Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78632
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪一薰zh_TW
dc.contributor.author王翌軒zh_TW
dc.contributor.authorYi-Xuan Wangen
dc.date.accessioned2021-07-11T15:08:36Z-
dc.date.available2024-08-16-
dc.date.copyright2019-08-23-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citationAgrawal, R., & Srikant, R. (1994, September). Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB (Vol. 1215, pp. 487-499).
An, H., & Gu, L. (1989). Fast stepwise procedures of selection of variables by using AIC and BIC criteria. Acta Mathematicae Applicatae Sinica, 5(1), 60-67.
Berkhin, P. (2006). A survey of clustering data mining techniques. In Grouping multidimensional data (pp. 25-71). Springer, Berlin, Heidelberg.
Binato, S., Pereira, M. V. F., & Granville, S. (2001). A new Benders decomposition approach to solve power transmission network design problems. IEEE Transactions on Power Systems, 16(2), 235-240.
Chen, J. C. (1997). The study of dyeing condition for normal pressure dyeable polyester fiber. Journal of the China Textile Institute, 7 (3), 188-195.
Cheng, H., Yan, X., Han, J., & Hsu, C. W. (2007, April). Discriminative frequent pattern analysis for effective classification. In 2007 IEEE 23rd International Conference on Data Engineering (pp. 716-725). IEEE.
Cook, D. F., Ragsdale, C. T., & Major, R. L. (2000). Combining a neural network with a genetic algorithm for process parameter optimization. Engineering Applications of Artificial Intelligence, 13(4), 391-396.
Díaz-Uriarte, R., & De Andres, S. A. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7(1), 3.
Dowlatshahi, S. (2004). An application of design of experiments for optimization of plastic injection molding processes. Journal of Manufacturing Technology Management, 15 (6), 445-454
Fowlkes, W. Y., Creveling, C. M., & Derimiggio, J. (1995). Engineering methods for robust product design: using Taguchi methods in technology and product development (pp. 121-123). Reading, MA: Addison-Wesley.
Grahne, G., & Zhu, J. (2005). Fast algorithms for frequent itemset mining using fp-trees. IEEE Transactions on Knowledge and Data Engineering, 17(10), 1347-1362.
Goethals, B. (2003). Survey on frequent pattern mining. Univ. of Helsinki, 19, 840-852.
Goupy, J. (2005). What kind of experimental design for finding and checking robustness of analytical methods?. Analytica Chimica Acta, 544 (1-2), 184-190.
Hall, M. A., & Holmes, G. (2002). Benchmarking attribute selection techniques for discrete class data mining.
Han, J., Cheng, H., Xin, D., & Yan, X. (2007). Frequent pattern mining: current status and future directions. Data Mining and Knowledge Discovery, 15(1), 55-86.
Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8(1), 53-87.
Holland, P. W., & Welsch, R. E. (1977). Robust regression using iteratively reweighted least-squares. Communications in Statistics-theory and Methods, 6(9), 813-827.
Hou, X. S., & Wu, C. F. J. (2001). On the determination of robust settings in parameter design experiments. Statistics & Probability Letters, 54 (2), 137-145.
Huang, C. L., Chen, M. C., & Wang, C. J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications, 33(4), 847-856.
Huang, M. S., Li, C. J., Yu, J. C., Huang, Y. M., & Hsieh, L. C. (2009). Robust parameter design of micro-injection molded gears using a LIGA-like fabricated mold insert. Journal of Materials Processing Technology, 209 (15-16), 5690-5701..
Huang, M. S., & Lin, T. Y. (2008a). An innovative regression model-based searching method for setting the robust injection molding parameters. Journal of Materials Processing Technology, 198 (1-3), 436-444.
Huang, M. S., & Lin, T. Y. (2008b). Simulation of a regression-model and PCA based searching method developed for setting the robust injection molding parameters of multi-quality characteristics. International Journal of Heat and Mass Transfer, 51 (25-26), 5828-
Iváncsy, R., & Vajk, I. (2006). Frequent pattern mining in web log data. Acta Polytechnica Hungarica, 3 (1), 77-90.
Kansal, H. K., Singh, S., & Kumar, P. (2005). Parametric optimization of powder mixed electrical discharge machining by response surface methodology. Journal of Materials Processing Technology, 169 (3), 427-436.
Kim, D., Kang, P., Cho, S., Lee, H. J., & Doh, S. (2012). Machine learning-based novelty detection for faulty wafer detection in semiconductor manufacturing. Expert Systems with Applications, 39 (4), 4075-4083.
Koh, Y. S. (2008, May). Mining non-coincidental rules without a user defined support threshold. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 910-915). Springer, Berlin, Heidelberg.
Lin, D., Foster, D. P., & Ungar, L. H. (2011). VIF regression: a fast regression algorithm for large data. Journal of the American Statistical Association, 106(493), 232-247.
Liu, B., Hsu, W., & Ma, Y. (1999, August). Mining association rules with multiple minimum supports. In Proceedings of the fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 337-341). ACM.
Montgomery, D. C. (2017). Design and Analysis of Experiments. John wiley & sons.
Murphy, A. H. (1988). Skill scores based on the mean square error and their relationships to the correlation coefficient. Monthly Weather Review, 116(12), 2417-2424.
Ramesh, R., Jerald, J., Page, T., & Arunachalam, S. (2009). Concurrent tolerance allocation using an artificial neural network and continuous ant colony optimisation. International Journal of Design Engineering, 2(1), 1-25.
Stubbs, R. A., & Mehrotra, S. (1999). A branch-and-cut method for 0-1 mixed convex programming. Mathematical Programming, 86(3), 515-532.
Sun, Y., & Hao, M. (2012). Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd: YAG laser. Optics and Lasers in Engineering, 50 (7), 985-995.
Vuillemin, J. (1978). A data structure for manipulating priority queues. Communications of the ACM, 21(4), 309-315.
Wang, L., Gordon, M. D., & Zhu, J. (2006, December). Regularized least absolute deviations regression and an efficient algorithm for parameter tuning. In Sixth International Conference on Data Mining (ICDM'06) (pp. 690-700). IEEE.
Wang, K., He, Y., & Han, J. (2003). Pushing support constraints into association rules mining. IEEE Transactions on Knowledge and Data Engineering, 15(3), 642-658.
Wang, X., & Bide, M. (1998). Factors Affecting the Levelness of Dyeing in Reused Acid Dyebaths for Nylon. Textile Chemist & Colorist, 30 (4).
Xiong, J., Zhang, G., Hu, J., & Wu, L. (2014). Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis. Journal of Intelligent Manufacturing, 25(1), 157-163.
Yun, H., Ha, D., Hwang, B., & Ryu, K. H. (2003). Mining association rules on significant rare data using relative support. Journal of Systems and Software, 67(3), 181-191.
Zaki, M. J. (2005). Efficiently mining frequent trees in a forest: Algorithms and applications. IEEE Transactions on Knowledge and Data Engineering, 17(8), 1021-1035.
Zeng, B., & Zhao, L. (2013). Solving two-stage robust optimization problems using a column-and-constraint generation method. Operations Research Letters, 41(5), 457-461.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78632-
dc.description.abstract成品的品質優劣往往影響一家公司的利潤,所以如何有效地維持製程的穩定,是所有業者都必須克服的難題。在實務上,經常透過實驗設計方法來找到機台參數與控制項之間的關係,進而建立預測模型,以尋找不同情況下最佳的機台參數配置。然而此模型的複雜度會隨著機台參數與控制項的數目上升成指數型的成長,單使用實驗設計方法來評估,其精確度已不如以往,但重新建立一個新的實驗設計方法,對業者而言是個龐大的成本。因此藉由數據挖掘的方法來找尋過去調機模式的趨勢特徵,進而建立修補項來補足實驗設計方法未考慮到的機台狀況。除此之外,和以往用兩階段先後進行實驗設計方法和調機特徵評估不同,本研究建立一個混整數規劃模型能同時考量到兩種狀況,此模型在複雜度高的問題上更能考慮到多機台參數與多控制項的交互影響,進而得到更好的結果表現,有了修補項的測模型也能更精確地提供調機策略。zh_TW
dc.description.abstractAs the quality of finished products often plays an important role in one company’s profitability, the issue of the stability during the manufacturing process is crucial for all manufacturers. In practice, the design of experiment (DOE) is often used to determine the relationship between machine parameters and the controlled items. We then use the DOE results to build the forecast model to determine the best parameter setting. However, the complexity of the forecast model exponentially increases in the number of machine parameters and controlled items. The accuracy of the DOE method may not be accountable while rebuilding a new DOE method can be a huge cost for the manufacturer. Therefore, by adopting the data mining method, we can conduct the pattern mining on the data gathered from the past tuning mode. In this way, we can acquire more details which could not be measured before in the DOE method. In addition, we have to go through two stages to use the result of DOE method followed by the evaluation of tuning pattern. This study establishes a mixed-integer programming model, which simultaneously considers the result of DOE method and the evaluation of tuning pattern. Since this model can consider the interaction between multi-machine parameters and multiple controlled items, it performs better when solving problems of high complexity. Finally, the forecast model with supplementary items can also provide tuning strategies with better accuracy.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:08:36Z (GMT). No. of bitstreams: 1
ntu-108-R06546017-1.pdf: 1219283 bytes, checksum: f22fac69378537cabba929bc7b4781c8 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1研究背景 1
1.2 研究動機與論文架構 4
第二章 方法論 6
2.1修補項模型可行種類 6
2.1.1機器學習 6
2.1.2數據挖掘 7
2.2頻繁模式挖掘 8
第三章 數據挖掘與混整數規劃 12
3.1 實驗設計與調機誤差定義 12
3.2數據挖掘與修補項函數建立 13
3.3 修補項模型資料結構調整 16
3.4混整數規劃模型 18
3.4.1 大M法用於調機模式判別 18
3.4.2 模型符號定義 20
3.4.3 目標函數及機台參數與控制項上下界之限制式 22
3.4.4 結合實驗設計與修補項模型之限制式 24
第四章 數值分析 27
4.1數據挖掘能力比較 27
4.2求解能力表現 29
第五章 結論與未來方向 34
參考文獻 35
-
dc.language.isozh_TW-
dc.title數據挖掘與機台參數最佳化整合zh_TW
dc.titleOptimal tool tuning-Integration between data mining and optimizationen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee藍俊宏;游仁祈zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword數據挖掘,參數設置,混整數規劃,zh_TW
dc.subject.keyworddata mining,parameter tuning,mixed-integer linear programming,en
dc.relation.page38-
dc.identifier.doi10.6342/NTU201903236-
dc.rights.note未授權-
dc.date.accepted2019-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept工業工程學研究所-
dc.date.embargo-lift2024-08-23-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  目前未授權公開取用
1.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved