GABA-mediated inhibition but also by enhanced abnormal neurogenesis. To ameliorate seizures in Dravet syndrome, it is necessary to find a target which is involved in regulating neuron excitability and neurogenesis. The mammalian target of rapamycin (mTOR)-mediated pathway has recently emerged as a critical regulator in epileptogenesis. Moreover, the mTOR inhibitor has been shown to decrease synaptic transmission in glutamatergic neurons. In this study, to evaluate the potential effect of mTOR inhibitor, everolimus, in ameliorating intractable epilepsy in Dravet syndrome. We first examined the anticonvulsant ability of everolimus in Scn1a+/- mice. In addition, we also investigated the effect of everolimus in NSCs obtained from Scn1a+/- mouse brain. Furthermore, we attempte to uncover the mechanism of mTOR signaling in neurogenesis in Dravet syndrome. Our results indicate that the everolimus remarkably attenuates seizure susceptibility in Scn1a+/- mice. Moreover, everolimus inhibits proliferation and differentiation in Scn1a+/- NSCs. We also obtained the abnormal increasing expression level of mTOR, Hif-1α and Vegf-a which related to epileptogenesis in Scn1a+/- NSCs, and these abnormal increasing levels were reversed by everolimus. These results suggest that the everolimus as a potential candidate treatment drugs for therapy Dravet syndrome.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:11:04Z (GMT). No. of bitstreams: 1
ntu-108-R06443020-1.pdf: 5181644 bytes, checksum: c245b50e941507168563d0860122d4df (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘要 III
Abstract IV
圖目錄 VI
縮寫表 VIII
第一章 緒論(Introduction) 1
第一節 Dravet症候群與其成因 1
第二節 Dravet症候群的小鼠模型 2
第三節 神經新生與epilpeptogenesis的關聯 3
第四節 mTOR pathway在癲癇中扮演的角色 5
第五節 可能對癲癇有影響的mTOR pathway下游訊息傳遞路徑 7
第六節 研究動機與目的 9
第二章 實驗材料與方法(Materials and methods) 11
第一節 實驗動物 11
第二節 高溫誘導癲癇行為實驗 11
第三節 冷凍切片與組織染色 12
第四節 神經幹細胞增生培養 12
第五節 神經幹細胞分化培養與細胞染色 14
第六節 即時聚合酶鏈鎖反應(Quantitative real time polymerase chain reaction;qPCR) 15
第七節 統計分析 15
第三章 結果(Result) 16
第一節 Everolimus改善Scn1a+/-小鼠的癲癇易感性 16
第二節 Everolimus抑制Scn1a+/-神經幹細胞增生 19
第三節 Everolimus抑制Scn1a+/-神經幹細胞分化為神經元 21
第四節 Everolimus抑制mTOR pathway下游與神經新生相關的基因表現 23
第四章 討論(Discussion) 28
第一節 總述 28
第二節 Everolimus抑制神經元興奮性並改善Scn1a+/-小鼠的癲癇易感性 29
第三節 mTOR pathway與GABA在神經新生的角色 31
第四節 mTOR pathway藉由多種路徑調控神經新生 33
第五節 未來展望 36
第五章 圖表(Figure and table) 38
參考文獻(Reference) 64
表一 免疫組織與細胞染色使用之抗體 71
表二 即時聚合酶鏈鎖反應(qPCR)使用之primer 71
dc.language.isozh-TW
dc.subjectmTORzh_TW
dc.subjectDravet症候群zh_TW
dc.subject癲癇zh_TW
dc.subjectSCN1Azh_TW
dc.subject神經幹細胞zh_TW
dc.subject神經新生zh_TW
dc.subjectmTORen
dc.subjectSCN1Aen
dc.subjectDravet syndromeen
dc.subjectepilepsyen
dc.subjectneurogenesisen
dc.subjectneural stem cellen
dc.titleDravet症侯群小鼠之癲癇易感性及癲癇形成之研究zh_TW
dc.titleStudy of the mechanism in seizure susceptibility and epileptogenesis in Dravet syndrome miceen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee符文美(Wen-Mei Fu),林琬琬(Wan-Wan Lin)
dc.subject.keywordDravet症候群,癲癇,SCN1A,神經幹細胞,神經新生,mTOR,zh_TW
dc.subject.keywordDravet syndrome,epilepsy,SCN1A,neural stem cell,neurogenesis,mTOR,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201902753
dc.rights.note有償授權
dc.date.accepted2019-08-07
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
dc.date.embargo-lift2024-08-28-
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-108-R06443020-1.pdf
  未授權公開取用
5.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved