請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78612完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賈景山(Jean-San Chia) | |
| dc.contributor.author | Chih-Hsuan Tuan | en |
| dc.contributor.author | 段致暄 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:07:16Z | - |
| dc.date.available | 2024-08-29 | |
| dc.date.copyright | 2019-08-29 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-13 | |
| dc.identifier.citation | 1. Pancholi, V., Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci, 2001. 58(7): p. 902-20.
2. Piast, M., et al., Molecular evolution of enolase. Acta Biochim Pol, 2005. 52(2): p. 507-13. 3. Giallongo, A., et al., Molecular cloning and nucleotide sequence of a full-length cDNA for human alpha enolase. Proc Natl Acad Sci U S A, 1986. 83(18): p. 6741-5. 4. Kang, H.J., et al., Structure of human alpha-enolase (hENO1), a multifunctional glycolytic enzyme. Acta Crystallogr D Biol Crystallogr, 2008. 64(Pt 6): p. 651-7. 5. Diaz-Ramos, A., et al., alpha-Enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol, 2012. 2012: p. 156795. 6. Merkulova, T., et al., Biochemical characterization of the mouse muscle-specific enolase: developmental changes in electrophoretic variants and selective binding to other proteins. Biochem J, 1997. 323 ( Pt 3): p. 791-800. 7. Capello, M., et al., alpha-Enolase: a promising therapeutic and diagnostic tumor target. Febs j, 2011. 278(7): p. 1064-74. 8. Plow, E.F. and R. Das, Enolase-1 as a plasminogen receptor. Blood, 2009. 113(22): p. 5371-2. 9. Wygrecka, M., et al., Enolase-1 promotes plasminogen-mediated recruitment of monocytes to the acutely inflamed lung. Blood, 2009. 113(22): p. 5588-98. 10. Principe, M., et al., Targeting of surface alpha-enolase inhibits the invasiveness of pancreatic cancer cells. Oncotarget, 2015. 6(13): p. 11098-113. 11. Feo, S., et al., ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett, 2000. 473(1): p. 47-52. 12. Ghosh, A.K., et al., Tumor-suppressive effects of MBP-1 in non-small cell lung cancer cells. Cancer Res, 2006. 66(24): p. 11907-12. 13. Hsu, K.W., et al., MBP-1 suppresses growth and metastasis of gastric cancer cells through COX-2. Mol Biol Cell, 2009. 20(24): p. 5127-37. 14. Veiga-Malta, I., et al., Enolase from Streptococcus sobrinus is an immunosuppressive protein. Cell Microbiol, 2004. 6(1): p. 79-88. 15. Ge, J., D.M. Catt, and R.L. Gregory, Streptococcus mutans surface alpha-enolase binds salivary mucin MG2 and human plasminogen. Infect Immun, 2004. 72(11): p. 6748-52. 16. Pancholi, V. and V.A. Fischetti, alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem, 1998. 273(23): p. 14503-15. 17. Jones, M.N. and R.G. Holt, Cloning and characterization of an alpha-enolase of the oral pathogen Streptococcus mutans that binds human plasminogen. Biochem Biophys Res Commun, 2007. 364(4): p. 924-9. 18. Fontan, P.A., et al., Antibodies to streptococcal surface enolase react with human alpha-enolase: implications in poststreptococcal sequelae. J Infect Dis, 2000. 182(6): p. 1712-21. 19. Lundberg, K., et al., Antibodies to citrullinated alpha-enolase peptide 1 are specific for rheumatoid arthritis and cross-react with bacterial enolase. Arthritis Rheum, 2008. 58(10): p. 3009-19. 20. Hsu, P.P. and D.M. Sabatini, Cancer cell metabolism: Warburg and beyond. Cell, 2008. 134(5): p. 703-7. 21. Sahin, U., et al., Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci U S A, 1995. 92(25): p. 11810-3. 22. Cappello, P., et al., An integrated humoral and cellular response is elicited in pancreatic cancer by alpha-enolase, a novel pancreatic ductal adenocarcinoma-associated antigen. Int J Cancer, 2009. 125(3): p. 639-48. 23. Capello, M., et al., Phosphorylated alpha-enolase induces autoantibodies in HLA-DR8 pancreatic cancer patients and triggers HLA-DR8 restricted T-cell activation. Immunol Lett, 2015. 167(1): p. 11-6. 24. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424. 25. Choi, S. and J.N. Myers, Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. J Dent Res, 2008. 87(1): p. 14-32. 26. Zygogianni, A.G., et al., Oral squamous cell cancer: early detection and the role of alcohol and smoking. Head Neck Oncol, 2011. 3: p. 2. 27. Hashibe, M., et al., Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiol Biomarkers Prev, 2009. 18(2): p. 541-50. 28. Ogden, G.R., Alcohol and oral cancer. Alcohol, 2005. 35(3): p. 169-73. 29. D'Souza, G., et al., Oral sexual behaviors associated with prevalent oral human papillomavirus infection. J Infect Dis, 2009. 199(9): p. 1263-9. 30. Ho, P.S., et al., The incidence of oropharyngeal cancer in Taiwan: an endemic betel quid chewing area. J Oral Pathol Med, 2002. 31(4): p. 213-9. 31. Govekar, R.B., et al., Proteomic profiling of cancer of the gingivo-buccal complex: Identification of new differentially expressed markers. Proteomics Clin Appl, 2009. 3(12): p. 1451-62. 32. Tsai, S.T., et al., ENO1, a potential prognostic head and neck cancer marker, promotes transformation partly via chemokine CCL20 induction. Eur J Cancer, 2010. 46(9): p. 1712-23. 33. Bag, S., et al., Identification of alpha-enolase as a prognostic and diagnostic precancer biomarker in oral submucous fibrosis. J Clin Pathol, 2018. 71(3): p. 228-238. 34. Levy, M., C.A. Thaiss, and E. Elinav, Metabolites: messengers between the microbiota and the immune system. Genes Dev, 2016. 30(14): p. 1589-97. 35. Zitvogel, L., et al., Microbiome and Anticancer Immunosurveillance. Cell, 2016. 165(2): p. 276-87. 36. Kiselyov, A., S. Bunimovich-Mendrazitsky, and V. Startsev, Treatment of non-muscle invasive bladder cancer with Bacillus Calmette-Guerin (BCG): Biological markers and simulation studies. BBA Clin, 2015. 4: p. 27-34. 37. Rubio-Godoy, V., et al., Positional scanning-synthetic peptide library-based analysis of self- and pathogen-derived peptide cross-reactivity with tumor-reactive Melan-A-specific CTL. J Immunol, 2002. 169(10): p. 5696-707. 38. Snyder, A., et al., Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med, 2014. 371(23): p. 2189-2199. 39. Vujanovic, L., et al., A mycoplasma peptide elicits heteroclitic CD4+ T cell responses against tumor antigen MAGE-A6. Clin Cancer Res, 2007. 13(22 Pt 1): p. 6796-806. 40. Uhlen, M., et al., A pathology atlas of the human cancer transcriptome. Science, 2017. 357(6352). 41. Jurtz, V., et al., NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J Immunol, 2017. 199(9): p. 3360-3368. 42. Nielsen, M., et al., Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci, 2003. 12(5): p. 1007-17. 43. Abelin, J.G., et al., Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction. Immunity, 2017. 46(2): p. 315-326. 44. Vita, R., et al., The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res, 2019. 47(D1): p. D339-d343. 45. Shaw, C.K., et al., Distribution of HLA gene and haplotype frequencies in Taiwan: a comparative study among Min-nan, Hakka, Aborigines and Mainland Chinese. Tissue Antigens, 1999. 53(1): p. 51-64. 46. Li, J., et al., Tumor-infiltrating Tim-3(+) T cells proliferate avidly except when PD-1 is co-expressed: Evidence for intracellular cross talk. Oncoimmunology, 2016. 5(10): p. e1200778. 47. Thommen, D.S. and T.N. Schumacher, T Cell Dysfunction in Cancer. Cancer Cell, 2018. 33(4): p. 547-562. 48. Zhou, Q., et al., Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood, 2011. 117(17): p. 4501-10. 49. Allard, B., et al., The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev, 2017. 276(1): p. 121-144. 50. Canale, F.P., et al., CD39 Expression Defines Cell Exhaustion in Tumor-Infiltrating CD8(+) T Cells. Cancer Res, 2018. 78(1): p. 115-128. 51. Duhen, T., et al., Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat Commun, 2018. 9(1): p. 2724. 52. Simoni, Y., et al., Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature, 2018. 557(7706): p. 575-579. 53. Martinez-Usatorre, A., et al., PD-1 Blockade Unleashes Effector Potential of Both High- and Low-Affinity Tumor-Infiltrating T Cells. J Immunol, 2018. 201(2): p. 792-803. 54. Moran, A.E. and K.A. Hogquist, T-cell receptor affinity in thymic development. Immunology, 2012. 135(4): p. 261-7. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78612 | - |
| dc.description.abstract | 在台灣,口腔癌位列國人十大癌症第六名,而口腔鱗狀細胞癌(Oral Squamous cell carcinoma,OSCC)則是最常見的口腔癌類型。而α-烯醇酶(α-Enolase)是糖解作用中的一環,在大多數組織中皆會表達。過去有許多研究指出,包含口腔癌在內,α-烯醇酶會在許多不同癌症中的有表現增加的情形。在癌症中的角色可能作為糖解酶或是纖溶酶原受體,會促使癌症侵襲,生長和轉移。
之前在本實驗室的研究中,我們將人和細菌α-烯醇化酶的氨基酸序列進行了比對,然後將這些序列分成3群:特屬於人類的序列,特屬於細菌的序列,和人類與細菌具有高度相似的序列。我們從健康人與OSCC的患者身上採集血液,分離周血單核球細胞(Peripheral blood mononuclear cells,PBMCs),也從OSCC患者切除的腫瘤中,分離腫瘤浸潤淋巴細胞(Tumor infiltrating Lymphocytes,TILs),然後以前述所提過的3群氨基酸序列進行刺激。實驗結果顯示,不論是在健康人與OSCC患者的PBMCs,或者是OSCC患者的TILs中,都能夠產生針對α-烯醇化酶的免疫反應。我們針對CD8+ T 細胞進行分析,發現這群細胞在刺激後會產生如干擾素γ(Interferon-γ IFN-γ)和腫瘤壞死因子α(Tumor necrosis factor,TNF-α)等免疫反應。 為了分析這些不同免疫反應在腫瘤中的角色。分析這些α-烯醇酶反應性CD8 + T細胞的作用有助於腫瘤進展,我們從美國NIH tetramer core facility獲得了MHC-表位肽四聚體 (peptide-MHC Tetramer),並成功找出了α-烯醇酶特異性CD8 + T細胞。接著,我們發現針對人類與細菌相似的序列的T細胞中,有較多細胞表現PD-1,以及共同表現CD39與CD103,是潛在作為腫瘤特異性細胞的特徵。而我們進一步比較疾病的臨床資訊,發現針對人類與細菌相似的序列,晚期的OSCC患者相比於早期患者,其所產生免疫反應較差。更進一步證實針對人類與細菌相似的序列的T細胞可能存在的抗腫瘤作用。此外,我們利用細菌α-烯醇化酶的氨基酸序列刺激,並在體外培養T細胞。這群細胞中我們也成功找到針對人類與細菌相似的序列的T細胞,並證明其具有細胞毒殺的能力。這個結果反應了免疫交互作用對於腫瘤的影響。 | zh_TW |
| dc.description.abstract | In Taiwan, oral cancer ranks as the 5th highest incidence of cancer in general population. Characterized by high metastatic potency, oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. Alpha-enolase (α-enolase) is a glycolytic enzyme expressed in most tissues. Many researches have pointed out the over-expression of α-enolase in various cancer type, including oral cancer. Its role as glycolytic enzyme and plasminogen receptor were reported to promote cancer invasion, proliferation, and metastasis.
Our previous works revealed that both healthy people and OSCC patients were able to produce immune response against α-enolase. We aligned the sequence of human and bacterial α-enolase, and later divided those sequence into 3 pools of peptides -- human-specific pool, bacteria-specific pool, and shared pool, defined by level of homology between human and bacteria sequences. CD8+ T cells from peripheral blood mononuclear cells (PBMCs) and tumor infiltrating lymphocytes (TILs) were detected producing cytokines like interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) upon stimulation by these 3 peptide pools. Aiming to analyze the effect of these α-enolase responsive CD8+ T cells contributes to tumor progression, we have acquired the peptide-MHC tetramers from NIH tetramer core facility, and successfully identified α-enolase specific CD8+ T cells. Combining results of α-enolase -reactive/specific cells, we found that T cells recognized shared group peptide express a relative higher potential in activation and tumor reactivity, with evidence of higher expression of PD-1 and co-expression of CD39 and CD103 in TILs. Analysis the immune response of three pools with clinical disease status gave us a further surprising outcome. OSCC patients in late stage are found out with lower IFN-γ production against peptides of shared pool, suggesting an anti-tumor effect in T cells recognized shared peptide pool. The result might contribute to the idea of cross-reactivity. As we further successfully expanded T cells recognized shared peptide pool by using bacteria-derived peptide and prove their cytokine function as well as the ability in cytotoxicity. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:07:16Z (GMT). No. of bitstreams: 1 ntu-108-R06449003-1.pdf: 2802438 bytes, checksum: eeeb0776ca5f3793233e38525ebf2bbd (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | CONTENTS
誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES x LIST OF TABLES xi Chapter 1. Introduction 1 1.1. Basic Characteristics of α-enolase 1 1.1.1. Characteristics of human α-enolase 1 1.1.2. Characteristics of streptococcal enolase 2 1.1.3. Reported cross-reactivity between bacterial and human α-enolase 3 1.1.4. α-Enolase is a tumor associated antigen (TAA) 3 1.2. Oral cancer 5 1.2.1. α-enolase is a prognostic factor in oral cancer 5 1.2.2. Our previous studies of α-enolase-related adaptive immune responses in oral cancer patients 6 1.3. Interactions between tumor microenvironment and commensal microbiota 6 Chapter 2. Purpose and Aim 8 Chapter 3. Materials and Methods 10 3.1. Materials 10 3.2. The Cancer Genome Atlas (TCGA) analysis 10 3.3. Clinical specimen 10 3.3.1. Isolation of peripheral blood mononuclear cells (PBMCs) 11 3.3.2. Isolation of tumor infiltrating lymphocytes (TILs) 12 3.4. Preparation of CMV and α-enolase peptide 12 3.5. Ex vivo stimulation of peptide-reactive T cells 13 3.6. In vitro expansion of antigen-specific T cell 14 3.6.1. Enrichment of CD8+ and CD14+ cells 14 3.6.2. Generation of human monocyte-derived dendritic cells (moDCs) 15 3.6.3. Induction of peptide-specific CD8+ T cell 15 3.6.4. Identification of peptide-reactive T cells 16 3.7. Flow cytometric analysis for peptide-reactive T cells 16 3.8. Generation of peptide-MHC tetramers 17 3.8.1. Prediction of peptide-MHC binding affinity 18 3.8.2. Functional avidity test of antigen-specific T cells 18 3.9. HLA-serotyping of OSCC patients 19 3.10. Tetrameric staining of antigen-specific T cells 19 3.11. In vitro cytotoxic assay 20 3.12. Immunohistochemistry Staining 20 3.13. Statistical analysis 21 Chapter 4. Results 22 4.1. Expression of α-enolase in oral cancer patients 22 4.1.1. -enolase expression correlates with poor prognosis of HNSCC patients 22 4.2. Identifying α-enolase binding epitope of HLA-A 23 4.2.1. Prediction of α-enolase-binding epitopes 24 4.2.2. Establishment of α-enolase-specific tetramers 25 4.2.3. Identifying α-enolase-specific cells 25 4.3. Analysis of α-enolase reactive/specific T cells 26 4.3.1. Polyfunctionality analysis of α-enolase reactive T cells 26 4.3.2. Phenotypic analysis of α-enolase reactive T cells 27 4.3.3. Phenotypic analysis of α-enolase specific T cells 28 4.4. Clinical status and reactivity of different α-enolase pool in OSCC patients 29 4.5. Cross-reactivity between human and bacteria α-enolase peptides 30 4.6. Cytotoxicity effect of α-enolase reactive T cells 30 Chapter 5. Discussions 32 REFERENCES 34 FIGURES 41 TABLES 56 | |
| dc.language.iso | en | |
| dc.subject | 抗原專一性T細胞 | zh_TW |
| dc.subject | α-烯醇? | zh_TW |
| dc.subject | 口腔癌 | zh_TW |
| dc.subject | CD8 T細胞 | zh_TW |
| dc.subject | 免疫交互作用 | zh_TW |
| dc.subject | α-enolase | en |
| dc.subject | antigen-specific T cells | en |
| dc.subject | CD8 T cells | en |
| dc.subject | cross-reactivity | en |
| dc.subject | oral cancer | en |
| dc.title | 口腔鱗狀上皮細胞癌中的CD8 T細胞亞群對人類與細菌α-烯醇酶的交互反應 | zh_TW |
| dc.title | Cross-reactive Human and Bacteria α-Enolase CD8+ T Cell Response in Oral Squamous Cell Carcinoma (OSCC) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 邱彥霖(Yen-Ling Chiu) | |
| dc.contributor.oralexamcommittee | 許秉寧(Ping-Ning Hsu) | |
| dc.subject.keyword | α-烯醇?,口腔癌,CD8 T細胞,抗原專一性T細胞,免疫交互作用, | zh_TW |
| dc.subject.keyword | α-enolase,antigen-specific T cells,CD8 T cells,cross-reactivity,oral cancer, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU201903159 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-14 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-29 | - |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R06449003-1.pdf 未授權公開取用 | 2.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
