Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78616
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇剛毅
dc.contributor.authorWen-Hsin Lien
dc.contributor.author李玟昕zh_TW
dc.date.accessioned2021-07-11T15:07:32Z-
dc.date.available2024-08-28
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citation[1] Charna Dibner, Ueli Schibler, and Urs Albrecht, The mammalian circadian timing system: organization and coordination of central and peripheral clocks, The Annual Review of Physiology, 2010, 72: p.517-49.
[2] Claudia P. Coomans, Ashna Ramkisoensing, and Johanna H. Meijer, The suprachiasmatic nuclei as a seasonal clock, Frontiers in Neuroendocrinology, 2014, 37(2015): p.29-42.
[3] Jennifer A. Mohawk, Carla B. Green, and Joseph S. Takahashi, Central and peripheral circadian clocks in mammals, The Annual Review of Neuroscience, 2012, 35: p.445-62.
[4] Kenji Tomioka and Outa Uryu, Peripheral circadian rhythms and their regulatory mechanism in insects and some other arthropods: a review, Journal of Comparative Physiology B, 2012, 182(6): p.729-40.
[5] Jacob Richards and Michelle L. Gumz, Advances in understanding the peripheral circadian clocks, The FASEB Journal, 2012, 26(9): p.3602-13.
[6] Tiangang Li and John Y. L. Chiang, Bile acid signaling in metabolic disease and drug therapy, Pharmacological Reviews, 2014, 66(4): p.948-83.
[7] Joseph Bass and Joseph S. Takahashi, Circadian integration of metabolism and energetics, Science, 2010, 330(6009): p.1349-54.
[8] Joseph Bass, Circadian topology of metabolism, Nature, 2012, 491: p.348-56.
[9] Yang X, Lamia KA, and Evans RM, Nuclear receptors, metabolism, and the circadian clock, Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72: p.387-94.
[10] Yang X, Downes M, and Yu RT, Nuclear receptor expression links the circadian clock to metabolism, Cell, 2006, 126(4): p.801-10.
[11] Marbach Breitrück E and Matz Soja M, Tick-tock hedgehog-mutual crosstalk with liver circadian clock promotes liver steatosis, Journal of Hepatology, 2019, 70(6): p.1192-202.
[12] Zhong X, Yu J, and Frazier K, Circadian clock regulation of hepatic lipid metabolism by modulation of m6A mRNA methylation, Cell Reports, 2018, 25(7): p.1816-28.
[13] Yu Tahara and Shigenobu Shibata, Circadian rhythms of liver physiology and disease: experimental and clinical evidence, Nature Reviews Gastroenterology & Hepatology, 2016, 13: p.217-26.
[14] David Whitley MD, Steven P., and Goldberg MD, Heat shock proteins: A review of the molecular chaperones, Journal of Vascular Surgery, 1999, 29(4): p.748-51.
[15] Matz JM, Blake MJ, and Tatelman HM, Characterization and regulation of cold-induced heat shock protein expression in mouse brown adipose tissue, The American Journal of Physiology, 1995, 269(1): p.38-47.
[16] Laplante AF, Moulin V, and Auger FA, Expression of heat shock proteins in mouse skin during wound healing, The Journal of Histochemistry and Cytochemistry, 1998, 46(11): p.1291-301.
[17] Meng Feng Tsai, Chi Chung Wang, and Jeremy JW Chen, Tumour suppressor HLJ1: A potential diagnostic, preventive and therapeutic target in non-small cell lung cancer, World Journal of Clinical Oncology, 2014, 5(5): p.865-73.
[18] Chun Yang Fan, Soojin Lee, and Douglas M. Cyr, Mechanisms for regulation of Hsp70 function by Hsp40, Cell Stress & Chaperones, 2003, 8(4): p.309-16.
[19] Qiu XB, Shao YM, and Miao S, The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones, Cellular and Molecular Life Sciences, 2006, 63(2006): p.2560-70.
[20] Jason N. Sterrenberg, Gregory L. Blatch, and Adrienne L. Edkins, Human DNAJ in cancer and stem cells, Cancer Letters, 2011, 312(2): p.129-42.
[21] Tolga Acun and Natalie Doberstein, HLJ1 (DNAJB4) gene is a novel biomarker candidate inbBreast cancer, OMICS: A Journal of Integrative Biology, 2017, 21(5): p.257-65.
[22] McBride HM, Neuspiel M, and Wasiak S, Mitochondria:more than just a powerhouse, Current Biology, 2006, 16(14): p.551-60.
[23] Galluzzi L, Kepp O, and Trojel-Hansen C, Mitochondrial control of cellular life, stress, and death, Circulation Research, 2012, 111(9): p.1198-1207.
[24] Darcy L Johannsen and Eric Ravussin, The role of mitochondria in health and disease, Current Opinion in Pharmacology, 2009, 9(6): p.780-86.
[25] Garth L. Nicolson, Mitochondrial dysfunction and chronic disease: Treatment with natural supplements, Integrative Medicine, 2014. 13(4): p.35-43.
[26] Sejal Vyas, E. Zaganjor, and M.C. Haigis, Mitochondria and cancer, Cell, 2016, 166(3): p.555-66.
[27] Tilokani L, Nagashima S, and Paupe V, Mitochondrial dynamics : overview of molecular mechanisms. Essays In Biochemistry, 2018, 62(3): p.341-60.
[28] Youle RJ and van der Bliek AM, Mitochondrial fission, fusion, and stress, Science, 2012, 337(6098): p.1062-5.
[29] Yasushi Tamura, Kie Itoh, and Hiromi Sesaki, SnapShot: Mitochondrial dynamics, Cell, 2011, 145(7): p.1158-1158.E1.
[30] Hsiuchen Chen and David C. Chan, Mitochondrial dynamics - fusion, fission, movement, and mitophagy - in neurodegenerative diseases, Human Molecular Genetics, 2009, 18(2): p.169-76.
[31] Marc Liesa, Manuel Palacín, and Antonio Zorzano, Mitochondrial dynamics in mammalian health and disease, Physiological Reviews, 2009, 89(3): p.799-845.
[32] Stéphanie Grandemange, Sébastien Herzig, and Jean Claude Martinou, Mitochondrial dynamics and cancer, Seminars in Cancer Biology, 2009, 19(1): p.50-56.
[33] Adi Neufeld Cohen and Maria S. Robles, Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins, PNAS, 2016, 113(12): p.1673-82.
[34] Saar Ezagouri and Gad Asher, Circadian control of mitochondrial dynamics and functions, Current Opinion in Physiology, 2018, 5: p.25-29.
[35] P de Goede and J Wefers, Circadian rhythms in mitochondrial respiration, Journal of Molecular Endocrinology, 2018, 60(3): p.115-30.
[36] David Jacobi, Florian Atger, and Chih Hao Lee, Circadian control of mitochondrial dynamics and its implication in aging, Circadian Rhythms and Their Impact on Aging, 2017, Chapter 7: p.147-61.
[37] David K. Welsh and Seung-Hee Yoo, Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression, Current Biology, 2004, 14(24): p.2289-95.
[38] EmiNagoshi and CamilleSaini, Circadian gene expression in individual fibroblasts: Cell-autonomous and self-sustained oscillators pass time to daughter cells, Cell, 2004, 119(5): p.693-705.
[39] Bokai Zhu, Qiang Zhang, and Yinghong Pan, A cell-autonomous mammalian 12 hr clock coordinates metabolic and stress rhythms, Cell Metabolism, 2017, 25(6): p.1305-19.
[40] Naoto Burioka and Miyako Takata, Dexamethasone influences human clock gene expression in bronchial epithelium and peripheral blood mononuclear cells in vitro, Chronobiology International, 2005, 22(3): p.585-90.
[41] Yaoming Yang and David Duguay, Regulation of behavioral circadian rhythms and clock protein PER1 by the deubiquitinating enzyme USP2, Biology Open, 2012, 1(8): p.789-801.
[42] Maillo C, Martín J, and Sebastián D, Circadian- and UPR-dependent control of CPEB4 mediates a translational response to counteract hepatic steatosis under ER stress, Nature Cell Biology, 2017, 19(2): p.94-105.
[43] Anthony H Tsang and Johanna L Barclay, Interactions between endocrine and circadian systems, Journal of Molecular Endocrinology, 2014, 52(1): p.R1-16.
[44] Gervois P and Torra IP, Regulation of lipid and lipoprotein metabolism by PPAR activators, Clinical Chemistry and Laboratory Medicine, 2000, 38(1): p.3-11.
[45] L. Tong, Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery, Cellular and Molecular Life Sciences, 2005, 62(16): p.1784-803.
[46] A. W. Alberts and A. W. Strauss, Regulation of synthesis of hepatic fatty acid synthetase: Binding of fatty acid synthetase antibodies to polysomes, PNAS, 1975, 72(10): p.3956-60.
[47] Masato Furuhashi and Shigeyuki Saitoh, Fatty acid-binding protein 4 (FABP4): Pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases, Clinical Medicine Insights: Cardiology, 2014, 8(Suppl 3): p.23-33.
[48] Ferré P and Foufelle F., SREBP-1c transcription factor and lipid homeostasis: clinical perspective, Hormone Research, 2007, 68(2): p.72-82.
[49] Kwangwon Lee and Janos Kerner, Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex, Journal of Biological Chemistry, 2011, 286(29): p. 25655-62.
[50] Danling Wang and Jianing Wang, A small molecule promotes mitochondrial fusion in mammalian cells, Angewandte Chemie, 2012, 51(37): p. 9302-5.
[51] Mariko Izumo and Takashi R. Sato, Quantitative analyses of circadian gene expression in mammalian cell cultures, PLOS Computational Biology, 2006, 2(10): p. 1248-61.
[52] Aurélio Balsalobre, Francesca Damiola, and Ueli Schibler, A serum shock induces circadian gene expression in mammalian tissue culture cells, 1998, 93(6): p.929-37.
[53] Aurélio Balsalobre, Lysiane Marcacci, and Ueli Schibler, Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts, Current Biology, 2000, 10(20): p. 1291-4.
[54] Steven A Brown and Gottlieb Zumbrunn, Rhythms of mammalian body temperature can sustain peripheral circadian clocks, Current Biology, 2002, 12(18): p. 1574-83.
[55] Takako Noguchi, Lexie L. Wang, and David K. Welsh, Fibroblast PER2 Circadian Rhythmicity Depends on Cell Density, Journal of Biological Rhythms, 2013, 28(3): p.183-92.
[56] Mariko Izumo, Carl Hirschie Johnson, Circadian gene expression in mammalian fibroblasts revealed by real-time luminescence reporting: Temperature compensation and damping, PNAS, 2003, 100(26): p.16089-94.
[57] Ann Atwood and Robert DeConde, Cell-autonomous circadian clock of hepatocytes drives rhythms in transcription and polyamine synthesis, PNAS, 2011, 108(45): p.18560-5.
[58] Qin Wang, Yue Yin and Weizhen Zhang, Ghrelin restores the disruption of the circadian clock in steatotic liver, International Journal of Molecular Sciences, 2018, 19(10): p.3134-47.
[59] Akira Kohsaka and Aaron D. Laposky, High-fat diet disrupts behavioral and molecular circadian rhythms in mice, Cell Metabolism, 2007, 6(5): p. 414-21.
[60] Melissa Wilking and Mary Ndiaye, Circadian rhythm connections to oxidative stress: Implications for human health, antioxidant and redox signaling, 2013, 19(2): p.192-208.
[61] Wang TA and Yu YV, Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons, Science, 2012, 337(6096): p.839-42.
[62] Erik S. Musiek and Miranda M. Lim, Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration, The Journal of Clinical Investigation, 2013, 123(12): p.5389-400.
[63] Stephen L. Archer amd M.D., Mitochondrial dynamics - Mitochondrial fission and fusion in human diseases, The New England Journal of Medicine, 2013, 369(23): p.2236-51.
[64] David Jacobi, Sihao Liu and Kristopher Burkewitz, Hepatic bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness, Cell Metabolism, 2015,22(4): p.709-20.
[65] Megan C. Harwiga and Matheus P. Viana, Methods for imaging mammalian mitochondrial morphology: A prospectiveon MitoGraph, Analytical Biochemistry, 2018, 552: p.81-99.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78616-
dc.description.abstract生理時鐘為調控代謝的重要機制,分為中央及器官周遭生理時鐘。在肝臟中,若週期紊亂會造成脂肪肝等代謝疾病。粒線體同為維持生理運作的中樞,過去研究指出粒線體形態的動態平衡會受到生理時鐘的調節。實驗室過去在人類肝臟熱休克蛋白40相似蛋白(HLJ1)的研究中發現HLJ1基因剔除(HLJ1-/-)小鼠肝臟有脂肪生成和代謝異常的現象,且在正常(WT)及HLJ1-/-小鼠肝臟RNA微陣列結果分析發現生理時鐘相關基因路徑有顯著差異。故本篇研究欲探討HLJ1在生理時鐘調控脂肪代謝的關係及對粒線體形態的影響。RNA微陣列路徑分析顯示HLJ1與生理時鐘高度相關。欲進一步探討兩者的相關性,我們使用小鼠胚胎成纖維細胞(MEF)及小鼠的肝細胞(hepatocyte),並利用地塞米松(dexamethasone)同步細胞生理時鐘。細胞實驗顯示生理時鐘相關基因確實呈現週期震盪,但WT及HLJ1-/-組別只有部分時間點有差異,整體沒有顯著差異,在小鼠肝臟實驗也獲得相同結果。在研究脂肪代謝的實驗中,結果顯示小鼠血清中三酸甘油酯與總膽固醇也會隨時間產生週期,且兩組在相位與量上都有差異。但在脂肪代謝相關基因與蛋白表現量中,兩組並無差異。我們發現HLJ1在細胞中週期不規律但在肝臟中不管基因還是蛋白層面都有明顯週期的變化。接著,我們利用西方墨點法及免疫螢光染色探討影響線粒體形態,結果可見融合/裂變蛋白表達及和螢光圖中的粒線體形態會受到羰基氰化物間氯苯腙(CCCP)而形成分裂態,但在WT及HLJ1-/- MEF沒有顯著差異。最後,為了更清楚的觀察粒線體形態,我們建立一株粒線體會自發螢光的NIH3T3細胞,可用於進一步研究粒線體形態。zh_TW
dc.description.abstractCircadian clock is the organizer of body biological functions, the disruption of clock in liver causes metabolic diseases such as fatty liver. Mitochondrial morphological change is also a critical mechanism that involves in many metabolic processes, researches have indicated that the dynamic balance of mitochondrial morphology is regulated by circadian clocks. Study of HLJ1 in our lab has found that HLJ1 knockout (HLJ1-/-) mice had abnormalities in lipogenesis and metabolism in liver. We wonder to know the relationship between HLJ1, circadian rhythms and mitochondria dynamic. We utilized mouse embryonic fibroblast (MEF) and hepatocyte from wild-type (WT) and HLJ1-/- mice for experiments. The results displayed the expression levels of circadian related genes were oscillated, but there were no significant difference between those two groups. The same results were seen in liver of WT and HLJ1-/- mice. The results of lipid metabolism of mice showed that triglyceride and total cholesterol in serum also produced rhythmicity by time, the phase and amount were different in two groups. However, there was no difference between the two groups in lipid metabolism related genes and proteins in liver. In addition, the duration pattern of HLJ1 was significant in mRNA and protein level in liver compared to the cell experiments. In the study of mitochondrial morphology, there was no difference in fusion/fission proteins expression and images of immunofluorescence staining of WT and HLJ1-/- MEF. Finally, we generated auto-fluorescent mitochondria in NIH3T3 that could be used for further investigation of mitochondrial morphology.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:07:32Z (GMT). No. of bitstreams: 1
ntu-108-R06424001-1.pdf: 6347950 bytes, checksum: d2ddb0cbab262a1b9b3f416ec045c986 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審訂書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
ABBREVIATIONS vi
Chapter 1 Introduction 1
1.1 Circadian rhythms 2
1.2 Circadian rhythms and liver metabolism 3
1.3 Heats shock proteins (HSPs) and HLJ1 4
1.4 Mitochondria and Disease 5
1.5 Mitochondrial morphology dynamics 6
1.6 Circadian rhythms and mitochondria 7
1.7 Specific aims 8
Chapter 2 Materials and Methods 9
2.1 Experimental Animals 10
2.2 cDNA Microarray analysis 10
2.3 Cell lines 10
2.4 Drug treatment 11
2.5 RNA extraction and Quantitative RT-PCR analysis 12
2.6 Protein extraction and Western blotting analysis 14
2.7 Lipid analysis 15
2.8 Immunofluorescence staining 16
2.9 NIH3T3 fluorescent labeled mitochondria stable clone 17
2.9.1 Transformation 17
2.9.2 Plasmid extraction 17
2.9.3 Restriction enzyme confirmation 18
2.9.4 Transfection 19
2.9.5 Stable clone selection 19
2.10 High content screening 20
2.11 Statistical analysis 20
Chapter 3 Results 21
3.1 Circadian rhythm related genes are differently expressed in liver of wild-type and HLJ1 knockout mice 22
3.2 The difference of circadian rhythm related genes between wild-type and HLJ1 knockout MEF cells was in time points but not in duration patterns 22
3.3 The period fluctuation of circadian rhythm related genes were not obvious in both wild-type and HLJ1 knockout hepatocytes 24
3.4 The oscillation of circadian related genes in livers of HLJ1 knockout mice showed no significant difference with wild-type mice 25
3.5 Deletion of HLJ1 altered the diurnal patterns of hepatic lipid metabolism 26
3.6 The mitochondrial morphological changed between MEF wild-type and HLJ1 knockout cells 27
3.7 Establishment of mitochondrial morphology analysis using NIH3T3 and high content screening 29
Chapter 4 Discussion 31
4.1 The alternation of circadian rhythms without HLJ1 in MEF cells 32
4.2 The alternation of circadian rhythms without HLJ1 in hepatocyte 33
4.3 The alternation of circadian rhythms and lipid metabolism in liver without HLJ1 34
4.4 The relationship between mitochondrial morphological change and HLJ1 35
4.5 The limitation of analyzing the mitochondrial morphology 36
Chapter 5 Conclusion 38
Chapter 6 Tables 40
Table 1. Primer sequences used in quantitative RT-PCR 41
Chapter 7 Figures 42
Figure 1. cDNA microarray analysis to explore HLJ1-associated biological pathway in circadian rhythms. 45
Figure 2. Gene expression levels of circadian rhythms related genes in wild-type and HLJ1-/- MEF. 49
Figure 3. Gene expression levels of circadian rhythms related genes in wild-type and HLJ1-/- hepatocyte. 51
Figure 4. Gene expression levels of circadian rhythms related genes in wild-type and HLJ1-/- mice livers. 54
Figure 5. Lipid metabolism in liver of wild-type and HLJ1-/- mice. 59
Figure 6. Mitochondrial morphology of wild-type and HLJ1-/- MEF. 63
Figure 7. NIH3T3 with autofluorescent mitochondria. 66
REFERENCES 67
dc.language.isoen
dc.title探討HLJ1透過影響生理時鐘調控代謝及粒線體形態變化所扮演之角色zh_TW
dc.titleThe role of HLJ1 to regulate metabolism and mitochondria morphological change via circadian rhythms modulationen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林亮音,楊雅倩,郭靜穎
dc.subject.keyword生理時鐘,人類肝臟熱休克蛋白40相似蛋白,粒線體形態,脂肪代謝,自發螢光粒線體,多參數細胞影像分析儀,zh_TW
dc.subject.keywordcircadian rhythms/clocks,HLJ1,mitochondrial dynamic,lipid metabolism,auto-fluorescent mitochondria,high content screening,en
dc.relation.page76
dc.identifier.doi10.6342/NTU201903458
dc.rights.note有償授權
dc.date.accepted2019-08-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
dc.date.embargo-lift2024-08-28-
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-108-R06424001-1.pdf
  目前未授權公開取用
6.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved