Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78645
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊燿州zh_TW
dc.contributor.advisorYao-Jae Yangen
dc.contributor.author羅劭翔zh_TW
dc.contributor.authorShao-Hsiang Loen
dc.date.accessioned2021-07-11T15:09:29Z-
dc.date.available2024-07-31-
dc.date.copyright2019-08-23-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] World Health Organization, "A global brief on hypertension: silent killer, global public health crisis: World Health Day 2013," World Health Organization2013.
[2] World Health Organization and International Society of Hypertension Writing Group, "2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension," Journal of Hypertension, vol. 21, no. 11, pp. 1983-1992, 2003.
[3] Z. Xu, J. Liu, X. Chen, Y. Wang, and Z. Zhao, "Continuous blood pressure estimation based on multiple parameters from eletrocardiogram and photoplethysmogram by Back-propagation neural network," Computers in Industry, vol. 89, pp. 50-59, 2017.
[4] P. K. Whelton and R. Carey, "The 2017 clinical practice guideline for high blood pressure," Jama, vol. 318, no. 21, pp. 2073-2074, 2017.
[5] E. Reichman, Emergency Medicine Procedures. New York: McGraw Hill, 2013.
[6] M. Ward and J. Langton, "Blood pressure measurement," Continuing Education in Anaesthesia Critical Care & Pain, vol. 7, no. 4, pp. 122-126, 2007.
[7] W. A. Littler and B.Komsuoglu, "Which is the most accurate method of measuring blood pressure?," American Heart Journal, vol. 117, no. 3, pp. 723-728, 1989.
[8] J. M. Oropello, S. M. Pastores, and V. Kvetan, Critical Care. New York: McGraw-Hill, 2016.
[9] L. Peter, N. Noury, and M. Cerny, "A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?," Innovation and Research in Biomedical Engineering, vol. 35, no. 5, pp. 271-282, 2014.
[10] Y. L. Shevchenko and J. Tsitlik, "90th Anniversary of the development by Nikolai S. Korotkoff of the auscultatory method of measuring blood pressure," Circulation, vol. 94, no. 2, pp. 116-118, 1996.
[11] L. A. Geddes, Handbook of Blood Pressure Measurement. New York: Springer-Verlag, 1991.
[12] E. Balestrieri, S. Rapuano, and measurement, "Instruments and methods for calibration of oscillometric blood pressure measurement devices," IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 9, pp. 2391-2404, 2010.
[13] L. Geddes, M. Voelz, C. Combs, D. Reiner, and C. Babbs, "Characterization of the oscillometric method for measuring indirect blood pressure," Annals of Biomedical Engineering, vol. 10, no. 6, pp. 271-280, 1982.
[14] J. C. T. d. B. Moraes, M. Cerulli, and P. Ng, "A strategy for determination of systolic, mean and diastolic blood pressures from oscillometric pulse profiles," in proceeding of Computers in Cardiology 2000, Cambridge, MA, Sep 24-27 2000.
[15] J. Park, Y. Lee, J. Hong, M. Ha, Y.-D. Jung, H. Lim, S. Y. Kim, and H. Ko, "Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins," ACS Nano, vol. 8, no. 5, pp. 4689-4697, 2014.
[16] Y. Li, Y. Li, M. Su, W. Li, Y. Li, H. Li, X. Qian, X. Zhang, F. Li, and Y. Song, "Electronic textile by dyeing method for multiresolution physical kineses monitoring," Advanced Electronic Materials, vol. 3, no. 10, p. 1700253, 2017.
[17] G. Gautschi, Piezoelectric Sensorics. New York: Springer-Verlag, 2001.
[18] W. Wu, X. Wen, and Z. L. Wang, "Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging," Science, vol. 340, no. 6135, pp. 952-957, 2013.
[19] Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, and J.-B. Xu, "Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures," ACS Nano, vol. 11, no. 5, pp. 4507-4513, 2017.
[20] F.-R. Fan, Z.-Q. Tian, and Z. L. Wang, "Flexible triboelectric generator," Nano Energy, vol. 1, no. 2, pp. 328-334, 2012.
[21] F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z. L. Wang, "Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films," Nano Letters, vol. 12, no. 6, pp. 3109-3114, 2012.
[22] T. Li, J. Zou, F. Xing, M. Zhang, X. Cao, N. Wang, and Z. L. Wang, "From dual-mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design," ACS Nano, vol. 11, no. 4, pp. 3950-3956, 2017.
[23] D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, "Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes," Nature Nanotechnology, vol. 6, no. 12, p. 788, 2011.
[24] T. Li, H. Luo, L. Qin, X. Wang, Z. Xiong, H. Ding, Y. Gu, Z. Liu, and T. Zhang, "Flexible capacitive tactile sensor based on micropatterned dielectric layer," Small, vol. 12, no. 36, pp. 5042-5048, 2016.
[25] Y. Wan, Z. Qiu, Y. Hong, Y. Wang, J. Zhang, Q. Liu, Z. Wu, and C. F. Guo, "A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High-Aspect-Ratio Microstructures," Advanced Electronic Materials, vol. 4, no. 4, p. 1700586, 2018.
[26] M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. Bao, "25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress," Advanced Materials, vol. 25, no. 42, pp. 5997-6038, 2013.
[27] B. Nie, R. Li, J. Cao, J. D. Brandt, and T. Pan, "Flexible transparent iontronic film for interfacial capacitive pressure sensing," Advanced Materials, vol. 27, no. 39, pp. 6055-6062, 2015.
[28] X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, and Z. L. Wang, "Recent progress in electronic skin," Advanced Science, vol. 2, no. 10, p. 1500169, 2015.
[29] O. Akar, T. Akin, and K. Najafi, "A wireless batch sealed absolute capacitive pressure sensor," Sensors and Actuators A: Physical, vol. 95, no. 1, pp. 29-38, 2001.
[30] Q.-A. Huang, L. Dong, and L.-F. Wang, "LC passive wireless sensors toward a wireless sensing platform: status, prospects, and challenges," Journal of Microelectromechanical Systems, vol. 25, no. 5, pp. 822-841, 2016.
[31] R. Nopper, R. Niekrawietz, and L. Reindl, "Wireless readout of passive LC sensors," IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 9, pp. 2450-2457, 2009.
[32] Q. Tan, F. Lu, Y. Ji, H. Wang, W. Zhang, and J. Xiong, "LC temperature-pressure sensor based on HTCC with temperature compensation algorithm for extreme 1100° C applications," Sensors and Actuators A: Physical, vol. 280, pp. 437-446, 2018.
[33] M.-Z. Xie, L.-F. Wang, L. Dong, W.-J. Deng, and Q.-A. Huang, "Low Cost Paper-Based LC Wireless Humidity Sensors and Distance-Insensitive Readout System," IEEE Sensors Journal, vol. 19, no. 12, pp. 4717-4725, 2019.
[34] J. Park, J.-K. Kim, D.-S. Kim, A. Shanmugasundaram, S. A. Park, S. Kang, S.-H. Kim, M. H. Jeong, and D.-W. Lee, "Wireless pressure sensor integrated with a 3D printed polymer stent for smart health monitoring," Sensors and Actuators B: Chemical, vol. 280, pp. 201-209, 2019.
[35] M. Luo, A. W. Martinez, C. Song, F. Herrault, and M. G. Allen, "A microfabricated wireless RF pressure sensor made completely of biodegradable materials," Journal of Microelectromechanical Systems, vol. 23, no. 1, pp. 4-13, 2013.
[36] X. Chen, B. Assadsangabi, D. Brox, Y. Hsiang, and K. Takahata, "A pressure-sensing smart stent compatible with angioplasty procedure and its in vivo testing," in proceeding of 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, Jan 22-26, 2017.
[37] L. Y. Chen, B. C.-K. Tee, A. L. Chortos, G. Schwartz, V. Tse, D. J. Lipomi, H.-S. P. Wong, M. V. McConnell, and Z. Bao, "Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care," Nature Communications, vol. 5, p. 5028, 2014.
[38] G. Parati, J. E. Ochoa, C. Lombardi, and G. Bilo, "Assessment and management of blood-pressure variability," Nature Reviews Cardiology, vol. 10, no. 3, p. 143, 2013.
[39] N. Xue, S. Chang, and J. Lee, "A SU-8-Based Microfabricated Implantable Inductively Coupled Passive RF Wireless Intraocular Pressure Sensor," Journal of Microelectromechanical Systems, vol. 21, no. 6, pp. 1338-1346, 2012.
[40] R. Nopper, R. Niekrawietz, and L. Reindl, "Wireless Readout of Passive LC Sensors," IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 9, pp. 2450-2457, 2010.
[41] S.-Y. Wu and W. Hsu, "Design and characterization of LC strain sensors with novel inductor for sensitivity enhancement," Smart Materials and Structures, vol. 22, no. 10, p. 105015, 2013.
[42] M. Ma, Z. Liu, W. Shan, Y. Li, K. Kalantar-zadeh, and W. Wlodarski, "Passive wireless gas sensors based on the LTCC technique," in proceeding of 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Suzhou, China, July 1-3, 2015.
[43] S. Bhadra, D. J. Thomson, and G. E. Bridges, "Monitoring acidic and basic volatile concentration using a pH-electrode based wireless passive sensor," Sensors and Actuators B: Chemical, vol. 209, pp. 803-810, 2015.
[44] E. Y. Chow, Y. Ouyang, B. Beier, W. J. Chappell, and P. P. Irazoqui, "Evaluation of Cardiovascular Stents as Antennas for Implantable Wireless Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 10, pp. 2523-2532, 2009.
[45] A. Agarwal, A. Shapero, D. Rodger, M. Humayun, Y. Tai, and A. Emami, "A wireless, low-drift, implantable intraocular pressure sensor with parylene-on-oil encapsulation," in proceeding of 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, April 8-11, 2018.
[46] A. Baldi, W. Choi, and B. Ziaie, "A self-resonant frequency-modulated micromachined passive pressure transensor," IEEE Sensors Journal, vol. 3, no. 6, pp. 728-733, 2003.
[47] J. Park, J.-K. Kim, J. S. Patil, J.-K. Park, S. Park, and D.-W. Lee, "A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications," Sensors, vol. 16, no. 6, 2016.
[48] M. A. Fonseca, M. G. Allen, J. Kroh, and J. White, "Flexible wireless passive pressure sensors for biomedical applications," in proceeding of 12th Solid-State Sensors, Actuators, and Microsystems Workshop, Hilton Head Island, South Carolina, June 4-8, 2006.
[49] P. Chen, S. Saati, R. Varma, M. S. Humayun, and Y. Tai, "Wireless Intraocular Pressure Sensing Using Microfabricated Minimally Invasive Flexible-Coiled LC Sensor Implant," Journal of Microelectromechanical Systems, vol. 19, no. 4, pp. 721-734, 2010.
[50] P. Chen, D. C. Rodger, S. Saati, M. S. Humayun, and Y. Tai, "Microfabricated Implantable Parylene-Based Wireless Passive Intraocular Pressure Sensors," Journal of Microelectromechanical Systems, vol. 17, no. 6, pp. 1342-1351, 2008.
[51] H. Greenhouse, "Design of Planar Rectangular Microelectronic Inductors," IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, no. 2, pp. 101-109, 1974.
[52] S. S. Mohan, M. d. M. Hershenson, S. P. Boyd, and T. H. Lee, "Simple accurate expressions for planar spiral inductances," IEEE Journal of Solid-State Circuits, vol. 34, no. 10, pp. 1419-1424, 1999.
[53] Z. Duan, Y.-X. Guo, and D.-L. Kwong, "Rectangular coils optimization for wireless power transmission," Radio Science, vol. 47, no. 3, pp. 1-10, 2012.
[54] S. Mutashar, A. M. Hannan, A. S. Samad, and A. Hussain, "Analysis and Optimization of Spiral Circular Inductive Coupling Link for Bio-Implanted Applications on Air and within Human Tissue," Sensors, vol. 14, no. 7, pp. 11522-11541, 2014.
[55] A. R. Djordjevic, C. K. Allen, T. K. Sarkar, and Z. A. Maricevic, "Inductance of perfectly conducting foils including spiral inductors," IEEE Transactions on Microwave Theory and Techniques, vol. 38, no. 10, pp. 1407-1414, 1990.
[56] W. C. Tang, Y. N. Zhu, and Y. L. Chow, "Inductance calculation of spiral inductors in different shapes," in proceeding of 2005 Asia-Pacific Microwave Conference Proceedings, Suzhou, China, Dec. 4-7, 2005.
[57] W. C. Tang and Y. L. Chow, "Simple CAD formula for inductance calculation of square spiral inductors with grounded substrate by duality and synthetic asymptote," Microwave and Optical Technology Letters, vol. 34, no. 2, pp. 93-96, 2002.
[58] P. Pieters, K. Vaesen, S. Brebels, S. F. Mahmoud, W. D. Raedt, E. Beyne, and R. P. Mertens, "Accurate modeling of high-Q spiral inductors in thin-film multilayer technology for wireless telecommunication applications," IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 4, pp. 589-599, 2001.
[59] U. Jow and M. Ghovanloo, "Modeling and Optimization of Printed Spiral Coils in Air, Saline, and Muscle Tissue Environments," IEEE Transactions on Biomedical Circuits and Systems, vol. 3, no. 5, pp. 339-347, 2009.
[60] C. Erli and S. Y. Chou, "Characteristics of coplanar transmission lines on multilayer substrates: modeling and experiments," IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 6, pp. 939-945, 1997.
[61] R. Garg and I. J. Bahl, "Characteristics of Coupled Microstriplines," IEEE Transactions on Microwave Theory and Techniques, vol. 27, no. 7, pp. 700-705, 1979.
[62] U. Jow and M. Ghovanloo, "Design and Optimization of Printed Spiral Coils for Efficient Transcutaneous Inductive Power Transmission," IEEE Transactions on Biomedical Circuits and Systems, vol. 1, no. 3, pp. 193-202, 2007.
[63] W. J. Bae, K. S. Kim, S. J. Kim, H. J. Cho, S. H. Hong, J. Y. Lee, T.-K. Hwang, and S. W. Kim, "AB222. Comparison of biocompatibility between PDMS and PMMA as packaging materials for the intravesical implantable device: changes of macrophage and macrophage migratory inhibitory factor," Translational Andrology and Urology, vol. 3, no. Suppl 1, p. AB222, 2014.
[64] M.-C. Bélanger and Y. Marois, "Hemocompatibility, biocompatibility, inflammatory andin vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: A review," Journal of Biomedical Materials Research, vol. 58, no. 5, pp. 467-77, 2001.
[65] J. J. Boland, "Within touch of artificial skin," Nature Materials, vol. 9, no. 10, p. 790, 2010.
[66] A. Mata, A. J. Fleischman, and S. Roy, "Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems," Biomedical Microdevices, vol. 7, no. 4, pp. 281-293, 2005.
[67] S. C. B. Mannsfeld, B. C. K. Tee, R. M. Stoltenberg, C. V. H. H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, "Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers," Nature Materials, vol. 9, p. 859, 2010.
[68] C. H. Durney, M. F. Iskander, H. Massoudi, and C. C. Johnson, "An Empirical Formula for Broad-Band SAR Calculations of Prolate Spheroidal Models of Humans and Animals," IEEE Transactions on Microwave Theory and Techniques, vol. 27, no. 8, pp. 758-763, 1979.
[69] A. E. Ostfeld, I. Deckman, A. M. Gaikwad, C. M. Lochner, and A. C. Arias, "Screen printed passive components for flexible power electronics," Scientific Reports, Article vol. 5, p. 15959, 2015.
[70] A. Menotti, M. Lanti, S. Nedeljkovic, A. Nissinen, A. Kafatos, and D. Kromhout, "The relationship of age, blood pressure, serum cholesterol and smoking habits with the risk of typical and atypical coronary heart disease death in the European cohorts of the Seven Countries Study," International Journal of Cardiology, vol. 106, no. 2, pp. 157-163, 2006.
[71] G. Mancia, A. Ferrari, L. Gregorini, G. Parati, G. Pomidossi, G. Bertinieri, G. Grassi, M. di Rienzo, A. Pedotti, and A. Zanchetti, "Blood pressure and heart rate variabilities in normotensive and hypertensive human beings," Circulation Research, vol. 53, no. 1, pp. 96-104, 1983.
[72] F. M. Sacks, L. P. Svetkey, W. M. Vollmer, L. J. Appel, G. A. Bray, D. Harsha, E. Obarzanek, P. R. Conlin, E. R. Miller, D. G. Simons-Morton, N. Karanja, P.-H. Lin, M. Aickin, M. M. Most-Windhauser, T. J. Moore, M. A. Proschan, and J. A. Cutler, "Effects on Blood Pressure of Reduced Dietary Sodium and the Dietary Approaches to Stop Hypertension (DASH) Diet," New England Journal of Medicine, vol. 344, no. 1, pp. 3-10, 2001.
[73] M. J. Owen, "Elastomers: Siloxane," in Encyclopedia of Materials: Science and Technology, K. H. J. Buschow et al., Eds. Oxford: Elsevier, 2001, pp. 2480-2482.
[74] V. Mitrakos, L. Macintyre, F. C. Denison, P. J. W. Hands, and M. P. Y. Desmulliez, "Design, Manufacture and Testing of Capacitive Pressure Sensors for Low-Pressure Measurement Ranges," Micromachines, vol. 8, no. 2, p. 41, 2017.
[75] M. L. Rathod, J. Ahn, B. Saha, P. Purwar, Y. Lee, N. L. Jeon, and J. Lee, "PDMS Sylgard 527-Based Freely Suspended Ultrathin Membranes Exhibiting Mechanistic Characteristics of Vascular Basement Membranes," ACS Applied Materials & Interfaces, vol. 10, no. 47, pp. 40388-40400, 2018.
[76] C. Moraes, J. M. Labuz, Y. Shao, J. Fu, and S. Takayama, "Supersoft lithography: candy-based fabrication of soft silicone microstructures," (in eng), Lab on a Chip, vol. 15, no. 18, pp. 3760-3765, 2015.
[77] R. N. Palchesko, L. Zhang, Y. Sun, and A. W. Feinberg, "Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve," PLOS ONE, vol. 7, no. 12, p. e51499, 2012.
[78] T. J. Petet Jr, "Characterization of Poly (dimethylsiloxane) Blends and Fabrication of Soft Micropillar Arrays for Force Detection," Master of Science, Biomedical Engineering, Virginia Commonwealth University VCU Scholars Compass, 2016.
[79] J. Ortigoza-Diaz, K. Scholten, C. Larson, A. Cobo, T. Hudson, J. Yoo, A. Baldwin, A. Weltman Hirschberg, and E. Meng, "Techniques and Considerations in the Microfabrication of Parylene C Microelectromechanical Systems," Micromachines, vol. 9, no. 9, p. 422, 2018.
[80] D. Kang, A. Standley, J. H. Chang, Y. Liu, and Y. Tai, "Effects of deposition temperature on Parylene-C properties," in proceeding of 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, Jan 20-24, 2013.
[81] P.-J. Chen, W.-C. Kuo, W. Li, Y.-J. Yang, and Y.-C. Tai, "Q-enhanced fold-and-bond MEMS inductors," in proceeding of 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, Jan 6-9, 2008.
[82] F. Herrault, S. Yorish, T. M. Crittenden, C.-H. Ji, and M. G. Allen, "Parylene-Insulated Ultradense Microfabricated Coils," Journal of Microelectromechanical Systems, vol. 19, no. 6, pp. 1277-1283, 2011.
[83] J.-M. Kim, D. H. Oh, J.-H. Park, J.-W. Cho, Y. Kwon, C. Cheon, and Y.-K. Kim, "Permittivity measurement for biological application using micromachined probe," in proceeding of IEEE MTT-S International Microwave Symposium Digest 2005, Long Beach, CA, June 17-17, 2005.
[84] A. Peyman, C. Gabriel, and E. H. Grant, "Complex permittivity of sodium chloride solutions at microwave frequencies," Bioelectromagnetics, vol. 28, no. 4, pp. 264-274, 2007.
[85] A. Nyshadham, C. L. Sibbald, and S. S. Stuchly, "Permittivity measurements using open-ended sensors and reference liquid calibration-an uncertainty analysis," IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 2, pp. 305-314, 1992.
[86] J.-M. Kim, D. H. Oh, J.-H. Park, J.-W. Cho, Y. Kwon, C. Cheon, and Y.-K. Kim, "Permittivity measurements up to 30 GHz using micromachined probe," Journal of Micromechanics and Microengineering, vol. 15, no. 3, pp. 543-550, 2004.
[87] D. K. Cheng, Field and wave electromagnetics. MA: Reading:Addison-Wesley, 1989.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78645-
dc.description.abstract本研究基於微機電技術開發了一可整合於血管支架的心血管壓力感測器。此壓力感測器具有無線量測、可撓性及被動式驅動等特性,並預期能透過心導管手術與血管支架一同植入人體血管中。此外,為了符合能於人體內達成長期血壓之監測功能,感測器採用具生物相容性之聚一氯對二甲苯為基材,與聚二甲基矽氧烷為元件之主要結構材料。感測器利用微機電技術於基材上製作平面電感線圈與上下電容板電極,透過簡單的對折封裝形成LC諧振電路。其中,平行板電容可視為壓力感測單元,而平面電感線圈則能無線傳輸壓力感測訊號。本研究採用Phase-dip技術獲取L-C壓力感測器受到外接壓力時的共振頻率變化,達成無線壓力量測之功能。最後,為了測試此壓力感測器於類似人體血液環境中的表現,本研究也將開發之感測器分別於空氣、去離子水與0.9%生理食鹽水中進行量測。在0mmHg至250mmHg壓力範圍內,於空氣、去離子水與0.9%生理食鹽水壓力響應度分別為-14.18 kHz/mmHg、-8.69 kHz/mmHg與-7.31 kHz/mmHg,而且壓力-共振頻率具有高度線性關係。zh_TW
dc.description.abstractIn this work, we propose a wireless, flexible passive pressure sensor for monitoring cardiovascular pressure. The device is designed to be inserted into a stent that can be deployed within a blood vessel using a catheter-based delivery system for monitoring cardiovascular pressure. Aimed toward long-term continuous blood pressure monitoring in the intravascular environment, the sensor employs biocompatible polymeric material Parylene-C as the substrate material. By utilizing micromachining techniques, a parallel-plate capacitor and an inductor coil were implemented in the sensor as an inductor–capacitor (LC) resonant tank for pressure sensing and wireless signal transmission. Using the Phase-dip technique, the resonant frequency shift (i.e., the pressure signals) of the resonant tank are wirelessly retrieved. The fabricated device was wirelessly measured in air, DI water and 0.9% saline. The measured results showed a linear frequency response in the pressure range from 0 mmHg to 250 mmHg. The pressure responsivities were approximately -14.18 kHz/mmHg, -8.69 kHz/mmHg and -7.31 kHz/mmHg in air, DI water and 0.9% saline, respectively.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:09:29Z (GMT). No. of bitstreams: 1
ntu-108-R06522704-1.pdf: 16638337 bytes, checksum: 052aabf7e686c1b447b6b7d5ba2a7ff6 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 XI
表目錄 XV
符號說明 XVII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 血壓量測方式 2
1.2.2 壓力感測器 5
1.2.3 L-C感測器 15
1.2.4 植入式壓力量測醫療裝置 16
1.3 研究動機與目的 20
1.4 論文架構 22
第二章 研究理論系統模型與元件設計 23
2.1 L-C諧振電路感測器運作原理 23
2.2 L-C諧振電路無線傳輸量測訊號之機制 24
2.2.1 觀察時域(Time Domain)量測方式 24
2.2.2 觀察頻域(Frequency Domain)量測方式 25
2.3 設計相關參數與其對壓力感測性能之影響 30
2.3.1 壓力感測器量測之頻率選擇性(Selectivity) 30
2.3.2 品質因子 對壓力感測性能之影響 - 提升電感值 31
2.3.3 品質因子 對壓力感測性能之影響 – 維持共振頻率 32
2.3.4 平面電感之理論模型 35
2.3.5 寄生電容對壓力感測器效能影響與其理論模型 38
2.4 L-C壓力感測器之設計與設計參數 41
2.4.1 壓力感測器之設計 41
2.4.2 壓力感測器設計參數 43
第三章 製程方法與步驟 47
3.1 本章介紹 47
3.2 聚二甲基矽氧烷預聚合物之製備 48
3.3 電鍍溶液製備與前處理 49
3.4 壓力感測器元件製程設計與製程原理 51
3.4.1 元件製程流程與設計 52
3.4.2 光罩設計與製作 53
3.4.3 製程相關原理與參數 55
3.5 元件製程結果 64
3.5.1 電鍍後元件電子顯微鏡圖 64
3.5.2 壓力感測器製作成果 66
第四章 量測結果與討論 69
4.1 不同聚二甲基矽氧烷做為介電質之特性量測 69
4.1.1 壓力vs電容量測之測試元件與架設 69
4.1.2 量測結果與討論 70
4.2 L-C壓力感測器之初步量測 72
4.2.1 L-C壓力感測器之電阻與電感量測 72
4.2.2 L-C壓力感測器之共振頻率量測與寄生電容推算 73
4.2.3 L-C壓力感測器之壓力vs共振頻率量測 76
4.3 L-C壓力感測器之特性量測 82
4.3.1 不同距離下之量測 82
4.3.2 蜷曲後之量測 83
4.3.3 不同環境下之量測 84
4.4 L-C壓力感測器於不同環境下之壓力vs共振頻率量測 86
4.4.1 於去離子水中之壓力vs共振頻率量測 87
4.4.2 於0.9%生理食鹽水中之壓力vs共振頻率量測 88
4.4.3 量測結果之討論 90
第五章 結論與未來展望 91
5.1 結論 91
5.2 未來展望 92
參考文獻 95
附錄A 109
-
dc.language.isozh_TW-
dc.title應用於智慧型血管支架系統之具無線傳輸功能可撓微型壓力感測器zh_TW
dc.titleDevelopment of a Wireless Flexible Pressure Sensor for a Smart Stent Systemen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蘇裕軒;陳國聲zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword無線壓力感測器,生物相容性,可撓式設計,被動式設計,L-C諧振電路,連續血壓監測,zh_TW
dc.subject.keywordWireless pressure sensor,Biocompatible,Flexible,Passive,L-C resonator,Blood pressure monitoring,en
dc.relation.page112-
dc.identifier.doi10.6342/NTU201902442-
dc.rights.note未授權-
dc.date.accepted2019-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2024-08-23-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  目前未授權公開取用
16.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved