請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78630
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張嘉銓 | |
dc.contributor.author | Ming-Che Cheng | en |
dc.contributor.author | 鄭名哲 | zh_TW |
dc.date.accessioned | 2021-07-11T15:08:27Z | - |
dc.date.available | 2024-08-29 | |
dc.date.copyright | 2019-08-29 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-13 | |
dc.identifier.citation | 1. 羅暐智 (2017)。國立台灣大學藥學研究所碩士論文:Alda-1類似物之半合成、全合成及其對ALDH2之活性促進研究。台北市。
2. Eng, M. Y.; Luczak, S. E.; Wall, T. L. ALDH2, ADH1B, and ADH1C Genotypes in asians: a literature review. Alcohol Res. Health 2007, 30, 22–27. 3. Bagnardi, V.; Rota, M.; Botteri, E.; Tramacere, I.; Islami, F.; Fedirko, V.; Scotti, L.; Jenab, M.; Turati, F.; Pasquali, E. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br. J. Cancer 2015, 112, 580-593. 4. Wang, M.-F.; Han, C.-L.; Yin, S.-J. Substrate specificity of human and yeast aldehyde dehydrogenases. Chem. Biol. Interact. 2009, 178, 36–39. 5. Cederbaum, A. I. Alcohol metabolism. Clin. Liver. Dis. 2012, 16, 667–685. 6. Chen, C. H.; Ferreira, J. C.; Gross, E. R.; Mochly-Rosen, D. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol. Rev. 2014, 94, 1-34. 7. Larson, H. N.; Weiner, H.; Hurley, T. D. Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase “asian” variant. J. Biol. Chem. 2005, 280, 30550–30556. 8. Crabb, D. W.; Edenberg, H. J.; Bosron, W. F.; Li, T. K. Genotypes for aldehyde dehydrogenase deficiency and alcohol sensitivity. the inactive ALDH2(2) allele is dominant. J. Clin. Invest. 1989, 83, 314–316. 9. Steinmetz, C. G.; Xie, P.; Weiner, H.; Hurley, T. D. Structure of mitochondrial aldehyde dehydrogenase: the genetic component of ethanol aversion. Structure 1997, 5, 701–711. 10. Koppaka, V.; Thompson, D. C.; Chen, Y.; Ellermann, M.; Nicolaou, K. C.; Juvonen, R. O.; Petersen, D.; Deitrich, R. A.; Hurley, T. D.; Vasiliou, V. Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol. Rev. 2012, 64, 520–539. 11. Lang, B. S.; Gorren, A. C.; Oberdorfer, G.; Wenzl, M. V.; Furdui, C. M.; Poole, L. B.; Mayer, B.; Gruber, K. Vascular bioactivation of nitroglycerin by aldehyde dehydrogenase-2: reaction intermediates revealed by crystallography and mass spectrometry. J. Biol.Chem. 2012, 287, 38124–38134. 12. Perez-Miller, S. J.; Hurley, T. D. Coenzyme isomerization is integral to catalysis in aldehyde dehydrogenase. Biochemistry 2003, 42, 7100–7109. 13. González-Segura, L.; Ho, K.-K.; Perez-Miller, S.; Weiner, H.; Hurley, T. D. Catalytic contribution of threonine 244 in human ALDH2. Chem. Biol. Interact. 2013, 202, 32–40. 14. Hammen, P. K.; Allali-Hassani, A.; Hallenga, K.; Hurley, T. D.; Weiner, H. Multiple conformations of NAD and NADH when bound to human cytosolic and mitochondrial aldehyde dehydrogenase. Biochemistry 2002, 41, 7156–7168. 15. Perez-Miller, S.; Younus, H.; Vanam, R.; Chen, C.-H.; Mochly-Rosen, D.; Hurley, T. D. Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant. Nat. Struct. Mol. Biol. 2010, 17, 159–164. 16. Larson, H. N.; Zhou, J.; Chen, Z.; Stamler, J. S.; Weiner, H.; Hurley, T. D. Structural and functional consequences of coenzyme binding to the inactive asian variant of mitochondrial aldehyde dehydrogenase: roles of residues 475 and 487. J. Biol. Chem. 2007, 282, 12940–12950. 17. Li, H.; Borinskaya, S.; Yoshimura, K.; Kal’ina, N.; Marusin, A.; Stepanov, V. A.; Qin, Z.; Khaliq, S.; Lee, M. Y.; Yang, Y. Refined geographic distribution of the oriental ALDH2*504Lys (Nee 487Lys) variant. Ann. Hum. Genet. 2009, 73, 335-345. 18. Macgregor, S.; Lind, P. A.; Bucholz, K. K.; Hansell, N. K.; Madden, P. A. F.; Richter, M. M.; Montgomery, G. W.; Martin, N. G.; Heath, A. C.; Whitfield, J. B. Associations of ADH and ALDH2 gene variation with self report alcohol reactions, consumption and dependence: an integrated analysis. Hum. Mol. Genet. 2009, 18, 580–593. 19. Chen, C. H.; Budas, G. R.; Churchill, E. N.; Disatnik, M. H.; Hurley, T. D.; Mochly-Rosen, D. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 2008, 321, 1493-1495. 20. 吳一品 (2013)。國防醫學院藥理學研究所碩士論文。醛脫氫酶活化劑 (Alda-1) 對抗神經毒性之保護機轉。台北市。 21. Yu, R.-L.; Tan, C.-H.; Lu, Y.-C.; Wu, R.-M. Aldehyde dehydrogenase 2 is associated with cognitive functions in patients with parkinson’s disease. Sci. Rep. 2016, 6, 30424. 22. Chang, J. S.; Hsiao, J.-R.; Chen, C.-H. ALDH2 polymorphism and alcohol-related cancers in asians: a public health perspective. J. of Biomed. Sci. 2017, 24, 19. 23. Zhang, T.; Zhao, Q.; Ye, F.; Huang, C.; Chen, W.-M.; Huang, W.-Q. Alda-1, an ALDH2 activator, protects against hepatic ischemia/reperfusion injury in rats via inhibition of oxidative stress. Free Radical Res. 2018, 52, 629–638. 24. Mochly-Rosen, D.; Chen, C. -H.; Yang, W. –J. Modulators of aldehydes dehydrogenase and methods of use thereof. WO patent NO.2010062308, June 3, 2010. 25. Peachey, J. E.; Sellers, E. M. The disulfiram and calcium carbimide acetaldehyde-mediated ethanol reactions. Pharm. Ther. 1981, 15, 89–97. 26. Osman, S. F.; Fett, W. F. Isoflavone glucoside stress metabolites of soybean leaves. Phytochemistry 1983, 22, 1921–1923. 27. Rezvani, A. H.; Overstreet, D. H.; Perfumi, M.; Massi, M. Plant derivatives in the treatment of alcohol dependency. Pharmacol. Biochem. Behav. 2003, 75, 593–606. 28. WingMing, K.; Vallee, B. L. Kudzu root: an ancient chinese source of modern antidipsotropic agents. Phytochemistry 1998, 47, 499-506. 29. Valeur, E.; Bradley, M. Amide bond formation: beyond the myth of coupling reagents. Chem. Soc. Rev. 2009, 38, 606–631. 30. Neises, B.; Steglich, W. Esterification of carboxylic acids with dicyclohexyl carbodiimide/4-dimethylaminopyridine: tert-butyl ethyl fumarate. Org. Syn. 2003, 63, 183–183. 31. Diana, G. D.; Volkots, D. L.; Nitz, T. J.; Bailey, T. R.; Long, M. A.; Vescio, N.; Aldous, S.; Pevear, D. C.; Dutko, F. J. Oxadiazoles as ester bioisosteric replacements in compounds related to disoxaril. Antirhinovirus activity. J. Med. Chem. 1994, 37, 2421–2436. 32. Talukdar, S.; Hsu, J.-L.; Chou, T.-C.; Fang, J.-M. Direct transformation of aldehydes to nitriles using iodine in ammonia water. Tetra. Lett. 2001, 42, 1103–1105. 33. Findlay, J. A.; Tang, C. S. A facile one-step conversion of aliphatic aldehydes into nitriles. Can. J. Chem. 1967, 45, 1014–1015. 34. Tornieporth‐Oetting, I.; Klapötke, T. Nitrogen triiodide. Angew. Chem. 1990, 29 , 677–679. 35. Wang, W.; Xu, H.; Xu, Y.; Ding, T.; Zhang, W.; Ren, Y.; Chang, H. Base-mediated one-pot synthesis of 1,2,4-oxadiazoles from nitriles, aldehydes and hydroxylamine hydrochloride without addition of extra oxidant. Org. Biomol. Chem. 2016, 14, 9814–9822. 36. Jackson, W. G.; Sargeson, A. M.; Tucker, P. A.; Watson, A. D. The synthesis and X-ray crystal structure of a novel vilsmeier-haack adduct: [tris(2-aminoethyl) amine][3-(dimethylamino)-2-aminoacrylyl chloride]cobalt(III) chloride tetrachlo -rozincate hydrate. J. Am. Chem. Soc. 1981, 103, 533–540. 37. Lin, C.-C.; Hsieh, T.-H.; Liao, P.-Y.; Liao, Z.-Y.; Chang, C.-W.; Shih, Y.-C.; Yeh, W.-H.; Chien, T.-C. Practical synthesis of N-substituted cyanamides via tiemann rearrangement of amidoximes. Org. Lett. 2014, 16, 892–895. 38. Biegasiewicz, K. F.; Gordon, J. S.; Rodriguez, D. A.; Priefer, R. Development of a general approach to the synthesis of a library of isoflavonoid derivatives. Tetra. Lett. 2014, 55, 5210–5212. 39. Yamamoto, M.; Arimori, S. Oxadiazole Compound and Use Thereof. WO patent NO.2018056340, March 29, 2018. 40. Kohrt, J. T.; Filipski, K. J.; Cody, W. L.; Cai, C.; Dudley, D. A.; Van Huis, C. A.; Willardsen, J. A.; Narasimhan, L. S.; Zhang, E.; Rapundalo, S. T.; et al. The discovery of fluoropyridine-based inhibitors of the factor VIIa/TF complex--part 2. Bioorg. Med. Chem. Lett. 2006, 16, 1060–1064. 41. D’Auria, M.; Mauriello, G. Bis-(trifluoroacetoxy)iodobenzene -iodine system: an efficient and selective reagent for iodination of thiophene derivatives. Tetra. Lett. 1995, 36, 4883–4884. 42. Feng, C.; Yan, B.; Yin, G.; Chen, J.; Ji, M. Fe(ClO4)3·H2O-catalyzed ritter reaction: a convenient synthesis of amides from esters and nitriles. Synlett. 2018, 29, 2257–2264. 43. Rokade, B. V.; Malekar, S. K.; Prabhu, K. R. A Novel Oxidative Transformation of Alcohols to Nitriles: An Efficient Utility of Azides as a Nitrogen Source. Chem. Commun. 2012, 48, 5506–5508. 44. Biegasiewicz, K. F.; Denis, J. D. St.; Carroll, V. M.; Priefer, R. An efficient synthesis of daidzein, dimethyldaidzein, and isoformononetin. Tetra. Lett. 2010, 51, 4408–4410. 45. Bernini, R.; Mincione, E.; Coratti, A.; Fabrizi, G.; Battistuzzi, G. Epoxidation of chromones and flavonoids in ionic liquids. Tetrahedron 2004, 60, 967–971. 46. Xu, Z.; Xiao, Y.; Ding, H.; Cao, C.; Li, H.; Pang, G.; Shi, Y. Palladium/N-heterocyclic carbene catalyzed mono- and double-cyanation of aryl halides using potassium ferrocyanide trihydrate under aerobic conditions. Synthesis 2015, 47, 1560–1566. 47. Darehkordi, A.; Ramezani, M.; Rahmani, F. TiO2-nanoparticles catalyzed synthesis of new trifluoromethyl-4,5-dihydro-1,2,4-oxadiazoles and trifluoro -methyl-1,2,4-oxadiazoles. J. of Hetero. Chem. 2018, 55, 1702–1708. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78630 | - |
dc.description.abstract | 第二型粒線體醛脫氫酶 (mitochondrial aldehyde dehydrogenase 2, ALDH2),為人體進行乙醇代謝的必需氧化酶之一,負責將乙醇經醇脫氫酶 (Alcohol dehydroge-nase, ADH) 氧化所得之乙醛再氧化至低毒性的乙酸。更有研究顯示,此氧化酶除了以乙醛為受質外,亦可以氧化多種內源性與外源性毒性醛類化合物,如:糠醛、丙烯醛與4-羥基壬烯醛,而在人體面對毒性物質的防禦機制上佔有重要的地位。而在臨床研究上,約有5.6億的東亞人種 (佔世界人口比例8%) 具有亞型粒線體醛去氫酶 (ALDH2*2) 之基因,其在氧化乙醛的活性上較野生型粒線體醛去氫酶2減少10倍。近幾年的相關研究更指出,此突變所造成的酵素活性喪失,可能與心血管疾病、慢性神經發炎、消化道癌症等多種病變有關連。
2008年,藉由高通量活性篩選的方式,N-piperonyl-2,6-dichlorobenzamide (Alda-1) 被發現具有相當良好促進ALDH2之活性。本實驗針對Alda-1之骨架,選擇性的修改其結構,製備出一系列類似物,並將其對ALDH2之促進活性與電腦分子模擬進行比對,得到如下之Alda-1類似物結構-活性關係:Alda-1類似物中存在之苄胺結構對ALDH2促進活性非常重要,其可與Phe296及Phe459形成π-π交互作用,並與Asp457形成氫鍵,穩定其與ALDH2之接合構造以防止未反應之受質逸散,以此達到酵素促進作用,上述作用也可能是誘導ALDH2*2結構變形而催化活性增加的主因,而苄胺芳香環上的取代基由於距離靠近Cys302,若為酸性其團,對酵素活性可能造成不良影響。另外,Alda-1類似物之2'或6'位置必須至少存在一個取代基,以防止錯誤的接合模式,並且取代基不可過於親水或是立體障礙過大,其會對ALDH2促進活性造成不良的影響。 本實驗以上述結構-活性關係為基礎設計並合成一系列新骨架ALDH2促進劑,N-(4-(5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl)phenyl)amide (TFOPA)、N-(4-carbamimidoylphenyl)amide (APA)與N-(5-(pyridin-4-yl)thiophen-2-yl)amide (PTHA)類化合物。TFOPA類化合物之水溶解度極低,造成活性評估實驗難以進行;APA類化合物在ALDH2促進實驗中皆展現與Alda-1接近的酵素促進活性,且具有極佳的水溶解度,然而目前尚未能找到活性高於Alda-1之APA骨架化合物;PTHA類化合物在ALDH2促進實驗中,展現出的是抑制活性而非促進活性,未來會針對其相關機轉與修正方式進行研究。 | zh_TW |
dc.description.abstract | Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is an essential enzyme in alcohol metabolism pathway. It converts acetaldehyde, produced from ethanol by alcohol dehydrogenase (ADH), into acetic acid. Past studies indicated that acetaldehyde is not the only one substrate of ALDH2, some endogenous and exogenous toxic aldehyde, e.g.: furaldehyde, acrolein and 4-HNE can also be detoxified by ALDH2. It plays an important role in the defense mechanism against toxic substance of human body. However, about 560 million East Asians (nearly 8% of the world population) carry the ALDH2*2 allel, which is 10 folds less active than wild-type ALDH2. Recent studies also indicated that ALDH2*2 might be relevant to some severe diseases like cardiovascular diseases, chronic neuronal inflammation and cancers.
N-Piperonyl-2,6-dichlorobenzamide (Alda-1, 3h) had been found to have ALDH2 -activating activity via high-throughput screening at 2008. In this study, we modified the structure of Alda-1 partially, and synthesized a series of Alda-1 analogs to investigate the structure-activity relationship (SAR) of ALDH2 agonist. After comparing the ALDH2 activating assay with the molecular-docking model, we suggest that the benzylamine moiety might be the pharmacophore of Alda-1 analogs. It can form π-π interaction with Phe296 and Phe459, and form hydrogen bonding with Asp457. These interactions can stabilize the binding conformation of Alda-1 and prevent the substrate from uncatalytic escape, thus, it could activate the activity of ALDH2. Nevertheless, these interactions might also induce the conformational change of ALDH2*2 and enhance its bioactivity. Moreover, the substituted group on the aromatic ring of benzylamine moiety should not be acidic, such substituted group might interfere the catalytic cycle of ALDH2. In addition, at least one substituted group should be located at 2' or 6' position to prevent Alda-1 from incorrect binding, and the substituted group should not be too hydrophilic or bulky. Base on the structure-activity relationship suggested in this study, we designed three scaffolds of novel ALDH2 modulators, N-(4-(5-trifluoromethyl-1,2,4-oxadiazol-3-yl)phenyl)amide (TFOPA), N-(4-carbamimidoylphenyl)amide (APA) and N-(5-(pyridin-4-yl)thiophen-2-yl)amide (PTHA). TFOPA type compounds demonstra-ted very poor water solubility, were unable to run in vitro evaluation. APA type compounds revealed not only the same level of ALDH2-activating activity with Alda-1 but also great water solubility. However, APA type compounds still need more modification to improve the ALDH2-activating activity. And PTHA type compounds inhibited the ALDH2 activity with almost the same activity of isoformononetin (40). | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:08:27Z (GMT). No. of bitstreams: 1 ntu-108-R06423005-1.pdf: 8595059 bytes, checksum: 950f4c1f15d74c76a92b98fca7272b81 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 中文摘要 I
Abstract III 總目錄 (Contents) V 圖目錄 (List of figures) XI 表目錄 (List of table) XIV 流程圖目錄 (List of schemes) XIV 附圖目錄 (List of supporting figures) XVI 1. 緒論 1 1.1. 引言 1 1.2. 第二型粒線體醛脫氫酶 (Mitochondrial aldehyde dehydrogenase 2, ALDH2) 1 1.3. 第二型粒線體醛脫氫酶之蛋白結構與功能 1 1.4. 第二型粒線體醛脫氫酶基因多型性與癌發關聯 11 1.5. 第二型粒線體醛脫氫酶活化劑 15 1.6. 第二型粒線體醛脫氫酶抑制劑與酒精戒斷功能 21 1.7. 研究目的 24 2. 結果與討論 25 2.1. Alda-1類似物3a-3j與7-9之製備 25 2.2. 化合物10、18-19及24之製備 27 2.3. 置換Alda-1之醯胺結構之化合物26及31-33之製備 29 2.4. Isoformononetin 類似物39-41之製備 35 2.5. TFOPA類 (47-49) 及APA類 (53-56) 化合物之製備 37 2.6. PTHA類化合物 (60) 之製備 49 2.7. 野生型第二型粒線體醛脫氫酶活性實驗結果 51 2.8. Alda-1類似物之結構活性關係討論 54 2.9. TFOPA, APA與PTHA類化合物之ALDH2促進活性結果討論 62 3. 實驗方法 65 3.1. 儀器與材料 65 3.1.2. cLog P預測軟體 65 3.1.3. 分子模擬計算軟體 65 3.1.4. 3D分子建模與成像軟體 66 3.1.5. 核磁共振圖譜處理與預測軟體 66 3.1.6. 化合物合成、純化使用之材料、溶劑與試藥 66 3.1.7. 第二型粒線體醛脫氫酶促進活性試驗所用試劑與儀器 69 3.2. 化合物之製備 70 3.2.1. 化合物3i-3j及7-9之製備 70 3.2.1.1. 一般製備方法 (以合成化合物7為例) 70 3.2.1.1. N-(3,4-Methylenedioxy)benzyl-2-hydroxybenzamide (3i)之製備與物理數據 70 3.2.1.2. N-(3,4-Methylenedioxy)benzyl-2,6-dihydroxybenzamide (3j) 之製備與物理數據 72 3.2.1.3. N-Benzyl-2,6-dichlorobenzamide (7) 之物理數據 73 3.2.1.4. N-Isoamyl-2,6-dichlorobenzamide (8) 之製備與物理數據 74 3.2.1.5. N-(3,4-Methylenedioxy)benzyl-3,3-dimethylacrylamide (9) 之製備與物理數據 75 3.2.2. 化合物18-19及24之製備 76 3.2.2.1. 3,4,5-Trihydroxylbenzoic methyl ester (12) 之製備 76 3.2.2.2. 3,4-Methylenedioxy-5-hydroxylbenzoic methyl ester (13) 之製備 76 3.2.2.3. 3,4-Methylenedioxy-5-hydroxybenzoic acid (14)之製備 76 3.2.2.4. N-(2,6-Dichloro)benzyl-3,4-methylenedioxy-5-hydroxybenzamide (18)之製備與物理數據 77 3.2.2.5. 3,4-Methylenedioxy-5-methoxylbenzoic methyl ester (15) 之製備 78 3.2.2.6. 3,4-methylenedioxy-5-methoxylbenzoic acid (16) 之製備 78 3.2.2.7. N-(2,6-Dichloro)benzyl-3,4-methylenedioxy-5-methoxybenzamide (19) 之製備與物理數據 79 3.2.2.8. Caffeic acid methyl ester (21) 之製備 80 3.2.2.9. 3,4-Methylenedioxycinnamic acid methyl ester (22) 之製備 80 3.2.2.10. 3,4-Methylenedioxycinnamic acid (23)之製備 80 3.2.2.11. N-(2,6-Dichloro)benzyl- 3,4-methylenedioxycinnamic amide (24) 之製備與物理數據 80 3.2.3. N-Piperonyl-2,6-dichlorobenzoic ester (26) 之製備與物理數據 81 3.2.4. 化合物31-33之製備 83 3.2.4.1. 3,4-Methylenedioxybenzonitrile (28) 之製備與物理數據 83 3.2.4.2. 3,4-Methylenedioxybenzoamidoxime (29)之製備 84 3.2.4.3. 3-(3,4-Methylenedioxy)phenyl-5-phenyl-1,2,4-oxadiazole (31) 之製備與物理數據 84 3.2.4.4. 3-(3,4-Methylenedioxy)phenyl-5-propyl-1,2,4-oxadiazole (32) 之製備與物理數據 85 3.2.4.5. 3-(3,4-Methylenedioxy)phenyl-5-(2-chloro)phenyl-1,2,4-oxadiazole (33) 之製備與物理數據 86 3.2.4.6. 醯氯之製備 87 3.2.5. 化合物39-41之製備 88 3.2.5.1. (E)-3-(Dimethylamino)-1-(2-hydroxy-4-methoxyphenyl) prop-2-en-1-one (37) 之製備與物理數據 88 3.2.5.2. 3-Iodo-7-methoxychromone (38)之製備與物理數據 89 3.2.5.3. 7-Methoxyisoflavone (39) 之製備與物理數據 90 3.2.5.4. Isoformononetin (40) 之製備與物理數據 91 3.2.5.5. 3-(4-Pyridinyl)-7-methoxychromone (41) 之製備與物理數據 92 3.2.6. 化合物47-49之製備 93 3.2.6.1. 4-Nitrobenzonitrile (43) 之製備與物理數據 93 3.2.6.2. 4-Aminobenzonitrile (44) 之製備 93 3.2.6.3. N-(4-Cyanophenyl)butyramide (45a)之製備 94 3.2.6.4. N-(4-(N'-Hydroxycarbamimidoyl)phenyl)butyramide (46a)之製備 94 3.2.6.5. N-(4-(5-(Trifluoromethyl)-1,2,4-oxadiazol-3-yl)phenyl) butyramide (47) 之製備與物理數據 94 3.2.6.6. N-(4-Cyanophenyl)-3-methylbut-2-enamide (45b) 之製備 95 3.2.6.7. N-(4-(N'-Hydroxycarbamimidoyl)phenyl)-3-methylbut-2-enamide (46b) 之製備 96 3.2.6.8. N-(4-(5-(Trifluoromethyl)-1,2,4-oxadiazol-3-yl)phenyl)-3-methylbut-2-enamide (48) 之製備與物理數據 96 3.2.6.9. N-(4-Cyanophenyl)-2-chlorobenzamide (45c) 之製備 97 3.2.6.10. N-(4-(N'-Hydroxycarbamimidoyl)phenyl)-2-chlorobenzamide (46c) 之製備 97 3.2.6.11. N-(4-(5-(Trifluoromethyl)-1,2,4-oxadiazol-3-yl)phenyl)-2-chlorobenzamide (49) 之製備與物理數據 98 3.2.7. 化合物53-56之製備 99 3.2.7.1. 4-Nitrobenzoamidoxime (50) 之製備 99 3.2.7.2. 3-(4-Nitrophenyl)-5-trifluoromethyl-1,2,4-oxadiazole (51) 之製備與物理數據 99 3.2.7.3. 4-Aminobenzimidamide (52)之製備 100 3.2.7.4. N-(4-Carbamimidoylphenyl)butyramide chloride salt (53) 之製備與物理數據 100 3.2.7.5. N-(4-Carbamimidoylphenyl)-3-methylbut-2-enamide chloride salt (54)之製備與物理數據 102 3.2.7.6. N-(4-Carbamimidoylphenyl)-2-cyclopentylacetamide chloride salt (55) 之製備與物理數據 103 3.2.7.7. N-(4-Carbamimidoylphenyl)-2-chlorobenzamide chloride salt (56) 之製備與物理數據 104 3.2.8. 化合物60之製備 105 3.2.8.1. 2-Iodo-5-nitrothiophene (58)之製備 105 3.2.8.3. N-(5-(Pyridin-4-yl)thiophen-2-yl)-2-chlorobenzamide (60)之製備 106 3.3. 第二型粒線體醛脫氫酶之活性促進實驗 108 3.3.1. 實驗原理 108 3.3.2. 實驗方法 108 3.3.2.1. 試劑配置 108 3.3.2.2. 實驗步驟 109 參考文獻: 111 | |
dc.language.iso | zh-TW | |
dc.title | 新穎第二型醛脫氫酶促進劑之設計、合成
與離體活性評估 | zh_TW |
dc.title | Design, synthesis and in vitro evaluation of
novel ALDH2 agonists | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李水盛,孔繁璐,簡敦誠 | |
dc.subject.keyword | 第二型粒線體醛脫氫?,Alda-1類似物,人體醛類化合物代謝, | zh_TW |
dc.subject.keyword | Mitochondrial aldehyde dehydrogenase 2,Alda-1 analogs,aldehyde metabolism of human body, | en |
dc.relation.page | 180 | |
dc.identifier.doi | 10.6342/NTU201903367 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-13 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
dc.date.embargo-lift | 2024-08-29 | - |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-R06423005-1.pdf 目前未授權公開取用 | 8.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。