請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78610完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 侯詠德(Yung-Te Hou) | |
| dc.contributor.author | Chao-Chun Hsu | en |
| dc.contributor.author | 許朝俊 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:07:09Z | - |
| dc.date.available | 2022-08-19 | |
| dc.date.copyright | 2019-08-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-13 | |
| dc.identifier.citation | (1)杜素珍, 史麗珠, 廖美南, 黃慈心, & 陳麗娟. 2001. 器官移植教育對護理人員器官捐贈觀念之影響. 臺灣醫學, 5(1), 1-9.
(2)ASTM. 2016. Assessing Microstructure of Polymeric Scaffolds for Use in Tissue-Engineered Medical Products1, F2450 – 10, Philadelphia, Pa (3)ASTM. 2016. Characterization of Hydrogels used in Regenerative Medicine1. F2900-11, Philadelphia, Pa. (4)ASTM. 2016. In vitro Degradation Testing of Hydrolytically Degradable Polymer Resins and Fabricated Forms for Surgical Implants1, F1635 − 11, Philadelphia, Pa (5)ASTM. 2016. Test Polymer Matrix Composite Materials1, D4762-11a, Philadelphia, Pa (6)Bhatia, L. S., Curzen, N. P., Calder, P. C., & Byrne, C. D. 2012. Non-alcoholic fatty liver disease: a new and important cardiovascular risk factor?. European heart journal, 33(10), 1190-1200. (7)Chiu, Y. S., Wei, C. C., Lin, Y. J., Hsu, Y. H., & Chang, M. S. 2014. IL‐20 and IL‐20R1 antibodies protect against liver fibrosis. Hepatology, 60(3), 1003-1014. (8)Dacha, S., et al. 2014. MARS Therapy for Successful Bridging to Liver Transplantation.'American Journal of Gastroenterology 109: S163-S163. (9)Depan, D., et al. 2013. Degradation mechanism and increased stability of chitosan-based hybrid scaffolds cross-linked with nanostructured carbon: Process-structure-functional property relationship. Polymer Degradation and Stability 98(11): 2331-2339. (10)Dixit, V., Darvasi, R., Arthur, M., Brezina, M., Lewin, K., & Gitnick, G. 1990. Restoration of liver function in Gunn rats without immunosuppression using transplanted microencapsulated hepatocytes. Hepatology, 12(6), 1342-1349. (11)Ensminger, S., et al. 2016. A Novel Bioprosthetic Total Artificial Heart.'Transplantation, 100(4): 699-700. (12)Fan, J., Shang, Y., Yuan, Y., & Yang, J. 2010. Preparation and characterization of chitosan/galactosylated hyaluronic acid scaffolds for primary hepatocytes culture. Journal of Materials Science: Materials in Medicine, 21(1), 319-327. (13)Gong, H., Agustin, J., Wootton, D., & Zhou, J. G. 2014. Biomimetic design and fabrication of porous chitosan–gelatin liver scaffolds with hierarchical channel network. Journal of Materials Science: Materials in Medicine, 25(1), 113-120. (14)Haque, T., Chen, H., Ouyang, W., Martoni, C., Lawuyi, B., Urbanska, A. M., & Prakash, S. 2005. In vitro study of alginate–chitosan microcapsules: an alternative to liver cell transplants for the treatment of liver failure. Biotechnology letters, 27(5), 317-322. (15)Hedon, E. and C. Fleig 1903. On keeping the irritability of some organs separated from the body by immsersion in an artificial nutritive liquid. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 137: 217-219. (16)Hirai, S., Kasai, S., & Mito, M. 1993. Encapsulated Hepatocyte Transplantation for the Treatment of D-Galactosamine-lnduced Acute Hepatic Failure in Rats. European surgical research, 25(4), 193-202. http://www.eurekalert.org/pub_releases/2010-09/uoc–uum090210.php. (17)Huang, Y., Onyeri, S., Siewe, M., Moshfeghian, A., & Madihally, S. V. (2005). In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials, 26(36), 7616-7627. (18)Jiankang, H., Dichen, L., Yaxiong, L., Bo, Y., Bingheng, L., & Qin, L. 2007. Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures. Polymer, 48(15), 4578-4588. (19)Jiankang, H., Dichen, L., Yaxiong, L., Bo, Y., Hanxiang, Z., Qin, L., ... & Yi, L. 2009. Preparation of chitosan–gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering. Acta Biomaterialia, 5(1), 453-461. (20)Kamlot, A., et al. (1996). 'Review: Artificial liver support systems.' Biotechnology and Bioengineering 50(4): 382-391. (21)Kasai, S., Sawa, M., Nishida, Y., Onodera, K., Hirai, S., Yamamoto, T., & Mito, M. 1992, December. Cellulose microcarrier for high-density culture of hepatocytes. In Transplantation proceedings (Vol. 24, No. 6, p. 2933). (22)Kino, Y., Sawa, M., Kasai, S., & Mito, M. 1998. Multiporous cellulose microcarrier for the development of a hybrid artificial liver using isolated hepatocytes. Journal of Surgical Research, 79(1), 71-76. (23)Kobayashi, N., Okitsu, T., Maruyama, M., Totsugawa, T., Kosaka, Y., Hayashi, N., ... & Tanaka, N. 2003, February. Development of a cellulose-based microcarrier containing cellular adhesive peptides for a bioartificial liver. In Transplantation proceedings (Vol. 35, No. 1, pp. 443-444). Elsevier. (24)Li, K., Wang, Y., Miao, Z., Xu, D., Tang, Y., & Feng, M. 2004. Chitosan/gelatin composite microcarrier for hepatocyte culture. Biotechnology letters, 26(11), 879-883. (25)Li, X., He, J., Liu, Y., Zhao, Q., Wu, W., Li, D., & Jin, Z. 2013. Biomaterial scaffolds with biomimetic fluidic channels for hepatocyte culture. Journal of Bionic Engineering, 10(1), 57-64. (26)Maguire, T., Novik, E., Schloss, R., & Yarmush, M. 2006. Alginate‐PLL microencapsulation: Effect on the differentiation of embryonic stem cells into hepatocytes. Biotechnology and bioengineering, 93(3), 581-591. (27)Mironov, V., Boland, T., Trusk, T., Forgacs, G., & Markwald, R. R. 2003. Organ printing: computer-aided jet-based 3D tissue engineering. TRENDS in Biotechnology, 21(4), 157-161. (28)Miura, Y., Akimoto, T., Kanazawa, H., & Yagi, K. 1986. Synthesis and secretion of protein by hepatocytes entrapped within calcium alginate. Artificial organs, 10(6), 460-465. (29)Mooney, D. J., Sano, K., Kaufmann, P. M., Majahod, K., Schloo, B., Vacanti, J. P., & Langer, R. 1997. Long‐term engraftment of hepatocytes transplanted on biodegradable polymer sponges. Journal of biomedical materials research, 37(3), 413-420. (30)Morabito, V., et al. 2014. Prognostic Criteria after Artificial Liver Mars in Fulminant Hepatitis. Transplant International, 27: 8-8. (31)Nerem R. M., and Sambanis, A. 1995. Tissue engineering: from biology to biological substitutes. Tissue engineering, 1(1), 3-13. (32)Pollok, J. M., Kluth, D., Cusick, R. A., Lee, H., Utsunomiya, H., Ma, P. X., ... & Vacanti, J. P. 1998. Formation of spheroidal aggregates of hepatocytes on biodegradable polymers under continuous-flow bioreactor conditions. European journal of pediatric surgery, 8(04), 195-199. (33)Roy S, Goldman K, Marchant R, Zydney A, Brown D, Fleischman A, Conlisk A, Desai T, Duffy S, Humes H, Fissell W. 2011. Implanted renal replacement for end-stage renal disease. Panminerva Med. 53(3):155-66. Also see University of California San Francisco. UCSF unveils model for implantable artificial kidney to replace dialysis. Available at: Accessed November 27, 2011. (34)Seglen, P.O. 1976. Preparation of isolated rat liver cells. Methods in Cell Biology, 13, Academic Press, New York, 29-83 (35)Semino, C. E., Merok, J. R., Crane, G. G., Panagiotakos, G., & Zhang, S. 2003. Functional differentiation of hepatocyte‐like spheroid structures from putative liver progenitor cells in three‐dimensional peptide scaffolds. Differentiation, 71(4‐5), 262-270. (36)Shan, J., Stevens, K. R., Trehan, K., Underhill, G. H., Chen, A. A., and Bhatia, S. N. 2011. Hepatic tissue engineering. In Molecular pathology of liver diseases (pp. 321-342). Springer US. (37)Tao, X., Shaolin, L., & Yaoting, Y. 2003. Preparation and culture of hepatocyte on gelatin microcarriers. Journal of Biomedical Materials Research Part A, 65(2), 306-310. (38)Török, E., Pollok, J. M., Ma, P. X., Vogel, C., Dandri, M., Petersen, J., ... & Rogiers, X. 2001. Hepatic tissue engineering on 3-dimensional biodegradable polymers within a pulsatile flow bioreactor. Digestive surgery, 18(3), 196-203. (39)Wang, D. A., Williams, C. G., Yang, F., Cher, N., Lee, H., & Elisseeff, J. H. 2005. Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue engineering, 11(1-2), 201-213. (40)Yang, S., Leong, K. F., Du, Z., and Chua, C. K. 2001. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue engineering, 7(6), 679-689. (41)Yoon, J. J., Nam, Y. S., Kim, J. H., & Park, T. G. 2002. Surface immobilization of galactose onto aliphatic biodegradable polymers for hepatocyte culture. Biotechnology and bioengineering, 78(1), 1-10. (42)Zhao, Y., Xu, Y., Zhang, B., Wu, X., Xu, F., Liang, W., ... & Li, R. 2009. In vivo generation of thick, vascularized hepatic tissue from collagen hydrogel-based hepatic units. Tissue Engineering Part C: Methods, 16(4), 653-659. (43)Ji, H., & Bachmanov, A. A. 2007. Differences in postingestive metabolism of glutamate and glycine between C57BL/6ByJ and 129P3/J mice. Physiological genomics, 31(3), 475-482. (44)Fiegel, H.C., et al., 2009. Development of hepatic tissue engineering. Pediatric Surgery International,.25(8): p. 667-673. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78610 | - |
| dc.description.abstract | 在臨床醫學上,肝癌與肝硬化一直在國人十大死因中名列前茅,對於重症病患而言,肝器官移植仍是臨床上最有效的方法,然而,器官捐贈的不足仍是主要障礙。同時等待器官捐贈的時間是漫長的,加上當肝臟衰竭時,體內的毒素會不斷的累積於體內,並且影響其他器官的功能;或是接受肝臟移植後,若併發感染或是出現排斥反應時,則必須接受洗肝替代性治療來恆定病人的生命。目前肝替代性治療的方式是使用洗肝機來移除毒素,但洗肝機僅能短暫的維持病患的生命,其因是受損的肝臟其肝功能無法維持一定程度,所以開發具可應用於病患並且有機能性的人工肝臟是目前醫學工程領域正在發展的 重要議題之一。
具有機能性的人工肝臟(Functional BAL)的設計概念,其方式是保留分子吸附再循環系統的基礎設計概念,將血漿分離出來後,並且將毒素清除之後的血漿接引導入含有肝實質細胞(Primary hepatocyte)貼附於支架(Scaffold)的肝細胞生物反應器(Hepatocyte bioreactor),經由自體灌流培養後,反應器內部的肝實質細胞所合成出來的產物會回流入病患體內,進而提升患者的生存機會。然而生物反應器內部的支架會隨著環境與酵素的影響,造成降解的情形,使其結構一直無法長時間維持並且影響肝實質細胞的貼附與生長。為此,本研究透過不同固含量(g/g)的戊二醛與幾丁質聚醣/明膠溶液(C/G Solution)進行交聯反應,並經由冷凍乾燥程序製做出不同壓縮模數的肝臟支架,並將肝實質細胞培養於處理過後的肝臟支架,用來觀察肝實質細胞與壓縮模數之間的關聯性。 同時能夠用於移植的人工肝臟,內部的肝細胞數量至少也是人體的35%,因此,如何填塞等量的肝細胞到肝臟支架是ㄧ大挑戰,勢必考驗肝臟支架的空間整體尺寸,肝臟支架的厚度與幾何尺寸也是扮演養分/代謝物傳輸重要的因素,所以本篇論文也會探討厚度改變與其細胞活性的影響。 | zh_TW |
| dc.description.abstract | Functional artificial livers (FALs), with embedded hepatocytes that perform the functions of a normal liver, have been developed for liver diseases for decades. It is important to note that the liver scaffold, which is a biologically functional core of the artificial livers, plays a vital role in bio-cartridge within artificial liver. In this study, a three-dimensional (3D) liver scaffold for in vitro cultures was fabricated by freezing-drying chitosan/gelatin (C/G) solution. CG liver scaffold has some advantages such as (1): Inexpensive and easy-to-make; (2) Easy to fabricate CG liver scaffold with varying compressive tangent modulus by changing the concentration of glutaraldehyde; (3) Non-cytotoxicity; (4) The porous structure of CG scaffold is similar to extracellular matrix (ECM) and therefore helpful for hepatocyte adhesion. In the result, we found that the compressive tangent modulus and maintability of CG liver scaffold correlated to the glutaraldehyde increase, these results were also consistent with the results determined by the dynamic mechanical analysis (DMA) analysis. Furthermore, hepatocyte viability and albumin synthesis shows the best performances in 0.61% glutaraldehyde-CG scaffold. This CG scaffold has not only higher hepatocyte biocompatibility and mechanical strength, but can also maintain hepatocyte function and viability in vitro cultures, we believe that CG scaffold as liver scaffold may have high potential for further artificial liver design in the near future. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:07:09Z (GMT). No. of bitstreams: 1 ntu-108-R04631015-1.pdf: 2951212 bytes, checksum: c92d8c8e89c8cf8cff9556119f81d901 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 ix 表目錄 xi 第一章 前言 1 1.1背景 1 1.2研究目的 2 1.3實驗架構 3 第二章 文獻探討 4 2.1 再生醫學與替代性治療 4 2.1.3器官移植 4 2.1.2組織工程 4 2.1.4人工器官 5 2.2肝臟支架 6 2.2.1肝臟支架材料─幾丁質聚醣 7 2.2.1肝臟支架材料─明膠 8 2.2.2製備肝臟支架交聯劑選用 8 第三章 材料與方法 9 3.1 實驗藥品、耗材、儀器設備與實驗動物 9 3.1.1實驗藥品 9 3.1.2實驗耗材 10 3.1.3實驗儀器設備 10 3.1.4實驗動物 11 3.2不同壓縮/彈性模數支架製備 11 3.3支架之物理、化學性質量測方法 12 3.3.1支架膨潤率分析 12 3.3.2支架含水率分析 13 3.3.3支架降解率分析 13 3.3.4支架孔洞結構與尺寸(含細胞貼附)分析 14 3.4肝灌流與初代肝臟細胞採取 15 3.5支架之2D與3D培養 17 3.6生物相容性測試 17 3.6.1細胞活性檢測 17 3.6.2去氧核醣核酸(DNA)濃度檢測 17 3.6.3肝蛋白(Albumin)分泌量檢測 18 3.6.4 尿素(Urea)代謝檢測 18 3.6.5功能性基因檢測 18 3.7細胞瑩光染色 19 3.8真實肝臟組織試片製作 21 3.9動態彈性機械分析材料測試 21 3.12.標準差分析 22 第四章 結果與討論 23 4.1肝臟支架之物性與化性之結果 23 4.1.1肝臟支架-孔洞直徑大小差異 23 4.1.2肝臟支架-非極性溶液對膨脹率與含水性關聯性 23 4.1.3肝臟支架-極性溶液對支架的膨脹率與孔隙率之關聯性 25 4.1.4肝臟支架-含水率與孔隙率關聯性 26 4.2肝臟支架降解率特性 31 4.3肝臟支架細胞活性 33 4.4肝臟支架機械特性 35 4.5肝臟支架上初代肝細胞功能性表現 39 4.7肝臟支架細胞形態學 40 第五章 結論與未來展望 41 5.1 結論 41 參考文獻 42 | |
| dc.language.iso | zh-TW | |
| dc.subject | 雙灌流系統、養分/代謝物傳輸、肝臟支架、幾丁質聚醣/明膠、體外模擬分析、厚度與幾何尺寸 | zh_TW |
| dc.subject | Hepatocyte | en |
| dc.subject | Chitosan/Gelatin | en |
| dc.subject | Dynamic mechanical analysis (DMA) | en |
| dc.subject | Liver scaffold | en |
| dc.subject | Artificial liver | en |
| dc.title | 生物材料之壓縮/彈性模數對於大鼠肝細胞行為與功能性之影響 | zh_TW |
| dc.title | Effects of the Compressive / Elastic Modulus of Biomaterials on Rat Hepatocyte Behavior and Function | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳力騏(Chen-RLC),謝博全(Bo-Chuan Hsieh) | |
| dc.subject.keyword | 雙灌流系統、養分/代謝物傳輸、肝臟支架、幾丁質聚醣/明膠、體外模擬分析、厚度與幾何尺寸, | zh_TW |
| dc.subject.keyword | Artificial liver,Liver scaffold,Chitosan/Gelatin,Hepatocyte,Dynamic mechanical analysis (DMA), | en |
| dc.relation.page | 45 | |
| dc.identifier.doi | 10.6342/NTU201903511 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R04631015-1.pdf 未授權公開取用 | 2.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
