Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78638
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊燿州zh_TW
dc.contributor.advisorYao-Joe Yangen
dc.contributor.author王善zh_TW
dc.contributor.authorShan Wangen
dc.date.accessioned2021-07-11T15:09:01Z-
dc.date.available2024-07-31-
dc.date.copyright2019-08-23-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] S. D. Senturia, Microsystem design. New York: Springer Science & Business Media, 2007.
[2] P. Polygerinos, N. Correll, S. A. Morin, B. Mosadegh, C. D. Onal, K. Petersen, M. Cianchetti, M. T. Tolley, and R. F. Shepherd, "Soft robotics: Review of fluid‐driven intrinsically soft devices; manufacturing, sensing, control, and applications in human‐robot interaction," Advanced Engineering Materials, vol. 19, no. 12, p. 1700016, 2017.
[3] F. Bonsignorio, "A new kind of article for reproducible research in intelligent robotics," IEEE Robotics Automation Magazine, vol. 24, no. 3, pp. 178-182, 2017.
[4] C. Wong, E. Yang, X. Yan, and D. Gu, "Robots in industry: A shift towards autonomous and intelligent systems in the digital age," in proceeding of Industrial Systems in the Digital Age Conference, UK, June 20-21, 2017.
[5] B. S. Peters, P. R. Armijo, C. Krause, S. A. Choudhury, and D. Oleynikov, "Review of emerging surgical robotic technology," Surgical endoscopy, vol. 32, no. 4, pp. 1636-1655, 2018.
[6] D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, "Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes," Nature nanotechnology, vol. 6, no. 12, p. 788, 2011.
[7] X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, and Z. L. Wang, "Recent progress in electronic skin," Advanced Science, vol. 2, no. 10, p. 1500169, 2015.
[8] C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park, T. Chen, B. Ma, and A. Javey, "User-interactive electronic skin for instantaneous pressure visualization," Nature materials, vol. 12, no. 10, p. 899, 2013.
[9] G. Y. Bae, S. W. Pak, D. Kim, G. Lee, D. H. Kim, Y. Chung, and K. Cho, "Linearly and highly pressure‐sensitive electronic skin based on a bioinspired hierarchical structural array," Advanced Materials, vol. 28, no. 26, pp. 5300-5306, 2016.
[10] T. Q. Trung, S. Ramasundaram, B. U. Hwang, and N. E. Lee, "An all‐elastomeric transparent and stretchable temperature sensor for body‐attachable wearable electronics," Advanced Materials, vol. 28, no. 3, pp. 502-509, 2016.
[11] C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro, L. Beccai, B. Mazzolai, and R. Shepherd, "Highly stretchable electroluminescent skin for optical signaling and tactile sensing," Science, vol. 351, no. 6277, pp. 1071-1074, 2016.
[12] P. French and A. Evans, "Piezoresistance in polysilicon and its applications to strain gauges," Solid-State Electronics, vol. 32, no. 1, pp. 1-10, 1989.
[13] S. Takamatsu, S. Goto, M. Yamamoto, T. Yamashita, T. Kobayashi, and T. Itoh, "Plastic-scale-model assembly of ultrathin film MEMS piezoresistive strain sensor with conventional vacuum-suction chip mounter," Scientific reports, vol. 9, no. 1, p. 1893, 2019.
[14] C. Pang, G.-Y. Lee, T.-i. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh, "A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres," Nature materials, vol. 11, no. 9, p. 795, 2012.
[15] M. Ádám, T. Mohácsy, P. Jónás, C. Dücső, É. Vázsonyi, and I. Bársony, "CMOS integrated tactile sensor array by porous Si bulk micromachining," Sensors Actuators A: Physical, vol. 142, no. 1, pp. 192-195, 2008.
[16] S. Yue and W. A. Moussa, "A piezoresistive tactile sensor array for touchscreen panels," IEEE Sensors Journal, vol. 18, no. 4, pp. 1685-1693, 2017.
[17] K. Watatani, K. Terao, F. Shumokawa, and H. Takao, "Simultaneous measurement of surface texture and elasticity using tactile sensor woth differently protruted contactor array," in proceeding of 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Germany, June 23-27, 2019.
[18] C.-W. Ma, L.-S. Hsu, J.-C. Kuo, and Y.-J. Yang, "A flexible tactile and shear sensing array fabricated using a novel buckypaper patterning technique," Sensors Actuators A: Physical, vol. 231, pp. 21-27, 2015.
[19] S. Pyo, J.-I. Lee, M.-O. Kim, T. Chung, Y. Oh, S.-C. Lim, J. Park, and J. Kim, "Development of a flexible three-axis tactile sensor based on screen-printed carbon nanotube-polymer composite," Journal of Micromechanics Microengineering, vol. 24, no. 7, p. 075012, 2014.
[20] L. Zhu, Y. Wang, D. Mei, and X. Wu, "Highly Sensitive and Flexible Tactile Sensor Based on Porous Graphene Sponges for Distributed Tactile Sensing in Monitoring Human Motions," Journal of Microelectromechanical Systems, vol. 28, no. 1, pp. 154-163, 2018.
[21] H.-K. Lee, J. Chung, S.-I. Chang, and E. Yoon, "Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors," Journal of Microelectromechanical Systems, vol. 17, no. 4, pp. 934-942, 2008.
[22] H.-K. Kim, S. Lee, and K.-S. Yun, "Capacitive tactile sensor array for touch screen application," Sensors Actuators A: Physical, vol. 165, no. 1, pp. 2-7, 2011.
[23] S. Asano, M. Muroyama, T. Nakayama, Y. Hata, Y. Nonomura, and S. Tanaka, "3-axis fully-integrated capacitive tactile sensor with flip-bonded CMOS on LTCC interposer," Sensors, vol. 17, no. 11, p. 2451, 2017.
[24] S. Pyo, J. Choi, and J. Kim, "Flexible, Transparent, Sensitive, and Crosstalk‐Free Capacitive Tactile Sensor Array Based on Graphene Electrodes and Air Dielectric," Advanced Electronic Materials, vol. 4, no. 1, p. 1700427, 2018.
[25] K. Lee, J. Lee, G. Kim, Y. Kim, S. Kang, S. Cho, S. Kim, J. K. Kim, W. Lee, and D. E. Kim, "Rough‐Surface‐Enabled Capacitive Pressure Sensors with 3D Touch Capability," Small, vol. 13, no. 43, p. 1700368, 2017.
[26] D. Johnston, P. Zhang, J. Hollerbach, and S. Jacobsen, "A full tactile sensing suite for dextrous robot hands and use in contact force control," in proceeding of IEEE International Conference on Robotics and Automation, 1996.
[27] S. C. Jacobsen, I. McGammon, K. B. Biggers, and R. P. Phillips, "Design of tactile sensing systems for dextrous manipulators," IEEE Control Systems Magazine, vol. 8, no. 1, pp. 3-13, 1988.
[28] R. A. Boie, "Capacitive impedance readout tactile image sensor," in proceeding of 1984 IEEE International Conference on Robotics and Automation, Atlanta, GA, 1984.
[29] Z. Ren, J. Nie, J. Shao, Q. Lai, L. Wang, J. Chen, X. Chen, and Z. L. Wang, "Fully Elastic and Metal‐Free Tactile Sensors for Detecting both Normal and Tangential Forces Based on Triboelectric Nanogenerators," Advanced Functional Materials, vol. 28, no. 31, p. 1802989, 2018.
[30] X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, and Z. L. Wang, "Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing," Science advances, vol. 3, no. 5, p. e1700015, 2017.
[31] Y. Zang, F. Zhang, C.-a. Di, and D. Zhu, "Advances of flexible pressure sensors toward artificial intelligence and health care applications," Materials Horizons, vol. 2, no. 2, pp. 140-156, 2015.
[32] J. Park, Y. Lee, J. Hong, M. Ha, Y.-D. Jung, H. Lim, S. Y. Kim, and H. Ko, "Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins," ACS nano, vol. 8, no. 5, pp. 4689-4697, 2014.
[33] X. Wang, T. Xu, S. Dong, S. Li, L. Yu, W. Guo, H. Jin, J. Luo, Z. Wu, and J. M. King, "Development of a flexible and stretchable tactile sensor array with two different structures for robotic hand application," RSC Advances, vol. 7, no. 76, pp. 48461-48465, 2017.
[34] Y. Cao, T. Li, Y. Gu, H. Luo, S. Wang, and T. Zhang, "Fingerprint‐Inspired Flexible Tactile Sensor for Accurately Discerning Surface Texture," Small, vol. 14, no. 16, p. 1703902, 2018.
[35] C. M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos, O. Khatib, and Z. Bao, "A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics," Science Robotics, vol. 3, no. 24, p. eaau6914, 2018.
[36] J. Park, M. Kim, Y. Lee, H. S. Lee, and H. Ko, "Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli," Science advances, vol. 1, no. 9, p. e1500661, 2015.
[37] Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju, Y. Li, X. Wang, D. Wang, M. Jian, and Y. Zhang, "Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity," ACS nano, vol. 12, no. 3, pp. 2346-2354, 2018.
[38] M. Ha, S. Lim, S. Cho, Y. Lee, S. Na, C. Baig, and H. Ko, "Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors," ACS nano, vol. 12, no. 4, pp. 3964-3974, 2018.
[39] J. Park, J. Kim, J. Hong, H. Lee, Y. Lee, S. Cho, S.-W. Kim, J. J. Kim, S. Y. Kim, and H. J. Ko, "Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins," NPG Asia Materials, vol. 10, no. 4, p. 163, 2018.
[40] S. H. Cho, S. W. Lee, S. Yu, H. Kim, S. Chang, D. Kang, I. Hwang, H. S. Kang, B. Jeong, E. H. Kim, and interfaces, "Micropatterned pyramidal ionic gels for sensing broad-range pressures with high sensitivity," ACS applied materials, vol. 9, no. 11, pp. 10128-10135, 2017.
[41] C.-L. Dai, "A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS–MEMS technique," Sensors Actuators B: Chemical, vol. 122, no. 2, pp. 375-380, 2007.
[42] J. Dai, H. Zhao, X. Lin, S. Liu, Y. Liu, X. Liu, T. Fei, and T. Zhang, "Ultrafast Response Polyelectrolyte Humidity Sensor for Respiration Monitoring," ACS applied materials interfaces, vol. 11, no. 6, pp. 6483-6490, 2019.
[43] S. J. Choi, H. Yu, J. S. Jang, M. H. Kim, S. J. Kim, H. S. Jeong, and I. D. Kim, "Nitrogen‐Doped Single Graphene Fiber with Platinum Water Dissociation Catalyst for Wearable Humidity Sensor," Small, vol. 14, no. 13, p. 1703934, 2018.
[44] Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu, J. Zhai, C. Pan, and Z. L. Wang, "Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing," Nature communications, vol. 9, no. 1, p. 244, 2018.
[45] J. H. Oh, S. Y. Hong, H. Park, S. W. Jin, Y. R. Jeong, S. Y. Oh, J. Yun, H. Lee, J. W. Kim, J. S. Ha, and interfaces, "Fabrication of high-sensitivity skin-attachable temperature sensors with bioinspired microstructured adhesive," ACS applied materials, vol. 10, no. 8, pp. 7263-7270, 2018.
[46] S. Haddadin, A. De Luca, and A. Albu-Schäffer, "Robot collisions: A survey on detection, isolation, and identification," IEEE Transactions on Robotics, vol. 33, no. 6, pp. 1292-1312, 2017.
[47] S. Luczak, W. Oleksiuk, and M. Bodnicki, "Sensing tilt with MEMS accelerometers," IEEE Sensors Journal, vol. 6, no. 6, pp. 1669-1675, 2006.
[48] M. G. Guney, X. Li, V. P. J. Chung, J. Paramesh, T. Mukherjee, and G. K. Fedder, "High dynamic range CMOS-MEMS capacitive accelerometer array," in proceeding of 2018 IEEE Micro Electro Mechanical Systems (MEMS), UK, January 21-25, 2018.
[49] M. Kim, W. Moon, E. Yoon, and K.-R. Lee, "A new capacitive displacement sensor with high accuracy and long-range," Sensors Actuators A: Physical, vol. 130, pp. 135-141, 2006.
[50] X. Liu, K. Peng, Z. Chen, H. Pu, and Z. Yu, "A new capacitive displacement sensor with nanometer accuracy and long range," IEEE Sensors Journal, vol. 16, no. 8, pp. 2306-2316, 2016.
[51] R. Puers, "Capacitive sensors: when and how to use them," Sensors Actuators A: Physical, vol. 37, pp. 93-105, 1993.
[52] Y. Sun, D. Piyabongkarn, A. Sezen, B. Nelson, and R. Rajamani, "A high-aspect-ratio two-axis electrostatic microactuator with extended travel range," Sensors Actuators A: Physical, vol. 102, no. 1-2, pp. 49-60, 2002.
[53] J. Zhao, H. Ding, S. Ni, L. Fu, W. Wang, and J. Xie, "High-resolution and large dynamic range electrometer with adjustable sensitivity based on micro resonator and electrostatic actuator," in proceeding of 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), January 24-28, 2016.
[54] J. C. Helton, J. D. Johnson, C. J. Sallaberry, and C. B. Storlie, "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering System Safety, vol. 91, no. 10-11, pp. 1175-1209, 2006.
[55] L. Hector and H. Schultz, "The dielectric constant of air at radiofrequencies," Physics, vol. 7, no. 4, pp. 133-136, 1936.
[56] O. Thakur and A. K. Singh, "Modeling of capacitive sensor filled with elastic dielectrics and its advantages," in proceeding of 2008 3rd International Conference on Sensing Technology, Taiwan, November 30-December 3, 2008.
[57] B. Zhuo, S. Chen, M. Zhao, and X. Guo, "High sensitivity flexible capacitive pressure sensor using polydimethylsiloxane elastomer dielectric layer micro-structured by 3-D printed mold," IEEE Journal of the Electron Devices Society, vol. 5, no. 3, pp. 219-223, 2017.
[58] K. F. Lei, K.-F. Lee, and M.-Y. Lee, "Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement," Microelectronic Engineering, vol. 99, pp. 1-5, 2012.
[59] S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, "Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers," Nature materials, vol. 9, no. 10, p. 859, 2010.
[60] J.-M. Hsu, L. Rieth, R. A. Normann, P. Tathireddy, and F. Solzbacher, "Encapsulation of an integrated neural interface device with Parylene C," IEEE Transactions on Biomedical Engineering, vol. 56, no. 1, pp. 23-29, 2008.
[61] E. O. Blair and D. K. Corrigan, "A review of microfabricated electrochemical biosensors for DNA detection," Biosensors Bioelectronics, 2019.
[62] K. Länge, S. Grimm, and M. Rapp, "Chemical modification of parylene C coatings for SAW biosensors," Sensors Actuators B: Chemical, vol. 125, no. 2, pp. 441-446, 2007.
[63] N. Driscoll, A. G. Richardson, K. Maleski, B. Anasori, O. Adewole, P. Lelyukh, L. Escobedo, D. K. Cullen, T. H. Lucas, and Y. Gogotsi, "Two-Dimensional Ti3C2 MXene for High-Resolution Neural Interfaces," ACS nano, vol. 12, no. 10, pp. 10419-10429, 2018.
[64] H. Kim and K. Najafi, "Characterization of low-temperature wafer bonding using thin-film parylene," Journal of Microelectromechanical Systems, vol. 14, no. 6, pp. 1347-1355, 2005.
[65] M. Beidaghi and C. Wang, "Micro‐supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance," Advanced Functional Materials, vol. 22, no. 21, pp. 4501-4510, 2012.
[66] M. A. Eddings, M. A. Johnson, and B. K. Gale, "Determining the optimal PDMS–PDMS bonding technique for microfluidic devices," Journal of Micromechanics Microengineering, vol. 18, no. 6, p. 067001, 2008.
[67] Y.-J. Yang, M.-Y. Cheng, S.-C. Shih, X.-H. Huang, C.-M. Tsao, F.-Y. Chang, and K.-C. Fan, "A 32× 32 temperature and tactile sensing array using PI-copper films," The International Journal of Advanced Manufacturing Technology, vol. 46, no. 9-12, pp. 945-956, 2010.
[68] D. Moore and W. Geyer, "A review of hysteresis theories for elastomers," Wear, vol. 30, no. 1, pp. 1-34, 1974.
[69] X. Zhao, W. Hong, and Z. Suo, "Electromechanical hysteresis and coexistent states in dielectric elastomers," Physical review B, vol. 76, no. 13, p. 134113, 2007.
[70] L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, and Z. Bao, "An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film," Nature communications, vol. 5, p. 3002, 2014.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78638-
dc.description.abstract本研究提出一個具可撓式電容觸覺感測陣列以感測不同大小與方向之正向力與剪應力,可應用於機器人電子皮膚上提供觸覺訊號回饋。電容感測單元包含互鎖式微結構的聚二甲基矽氧烷(PDMS)介電層、金屬陣列電極和聚一氯對二甲苯薄膜作為軟性基板(Parylene-C)。經過翻模、轉印製程可以將尼龍濾膜上的微孔隙構造轉移至PDMS表面形成密集微圓頂構造。在微小壓力區間內,互鎖式介電層結構中的微圓頂構造因受壓產生大量形變,逐漸將內部空氣間隙填滿造成感測器介電常數上升。此介電層結構能有效提升壓力感測的靈敏度並大幅縮短反應時間。相較其他利用微加工技術製作出的模具,本研究利用翻模、轉印製作出的微結構具有製程簡便,低成本等優勢。量測結果顯示與平面式介電層結構相比,互鎖式微結構之介電層構造設計將感測器靈敏度提升15倍。同時,直徑10μm的微圓頂結構之靈敏度高達0.715kPa-1。zh_TW
dc.description.abstractIn this work, we present a flexible capacitive sensor array as the electronic skin (e-skin) for robot tactile applications. The capacitive sensing array is capable of measuring both normal and shear forces. The sensing element consists of interlocked polydimethylsiloxane (PDMS) dielectric layers and gold electrode arrays. The PDMS dielectric layers were patterned with microdome structures by using nylon membrane filters, which enhance the sensitivity of the tactile sensor significantly. This proposed process is a relatively simple and effective way to pattern microstructures compared to the other approach using micromachined molds. Further, the sensitivity of the capacitive tactile sensor can be adjusted using the nylon membranes with different pore sizes. Capacitance vs. pressure measurements indicate that the sensitivity of device with the interlocked microdome dielectric layer is about 15 times greater than the device with a planar dielectric layer. Also, the capacitive sensing element with 10 μm microdome size exhibits the highest pressure sensitivity of 0.715 kPa-1.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:09:01Z (GMT). No. of bitstreams: 1
ntu-108-R06522703-1.pdf: 24768050 bytes, checksum: 599d2eccfe8de8a2a7b74f4c6aa54c15 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 XI
表目錄 XV
符號說明 XVII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1壓阻式觸覺感測器 2
1.2.2 電容式觸覺感測器 7
1.2.3 摩擦起電式觸覺感測器 13
1.2.4 具有微結構之觸覺感測器 15
1.3 研究動機與目的 26
1.4 論文架構 28
第二章 元件原理與設計 29
2.1 本章介紹 29
2.2 電容式感測器基本原理 29
2.2.1 平行板式電容 29
2.2.2 交指式電容 30
2.2.3 邊際式電容 31
2.2.4 差動式電容 31
2.3 電容板介電層材料選擇 34
2.4 元件介電層結構設計 35
2.5 三軸向電容感測器設計 37
2.6 元件工作原理 38
第三章 元件製程 39
3.1 元件製作流程 39
3.1.1 光罩設計 40
3.1.2 高分子聚合物之製備 43
3.1.3 高分子聚合物模具製作 43
3.1.4高分子的微結構轉印製程 45
3.1.5 可撓性電極陣列製作 46
3.1.6 聚對二甲苯氣相沉積 47
3.1.7 微影製程 49
3.2 元件組裝與製作結果 58
3.2.1 電子顯微鏡(SEM)圖 59
3.2.2 實體元件製作成果 60
第四章 量測結果與討論 61
4.1 實驗系統架構 61
4.1.1 三軸移動平台 62
4.1.2 拉壓力計 62
4.1.3 電容量測儀器 64
4.2 實驗平台架設 64
4.3 不同介電層結構電容與壓力變化量測結果 65
4.4 不同微圓頂尺寸之電容與壓力變化量測結果 69
4.5 遲滯效應量測 71
4.6感測單元Real-Time Response量測 73
4.7 剪力量測 73
第五章 結論與未來展望 77
5.1 結論 77
5.2 未來展望 78
參考文獻 81
附錄A 91
-
dc.language.isozh_TW-
dc.subject觸覺感測器zh_TW
dc.subject微圓頂構造zh_TW
dc.subject電子皮膚zh_TW
dc.subject尼龍濾膜zh_TW
dc.subject互鎖式介電層zh_TW
dc.subject電容式感測陣列zh_TW
dc.subjectcapacitive sensing arrayen
dc.subjecttactile sensoren
dc.subjectelectronic skinen
dc.subjectmicrodome structureen
dc.subjectinterlocked dielectric layeren
dc.title高分子微結構介電材料之電容式觸覺感測器zh_TW
dc.titleCapacitive Tactile Sensor with Polymer Based Microstructure Dielectric Layeren
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳國聲;蘇裕軒zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword電子皮膚,觸覺感測器,電容式感測陣列,互鎖式介電層,尼龍濾膜,微圓頂構造,zh_TW
dc.subject.keywordelectronic skin,tactile sensor,capacitive sensing array,interlocked dielectric layer,microdome structure,en
dc.relation.page93-
dc.identifier.doi10.6342/NTU201902463-
dc.rights.note未授權-
dc.date.accepted2019-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2024-08-23-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
24.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved