Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78608
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李佳音zh_TW
dc.contributor.advisorChia-Yin Leeen
dc.contributor.author劉馨雅zh_TW
dc.contributor.authorShin-Ya Liuen
dc.date.accessioned2021-07-11T15:07:01Z-
dc.date.available2024-08-19-
dc.date.copyright2019-08-26-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation吳培萱 (2016). 腸炎弧菌 prtV 基因表現受 Fur 及 VPA0458 的調控. 碩士論文,國立臺灣大學,台北市.
林慈玲 (2013). 腸炎弧菌胞外蛋白酶受 Fur 調控及 RyhB 特性分析. 碩士論文,國立臺灣大學,台北市.
趙芳筠 (2012). 攝鐵蛋白及鐵離子對於腸炎弧菌胞外蛋白酶調控之研究. 碩士論文,國立臺灣大學,台北市.
潘淑芬 (1999). 腸炎弧菌膠原蛋白酶基因表現及調控之研究.
衛生福利部食品藥物管理署民國 108 年食品中毒資料.
(https://www.fda.gov.tw/TC/siteContent.aspx?sid=323).
Ahmad, R., Hjerde, E., Hansen, G.A., Haugen, P., and Willassen, N.P. (2009). Prediction and experimental testing of ferric uptake regulator regulons in Vibrios. J Mol Microbiol Biotechnol 16, 159-168.
Ahn, B.E., Cha, J., Lee, E.J., Han, A.R., Thompson, C.J., and Roe, J.H. (2006). Nur, a nickel-responsive regulator of the Fur family, regulates superoxide dismutases and nickel transport in Streptomyces coelicolor. Mol Microbiol 59, 1848-1858.
Anbar, A.D. (2008). Oceans. Elements and evolution. Science 322, 1481-1483.
Andrews, S.C. (1998). Iron storage in bacteria. Adv Microb Physiol 40, 281-351.
Andrews, S.C., Robinson, A.K., and Rodriguez-Quinones, F. (2003). Bacterial iron homeostasis. FEMS Microbiol Rev 27, 215-237.
Bagg, A., and Neilands, J.B. (1987a). Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26, 5471-5477.
Bagg, A., and Neilands, J.B. (1987b). Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol Rev 51, 509-518.
Baichoo, N., and Helmann, J.D. (2002). Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol 184, 5826-5832.
Bos, M.P., Robert, V., and Tommassen, J. (2007). Biogenesis of the gram-negative bacterial outer membrane. Annu Rev Microbiol 61, 191-214.
Brinkley, A.W., Rommel, F.A., and Huber, T.W. (1976). The isolation of Vibrio parahaemolyticus and related Vibrios from moribund aquarium lobsters. Can J Microbiol 22, 315-317.
Broberg, C.A., Calder, T.J., and Orth, K. (2011). Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect 13, 992-1001.
Bsat, N., Herbig, A., Casillas-Martinez, L., Setlow, P., and Helmann, J.D. (1998). Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29, 189-198.
Coy, M., and Neilands, J.B. (1991). Structural dynamics and functional domains of the fur protein. Biochemistry 30, 8201-8210.
De Lorenzo, V., Herrero, M., Giovannini, F., and Neilands, J.B. (1988). Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli. Eur J Biochem 173, 537-546.
de Lorenzo, V., Wee, S., Herrero, M., and Neilands, J.B. (1987). Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation (fur) repressor. J Bacteriol 169, 2624-2630.
Delany, I., Spohn, G., Rappuoli, R., and Scarlato, V. (2001). The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Mol Microbiol 42, 1297-1309.
Duarte, A.S., Correia, A., and Esteves, A.C. (2016). Bacterial collagenases - A review. Crit Rev Microbiol 42, 106-126.
Edwin, A., Rompikuntal, P., Bjorn, E., Stier, G., Wai, S.N., and Sauer-Eriksson, A.E. (2013). Calcium binding by the PKD1 domain regulates interdomain flexibility in Vibrio cholerae metalloprotease PrtV. FEBS Open Bio 3, 263-270.
Escolar, L., Perez-Martin, J., and de Lorenzo, V. (1998). Binding of the fur (ferric uptake regulator) repressor of Escherichia coli to arrays of the GATAAT sequence. J Mol Biol 283, 537-547.
Fairman, J.W., Noinaj, N., and Buchanan, S.K. (2011). The structural biology of beta-barrel membrane proteins: a summary of recent reports. Curr Opin Struct Biol 21, 523-531.
Faruque, S.M., Albert, M.J., and Mekalanos, J.J. (1998). Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 62, 1301-1314.
Ferrer, M., Golyshina, O.V., Beloqui, A., Golyshin, P.N., and Timmis, K.N. (2007). The cellular machinery of Ferroplasma acidiphilum is iron-protein-dominated. Nature 445, 91-94.
Fillat, M.F. (2014). The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 546, 41-52.
Friedman, Y.E., and O'Brian, M.R. (2003). A novel DNA-binding site for the ferric uptake regulator (Fur) protein from Bradyrhizobium japonicum. J Biol Chem 278, 38395-38401.
Funahashi, T., Moriya, K., Uemura, S., Miyoshi, S., Shinoda, S., Narimatsu, S., and Yamamoto, S. (2002). Identification and characterization of pvuA, a gene encoding the ferric vibrioferrin receptor protein in Vibrio parahaemolyticus. J Bacteriol 184, 936-946.
Gaballa, A., and Helmann, J.D. (1998). Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J Bacteriol 180, 5815-5821.
Galdiero, S., Galdiero, M., and Pedone, C. (2007). beta-Barrel membrane bacterial proteins: structure, function, assembly and interaction with lipids. Curr Protein Pept Sci 8, 63-82.
Gatsos, X., Perry, A.J., Anwari, K., Dolezal, P., Wolynec, P.P., Likic, V.A., Purcell, A.W., Buchanan, S.K., and Lithgow, T. (2008). Protein secretion and outer membrane assembly in Alphaproteobacteria. FEMS Microbiol Rev 32, 995-1009.
Goldberg, M.B., Boyko, S.A., and Calderwood, S.B. (1990). Transcriptional regulation by iron of a Vibrio cholerae virulence gene and homology of the gene to the Escherichia coli fur system. J Bacteriol 172, 6863-6870.
Guerinot, M.L. (1994). Microbial iron transport. Annu Rev Microbiol 48, 743-772.
Hagan, C.L., Silhavy, T.J., and Kahne, D. (2011). beta-Barrel membrane protein assembly by the Bam complex. Annu Rev Biochem 80, 189-210.
Hantke, K. (1981). Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol Gen Genet 182, 288-292.
Hantke, K. (2001). Iron and metal regulation in bacteria. Curr Opin Microbiol 4, 172-177.
Honda, T., Taga, S., Takeda, T., Hasibuan, M.A., Takeda, Y., and Miwatani, T. (1976). Identification of lethal toxin with the thermostable direct hemolysin produced by Vibrio parahaemolyticus, and some physicochemical properties of the purified toxin. Infect Immun 13, 133-139.
Kaper, J.B., Morris, J.G., Jr., and Levine, M.M. (1995). Cholera. Clin Microbiol Rev 8, 48-86.
Kim, J.H., Ji, C.J., Ju, S.Y., Yang, Y.M., Ryu, S.H., Kwon, Y., Won, Y.B., Lee, Y.E., Youn, H., and Lee, J.W. (2016). Bacillus licheniformis Contains Two More PerR-Like Proteins in Addition to PerR, Fur, and Zur Orthologues. PLoS One 11, e0155539.
Kim, S.K., Yang, J.Y., and Cha, J. (2002). Cloning and sequence analysis of a novel metalloprotease gene from Vibrio parahaemolyticus 04. Gene 283, 277-286.
Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305, 567-580.
Lavrrar, J.L., Christoffersen, C.A., and McIntosh, M.A. (2002). Fur-DNA interactions at the bidirectional fepDGC-entS promoter region in Escherichia coli. J Mol Biol 322, 983-995.
Le Cam, E., Frechon, D., Barray, M., Fourcade, A., and Delain, E. (1994). Observation of binding and polymerization of Fur repressor onto operator-containing DNA with electron and atomic force microscopes. Proc Natl Acad Sci U S A 91, 11816-11820.
Lee, C.T., Chen, I.T., Yang, Y.T., Ko, T.P., Huang, Y.T., Huang, J.Y., Huang, M.F., Lin, S.J., Chen, C.Y., Lin, S.S., et al. (2015). The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proc Natl Acad Sci U S A 112, 10798-10803.
Lee, C.Y., Cheng, M.F., Yu, M.S., and Pan, M.J. (2002). Purification and characterization of a putative virulence factor, serine protease, from Vibrio parahaemolyticus. FEMS Microbiol Lett 209, 31-37.
Lee, C.Y., Su, S.C., and Liaw, R.B. (1995). Molecular analysis of an extracellular protease gene from Vibrio parahaemolyticus. Microbiology 141, 2569–2576.
Lee, H.J., Bang, S.H., Lee, K.H., and Park, S.J. (2007). Positive regulation of fur gene expression via direct interaction of fur in a pathogenic bacterium, Vibrio vulnificus. J Bacteriol 189, 2629-2636.
Lee, H.J., Kim, J.A., Lee, M.A., Park, S.J., and Lee, K.H. (2013). Regulation of haemolysin (VvhA) production by ferric uptake regulator (Fur) in Vibrio vulnificus: repression of vvhA transcription by Fur and proteolysis of VvhA by Fur-repressive exoproteases. Mol Microbiol 88, 813-826.
Lee, H.J., Park, K.J., Lee, A.Y., Park, S.G., Park, B.C., Lee, K.H., and Park, S.J. (2003a). Regulation of fur expression by RpoS and fur in Vibrio vulnificus. J Bacteriol 185, 5891-5896.
Lee, J.W., and Helmann, J.D. (2006). The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440, 363-367.
Lee, J.W., and Helmann, J.D. (2007). Functional specialization within the Fur family of metalloregulators. Biometals 20, 485-499.
Lee, K.K., Liu, P.C., and Huang, C.Y. (2003b). Vibrio parahaemolyticus infectious for both humans and edible mollusk abalone. Microbes Infect 5, 481-485.
Lovell, C.R. (2017). Ecological fitness and virulence features of Vibrio parahaemolyticus in estuarine environments. Appl Microbiol Biotechnol 101, 1781-1794.
Luan, X., Chen, J., Zhang, X.H., Li, Y., and Hu, G. (2007). Expression and characterization of a metalloprotease from a Vibrio parahaemolyticus isolate. Can J Microbiol 53, 1168-1173.
Masse, E., and Gottesman, S. (2002). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 99, 4620-4625.
Masse, E., Salvail, H., Desnoyers, G., and Arguin, M. (2007). Small RNAs controlling iron metabolism. Curr Opin Microbiol 10, 140-145.
McCarter, L., Hilmen, M., and Silverman, M. (1988). Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus. Cell 54, 345-351.
Miwatani, T., Takeda, Y., Sakurai, J., Yoshihara, A., and Taga, S. (1972). Effect of heat (Arrhenius effect) on crude hemolysin of Vibrio parahaemolyticus. Infect Immun 6, 1031-1033.
Miyoshi, S. (2013). Extracellular proteolytic enzymes produced by human pathogenic Vibrio species. Front Microbiol 4, 339.
Miyoshi, S., Nitanda, Y., Fujii, K., Kawahara, K., Li, T., Maehara, Y., Ramamurthy, T., Takeda, Y., and Shinoda, S. (2008). Differential gene expression and extracellular secretion of the collagenolytic enzymes by the pathogen Vibrio parahaemolyticus. FEMS Microbiol Lett 283, 176-181.
Miyoshi, S., Wang, J., Katoh, K., Senoh, M., Mizuno, T., and Maehara, Y. (2012). An extracellular serine protease produced by Vibrio vulnificus NCIMB 2137, a metalloprotease-gene negative strain isolated from a diseased eel. World J Microbiol Biotechnol 28, 1633-1639.
Moore, C.M., and Helmann, J.D. (2005). Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol 8, 188-195.
Nishibuchi, M., and Kaper, J.B. (1985). Nucleotide sequence of the thermostable direct hemolysin gene of Vibrio parahaemolyticus. J Bacteriol 162, 558-564.
Nishibuchi, M., Taniguchi, T., Misawa, T., Khaeomanee-Iam, V., Honda, T., and Miwatani, T. (1989). Cloning and nucleotide sequence of the gene (trh) encoding the hemolysin related to the thermostable direct hemolysin of Vibrio parahaemolyticus. Infect Immun 57, 2691-2697.
Okuda, J., Ishibashi, M., Hayakawa, E., Nishino, T., Takeda, Y., Mukhopadhyay, A.K., Garg, S., Bhattacharya, S.K., Nair, G.B., and Nishibuchi, M. (1997). Emergence of a unique O3:K6 clone of Vibrio parahaemolyticus in Calcutta, India, and isolation of strains from the same clonal group from Southeast Asian travelers arriving in Japan. J Clin Microbiol 35, 3150-3155.
Ou, G., Rompikuntal, P.K., Bitar, A., Lindmark, B., Vaitkevicius, K., Wai, S.N., and Hammarstrom, M.L. (2009). Vibrio cholerae cytolysin causes an inflammatory response in human intestinal epithelial cells that is modulated by the PrtV protease. PLoS One 4, e7806.
Pinochet-Barros, A., and Helmann, J.D. (2018). Redox Sensing by Fe(2+) in Bacterial Fur Family Metalloregulators. Antioxid Redox Signal 29, 1858-1871.
Rawlings, N.D., Barrett, A.J., and Finn, R. (2016). Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 44, D343-350.
Sakurai, J., Matsuzaki, A., and Miwatani, T. (1973). Purification and characterization of thermostable direct hemolysin of Vibrio parahaemolyticus. Infect Immun 8, 775-780.
Schulz, G.E. (2003). Transmembrane beta-barrel proteins. Adv Protein Chem 63, 47-70.
Shinoda, S., and Miyoshi, S. (2011). Proteases produced by Vibrios. Biocontrol Sci 16, 1-11.
Su, Y.C., and Liu, C. (2007). Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol 24, 549-558.
Tokuda, H. (2009). Biogenesis of outer membranes in Gram-negative bacteria. Biosci Biotechnol Biochem 73, 465-473.
Tsujibo, H., Miyamoto, K., Okamoto, T., Orikoshi, H., and Inamori, Y. (2000). A serine protease-encoding gene (aprII) of Alteromonas sp. Strain O-7 is regulated by the iron uptake regulator (Fur) protein. Appl Environ Microbiol 66, 3778-3783.
Vaitkevicius, K., Lindmark, B., Ou, G., Song, T., Toma, C., Iwanaga, M., Zhu, J., Andersson, A., Hammarstrom, M.L., Tuck, S., et al. (2006). A Vibrio cholerae protease needed for killing of Caenorhabditis elegans has a role in protection from natural predator grazing. Proc Natl Acad Sci U S A 103, 9280-9285.
Vaitkevicius, K., Rompikuntal, P.K., Lindmark, B., Vaitkevicius, R., Song, T., and Wai, S.N. (2008). The metalloprotease PrtV from Vibrio cholerae. FEBS J 275, 3167-3177.
Vezzulli, L., Brettar, I., Pezzati, E., Reid, P.C., Colwell, R.R., Hofle, M.G., and Pruzzo, C. (2012). Long-term effects of ocean warming on the prokaryotic community: evidence from the vibrios. ISME J 6, 21-30.
Vezzulli, L., Grande, C., Reid, P.C., Helaouet, P., Edwards, M., Hofle, M.G., Brettar, I., Colwell, R.R., and Pruzzo, C. (2016). Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc Natl Acad Sci U S A 113, E5062-5071.
von Heijne, G. (2007). The membrane protein universe: what's out there and why bother? J Intern Med 261, 543-557.
Vongxay, K., Wang, S., Zhang, X., Wu, B., Hu, H., Pan, Z., Chen, S., and Fang, W. (2008). Pathogenetic characterization of Vibrio parahaemolyticus isolates from clinical and seafood sources. Int J Food Microbiol 126, 71-75.
Walther, D.M., Rapaport, D., and Tommassen, J. (2009). Biogenesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cell Mol Life Sci 66, 2789-2804.
Wimley, W.C. (2003). The versatile beta-barrel membrane protein. Curr Opin Struct Biol 13, 404-411.
Yamashita, S., and Buchanan, S.K. (2010). Solute and Ion Transport: Outer Membrane Pores and Receptors. EcoSal Plus 4.
Yu, M.S., Yap, M.N., and Lee, C.Y. (2000). Metal content and biochemical analyses of a recombinant collagenase PrtV from Vibrio parahaemolyticus. Microbiol Immunol 44, 805-813.
Yu, W.T., Jong, K.J., Lin, Y.R., Tsai, S.E., Tey, Y.H., and Wong, H.C. (2013). Prevalence of Vibrio parahaemolyticus in oyster and clam culturing environments in Taiwan. Int J Food Microbiol 160, 185-192.
Zhang, Y.Z., Ran, L.Y., and Chen, X.L. (2015). Diversity, structures, and collagen-degrading mechanisms of bacterial collagenolytic proteases. Appl Environ Microbiol 81, 6098-6107.
Zen-Yoji, H., Hitokoto, H., Morozumi, S., and Le Clair, R.A. (1971). Purification and characterization o;f a hemolysin produced by Vibrio parahaemolyticus. J Infect Dis 123, 665-667.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78608-
dc.description.abstract腸炎弧菌是一種海洋弧菌,為亞洲地區常見的食品病原菌,人類常因食用含有腸炎弧菌的海鮮而造成腹瀉、嘔吐等腸胃疾病。它可分泌許多種胞外蛋白酶,本次研究觀察的 PrtV 為腸炎弧菌之胞外金屬蛋白酶,同時也是一種膠原蛋白酶。本研究以腸炎弧菌 no.93 作為實驗菌株,探討膠原蛋白酶 PrtV 之基因 prtV (VPA0459) 與其周圍鄰近基因之轉錄情形,並闡明攝鐵調控蛋白 Fur (Ferric uptake regulator, VPI_2457) 對其基因轉錄的影響。首先利用反轉錄聚合酶連鎖反應 (RT-PCR) 確認 prtV 周圍基因VPA0456~VPA0460 之 RNA 轉錄狀況,並且利用 ARF-TSS 方法鑑定出 prtV 的轉錄起始點位於其轉譯起始點上游第 32 個核苷酸的位置;vpa0458 的轉錄起始點位於其轉譯起始點上游第 167個核苷酸的位置。前人利用即時定量聚合酶連鎖反應 (qRT-PCR) 檢測發現 prtV 上游之反向基因 vpa0458 及轉錄抑制子 fur 對 prtV 具有負調控的現象,且在 prtV-vpa0458 基因間區域 (intergenic region) 發現兩段序列可能為 Fur 的結合區 (Fur box 1 及 Fur box 2),在本研究中發現了第三段可能為Fur 的結合區 (Fur box 3),該序列與弧菌屬保守 Fur 結合序列 (5’–AATGANAATNATTNTCATT–3’) 比較,具有 80% 相同度。文獻指出 Fur 的調控功能會受到細菌生長環境中亞鐵離子 (Fe2+) 濃度的影響,利用 qRT-PCR 觀察腸炎弧菌在不同鐵離子環境中基因表現量的變化,結果顯示低鐵環境下,fur 表現量顯著降低、vpa0458 及 prtV 表現量顯著增加,推測亞鐵離子會促進 fur 表現並抑制 vpa0458 及 prtV 表現;比較不同突變株中的 prtV 表現量,∆VPA0458、∆Fur 及 ∆VPA0458∆Fur 相較於野生株的 prtV 表現量都有顯著提升,推測 prtV 會受到 fur 及 vpa0458 的抑制。為更進一步確認 fur 與 prtV 的調控關係,建構重組蛋白 His6-Fur 並進行大量純化,以之與含有 prtV 上游 Fur box 之 DIG 探針進行電泳遷移率實驗 (EMSA),證實 Fur 能夠結合在 prtV 上游預測到的三個 Fur box。在前人研究中以 Fur(partially frame shift) 進行電泳遷移率實驗發現 Fur 疑似能夠結合在 Fur box 1。在本研究中證實腸炎弧菌之 Fur 除了能夠結合於 Fur box 1,也能結合在 Fur box 2 以及本研究發現之 Fur box 3。zh_TW
dc.description.abstractVibrio parahaemolyticus is a commom marine pathogen of humans in Asia and is a causative agent of seafood-associated food poisoning. This organism can cause gastroenteritis such as diarrhea and vomiting. It can secret many extracellular proteases. The extracellular metalloprotease PrtV of Vibrio parahaemolyticus no.93 is also a collagenase. In this study, we validated the transcription status of prtV (VPA0459) and its adjacent genes: VPA0456VPA0460 and investgated the expression of prtV to elucidate the regulatory roles of Fur, a major transcription factor controlling iron-homeostasis. We used RT-PCR to prove VPA0456~VPA0458 and VPA0459~VPA0460 are not operons. By using ARF-TSS assay, we found the transcription start site of prtV was 32 nucleotides upstream of the translation start site, and the transcription start site of vpa0458 was 167 nucleotides upstream of the translation start site. Previously, transcription regulator Fur and hypothetical protein VPA0458 were found to down regulate the expression of prtV by qRT-PCR. Furthermore, there were found two predicted Fur boxes, named Fur box 1 and Fur box 2, in prtV-vpa0458 intergenetic region. In this study, we found the third Fur box (Fur box 3) shows 80% similarity compared to Vibrios conserved Fur binding sequence (5’–AATGANAATNATTNTCATT–3’). Also, it was well proved that the concentrantion of Fe2+ in cell culture will affect fur expression. Thus, we added dip into medium to chelate the Fe2+ and observed the difference of gene expression level. The result of qRT-PCR shows the gene expression level of prtV and vpa0458 were significantly promoted in iron-limited cultures, while fur was repressed. We also compared prtV expression level in different strains. In ∆VPA0458, ∆Fur and ∆VPA0458∆Fur, prtV expression level was significantly higher than in WT, thus we thought prtV can be negative regulated by fur and vpa0458. Fur box 1 was prevouly found that Fur(partially frame shift) might interact on this region by EMSA analysis. In this study, we reconstructed the recombinant protein Fur (His6-Fur) and validated the interaction of His6-Fur with not only predicted Fur box 1, but Fur box 2 and new-found Fur box 3. This study demonstrates that Fur regulates PrtV at the transcription level by binding on the Fur box.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:07:01Z (GMT). No. of bitstreams: 1
ntu-108-R04623028-1.pdf: 12564000 bytes, checksum: 30e455ddcbd9f018ed08915d25e151bd (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents中文摘要 i
英文摘要 iii
目錄 v
表次 viii
圖次 ix
附錄圖次 x
縮寫表 xi
壹、前言 1
一、腸炎弧菌 1
1.概述 1
2.性狀 1
3.腸炎弧菌之致病因子 (Virulence factors) 2
4.腸炎弧菌疾病流行情形 3
5.本實驗所用菌株之描述 4
二、胞外蛋白酶 (Extracellular proteases) 5
1.概述 5
2.腸炎弧菌鋅金屬蛋白酶 5
3.腸炎弧菌之胞外金屬蛋白酶 PrtV 6
4.霍亂弧菌之胞外金屬蛋白酶 PrtV 6
三、攝鐵機制 7
1. 細菌鐵離子之利用 7
2. 攝鐵調控蛋白 Fur (ferric uptake regulator) 8
3. 攝鐵調控蛋白 Fur 的保守 DNA 結合序列Fur box 10
四、膜蛋白 11
五、研究動機與目的 12
貳、實驗材料與方法 13
I. 實驗材料 13
1. 實驗菌株、質體與引子 13
2. 培養基 13
3. 藥品與試劑 13
4. 溶液與緩衝溶液 14
5. 實驗使用套組 17
6. 儀器設備 18
II. 實驗方法 20
1.DNA 技術 20
2.RNA技術 24
3.蛋白質技術 26
4.建構補償株/過表現株 29
5.細菌生長曲線之測定 30
6.ARF–TSS 分析轉錄起始點 30
7.電泳遷移率實驗 (EMSA) 31
8.生物資訊庫軟體分析 33
9.統計分析 34
參、實驗結果 35
1.利用生物資訊學分析 prtV 及其鄰近基因 35
2.以 RT-PCR 分析 prtV 鄰近基因轉錄情形 35
3.VP93 之 prtV 及上游反向基因 vpa0458 啟動子序列及轉錄起始點分析 36
4.以生物資訊學分析 prtV 與上游反向基因 vpa0458 之間序列 (intergenic region) 特性及可能結合之調控蛋白 37
5.以軟體預測未知功能 VPA0458 蛋白質的結構 37
6.VPA0458 重組蛋白的表現 ( protein expression) 38
7.Fur 重組蛋白的表現及其純化 38
8.利用電泳遷移率實驗觀察 Fur 與 prtV 基因上游預測之 Fur box 結合情形 39
9.以 qRT-PCR 測定不同鐵離子環境下之腸炎弧菌野生株中 prtV、vpa0458、fur 基因表現差異 40
10.以 qRT-PCR 比較不同鐵離子環境下之腸炎弧菌野生株、∆VPA0458、∆Fur 及 ∆VPA0458∆Fur 缺失株中 prtV 基因表現差異 41
肆、討論 42
ㄧ、Fur 調控機制與胞外蛋白酶的關係 42
二、prtV 及vpa0458 啟動子區域與 Fur box 之關聯性 43
三、依據前人 LuxAB 啟動子活性分析探討 prtV-vpa0458 基因間迴文序列對 PrtV 及 VPA0458 之影響 43
伍、結論 45
陸、未來展望 46
柒、參考文獻 47
-
dc.language.isozh_TW-
dc.title攝鐵調控蛋白及 VPA0458 調控腸炎弧菌膠原蛋白酶 PrtVzh_TW
dc.titleFur and VPA0458 regulate collagenase PrtV in Vibrio parahaemolyticusen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳蕙芬;廖仁寶zh_TW
dc.contributor.oralexamcommitteeWhei-Fen Wu;Ren-Bao Liawen
dc.subject.keyword腸炎弧菌,膠原蛋白?,金屬蛋白?,攝鐵調控蛋白,轉錄起始點,zh_TW
dc.subject.keywordVibrio parahaemolyticus,collagenase,metalloprotease,ferric uptake regulator,transcription start site,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU201903543-
dc.rights.note未授權-
dc.date.accepted2019-08-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業化學系-
dc.date.embargo-lift2024-08-26-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  目前未授權公開取用
12.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved