Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78603
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘俊良(Chun-Liang Pan)
dc.contributor.authorLi-Tzu Chenen
dc.contributor.author陳力慈zh_TW
dc.date.accessioned2021-07-11T15:06:43Z-
dc.date.available2024-08-28
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-08-14
dc.identifier.citationBenedetti, C., Haynes, C.M., Yang, Y., Harding, H.P., and Ron, D. (2006). Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174, 229-239.
Berendzen, K.M., Durieux, J., Shao, L.W., Tian, Y., Kim, H.E., Wolff, S., Liu, Y., and Dillin, A. (2016). Neuroendocrine Coordination of Mitochondrial Stress Signaling and Proteostasis. Cell 166, 1553-1563.e1510.
Breckenridge, D.G., Kang, B.H., Kokel, D., Mitani, S., Staehelin, L.A., and Xue, D. (2008). Caenorhabditis elegans drp-1 and fis-2 regulate distinct cell-death execution pathways downstream of ced-3 and independent of ced-9. Molecular cell 31, 586-597.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Burkewitz, K., Morantte, I., Weir, H.J.M., Yeo, R., Zhang, Y., Huynh, F.K., Ilkayeva, O.R., Hirschey, M.D., Grant, A.R., and Mair, W.B. (2015). Neuronal CRTC-1 governs systemic mitochondrial metabolism and lifespan via a catecholamine signal. Cell 160, 842-855.
Chan, D.C. (2012). Fusion and fission: interlinked processes critical for mitochondrial health. Annual review of genetics 46, 265-287.
Deng, P., Uma Naresh, N., Du, Y., Lamech, L.T., Yu, J., Zhu, L.J., Pukkila-Worley, R., and Haynes, C.M. (2019). Mitochondrial UPR repression during Pseudomonas aeruginosa infection requires the bZIP protein ZIP-3. Proceedings of the National Academy of Sciences of the United States of America 116, 6146-6151.
Dietrich, M.O., Liu, Z.W., and Horvath, T.L. (2013). Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity. Cell 155, 188-199.
Durieux, J., Wolff, S., and Dillin, A. (2011). The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144, 79-91.
Escoll, P., Mondino, S., Rolando, M., and Buchrieser, C. (2016). Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy. Nature reviews Microbiology 14, 5-19.
Eura, Y., Ishihara, N., Yokota, S., and Mihara, K. (2003). Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. Journal of biochemistry 134, 333-344.
Haynes, C.M., and Ron, D. (2010). The mitochondrial UPR - protecting organelle protein homeostasis. Journal of cell science 123, 3849-3855.
Jeong, D.E., Lee, D., Hwang, S.Y., Lee, Y., Lee, J.E., Seo, M., Hwang, W., Seo, K., Hwang, A.B., Artan, M., et al. (2017). Mitochondrial chaperone HSP-60 regulates anti-bacterial immunity via p38 MAP kinase signaling. The EMBO journal 36, 1046-1065.
Jiang, H.C., Hsu, J.M., Yen, C.P., Chao, C.C., Chen, R.H., and Pan, C.L. (2015). Neural activity and CaMKII protect mitochondria from fragmentation in aging Caenorhabditis elegans neurons. Proceedings of the National Academy of Sciences of the United States of America 112, 8768-8773.
Kamath, R.S., Martinez-Campos, M., Zipperlen, P., Fraser, A.G., and Ahringer, J. (2001). Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome biology 2, Research0002.
Kenyon, C., Chang, J., Gensch, E., Rudner, A., and Tabtiang, R. (1993). A C. elegans mutant that lives twice as long as wild type. Nature 366, 461-464.
Kimura, K.D., Tissenbaum, H.A., Liu, Y., and Ruvkun, G. (1997). daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science (New York, NY) 277, 942-946.
Kirienko, N.V., Ausubel, F.M., and Ruvkun, G. (2015). Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 112, 1821-1826.
Li, C., Kim, K., and Nelson, L.S. (1999). FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. Brain research 848, 26-34.
Lin, C.-T. (2016). Neural Regulation of Mitochondrial Stress Response in Caenorhabditis elegans, pp. 1-95.
Liu, Y., Samuel, B.S., Breen, P.C., and Ruvkun, G. (2014). Caenorhabditis elegans pathways that surveil and defend mitochondria. Nature 508, 406-410.
Mello, C.C., Kramer, J.M., Stinchcomb, D., and Ambros, V. (1991). Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. The EMBO journal 10, 3959-3970.
Nargund, A.M., Fiorese, C.J., Pellegrino, M.W., Deng, P., and Haynes, C.M. (2015). Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt). Molecular cell 58, 123-133.
Nargund, A.M., Pellegrino, M.W., Fiorese, C.J., Baker, B.M., and Haynes, C.M. (2012). Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science (New York, NY) 337, 587-590.
Nathoo, A.N., Moeller, R.A., Westlund, B.A., and Hart, A.C. (2001). Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proceedings of the National Academy of Sciences of the United States of America 98, 14000-14005.
Olivier-Mason, A., Wojtyniak, M., Bowie, R.V., Nechipurenko, I.V., Blacque, O.E., and Sengupta, P. (2013). Transmembrane protein OSTA-1 shapes sensory cilia morphology via regulation of intracellular membrane trafficking in C. elegans. Development (Cambridge, England) 140, 1560-1572.
Oranth, A., Schultheis, C., Tolstenkov, O., Erbguth, K., Nagpal, J., Hain, D., Brauner, M., Wabnig, S., Steuer Costa, W., McWhirter, R.D., et al. (2018). Food Sensation Modulates Locomotion by Dopamine and Neuropeptide Signaling in a Distributed Neuronal Network. Neuron 100, 1414-1428.e1410.
Palikaras, K., Lionaki, E., and Tavernarakis, N. (2015). Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521, 525-528.
Patel, D.S., Garza-Garcia, A., Nanji, M., McElwee, J.J., Ackerman, D., Driscoll, P.C., and Gems, D. (2008). Clustering of genetically defined allele classes in the Caenorhabditis elegans DAF-2 insulin/IGF-1 receptor. Genetics 178, 931-946.
Pellegrino, M.W., Nargund, A.M., Kirienko, N.V., Gillis, R., Fiorese, C.J., and Haynes, C.M. (2014). Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature 516, 414-417.
Pierce, S.B., Costa, M., Wisotzkey, R., Devadhar, S., Homburger, S.A., Buchman, A.R., Ferguson, K.C., Heller, J., Platt, D.M., Pasquinelli, A.A., et al. (2001). Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes and development 15, 672-686.
Rolland, S.G., Lu, Y., David, C.N., and Conradt, B. (2009). The BCL-2-like protein CED-9 of C. elegans promotes FZO-1/Mfn1,2- and EAT-3/Opa1-dependent mitochondrial fusion. The Journal of cell biology 186, 525-540.
Shao, L.W., Niu, R., and Liu, Y. (2016). Neuropeptide signals cell non-autonomous mitochondrial unfolded protein response. Cell research 26, 1182-1196.
Tan, M.W., Mahajan-Miklos, S., and Ausubel, F.M. (1999). Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proceedings of the National Academy of Sciences of the United States of America 96, 715-720.
Zhang, Q., Wu, X., Chen, P., Liu, L., Xin, N., Tian, Y., and Dillin, A. (2018). The Mitochondrial Unfolded Protein Response Is Mediated Cell-Non-autonomously by Retromer-Dependent Wnt Signaling. Cell 174, 870-883.e817.
Zuchner, S., Mersiyanova, I.V., Muglia, M., Bissar-Tadmouri, N., Rochelle, J., Dadali, E.L., Zappia, M., Nelis, E., Patitucci, A., Senderek, J., et al. (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature genetics 36, 449-451.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78603-
dc.description.abstract不同的胞器有獨特的壓力反應能夠啟動一連串的保護機制,使生物體適應外界或內在的變動。近期許多研究顯示,神經系統可以透過傳遞神經訊號調控全身性的壓力反應。在秀麗桿狀線蟲Caenorhabditis elegans中,當神經細胞內粒線體功能被破壞時,會藉由血清素與神經胜肽調控全身性的粒線體壓力反應。研究發現,線蟲的神經細胞能夠透過改變粒線體的動態平衡,來影響線蟲全身所有細胞的粒線體壓力反應。在神經系統中,抑制粒線體融合蛋白FZO-1/Mitofusin時,有兩個類胰島素胜肽INS-27和INS-35參與在協調粒線體壓力反應以及粒線體的動態平衡之中。當神經細胞的粒線體動態平衡被破壞時,除了引發粒線體的壓力反應,更會造成腸道的粒線體形態破碎。我們更進一步發現,類胰島素生長因子的受體DAF-2作用在神經細胞完成這個調控。此外,神經系統動態平衡改變引起的粒線體壓力反應,會增加線蟲對抗綠膿桿菌的能力,證明神經細胞在協調系統性粒線體壓力反應的重要性。本篇研究顯示,神經細胞中粒線體的動態平衡與粒線體的壓力反應之間的協調,能夠給予線蟲在面對致病菌感染時有生存上的益處。zh_TW
dc.description.abstractCells mount organelle-specific stress responses to restore proteomic homeostasis and adapt to various stressors. Cellular stress responses can be regulated in a non-autonomous fashion via neuronal signaling. In C. elegans, mitochondrial perturbation in the nervous system induces systemic mitochondrial unfolded protein response (UPRmt) through serotonin and the FLP-2 neuropeptide. In addition to UPRmt, we find that mitochondrial dynamics are coordinated among C. elegans somatic tissues through neuronal signaling. Here we characterize two insulin-like peptides in inter-tissue coordination of UPRmt and mitochondrial dynamics upon depletion of the mitochondrial fusion gene fzo-1 in neurons. Neuronal fzo-1 RNAi elicits non-autonomous UPRmt and also induces mitochondrial fragmentation in non-neural tissues. We find that the insulin-like peptides INS-27 and INS-35 act to coordinate UPRmt and mitochondrial dynamics between neurons and other somatic tissues, and they likely signal through DAF-2, the insulin-like growth factor 1 receptor. Our data show that DAF-2 acts in neurons to regulate UPRmt induction. Non-autonomous UPRmt induced by neuronal mitochondrial perturbation improves resistance to pathogenic bacteria, confirming the importance of neural coordination of systemic UPRmt. Our study indicates that coordination of neuronal mitochondrial dynamics and systemic mitochondrial states confers survival benefit under pathogenic bacterial infection.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:06:43Z (GMT). No. of bitstreams: 1
ntu-108-R06448004-1.pdf: 87320039 bytes, checksum: 1db732fac9f489997377c62a0b1488ed (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
ACKNOWLEDGEMENT ii
中文摘要 iv
ABSTRACT v
CONTENTS vi
Chapter 1 INTRODUCTION 1
1.1 FZO-1 and the Regulation of Mitochondrial Morphology 2
1.2 Neuronal Signals in Cell-Non-Autonomous UPRmt 3
1.3 UPRmt as a Defense Mechanism for Pathogen Infection 3
Chapter 2 MATERIALS and METHODS 5
2.1 C. elegans Strains and Genetics 5
2.2 Molecular Biology 5
2.3 Imaging and Quantification of UPRmt 6
2.4 Feeding RNA Interference 6
2.5 Mitochondrial Morphology 6
2.6 Slow-killing Assay 6
2.7 Serotonin Treatment 7
Chapter 3 RESULTS 8
3.1 A hierarchical network of neurotransmitter signaling that regulates non-autonomous UPRmt 8
3.2 Neuropeptides are required for systemic UPRmt upon neuronal loss of fzo-1 8
3.3 The insulin-like growth factor 1 receptor DAF-2 regulates non-autonomous UPRmt 9
3.4 Non-autonomous mitochondrial fragmentation induced by neuronal loss of fzo-1 requires multiple neuropeptides 10
3.5 The insulin-like growth factor 1 receptor DAF-2 is necessary for mitochondrial fragmentation 11
3.6 INS-27 secretion from the AVK neuron regulates non-autonomous UPRmt 11
3.7 UPRmt upregulation by neuronal fzo-1 RNAi confers survival benefit under pathogenic bacterial infection 12
Chapter 4 DISCUSSION 13
4.1 Neuropeptide signaling regulates UPRmt and mitochondrial morphology 13
4.2 UPRmt induction improves survival under pathogenic bacterial infection 14
Chapter 5 FIGURES 16
Figure 1. Exogenous serotonin restores UPRmt response to the tph-1 mutant under neuronal fzo-1 RNAi 17
Figure 2. Exogenous serotonin supplement restores UPRmt in the eat-4 mutant under neuronal fzo-1 RNAi 19
Figure 3. Exogenous serotonin supplement restores UPRmt in the tdc-1 mutant under neuronal fzo-1 RNAi 21
Figure 4. Exogenous serotonin supplement fails to restore UPRmt in the unc-17 mutant under neuronal fzo-1 RNAi 23
Figure 5. mRNA-seq data of some upregulated neuropeptide genes in the fzo-1 or neuronal fzo-1 RNAi strains 25
Figure 6. Loss-of-function mutations of some neuropeptide genes suppress UPRmt induction by neuronal fzo-1 RNAi 27
Figure 7. cco-1 knockdown induces cell-autonomous UPRmt in the ins-27 and ins-35 mutants 29
Figure 8. Loss of the insulin-like growth factor 1 receptor gene daf-2 suppresses UPRmt induction upon neuronal fzo-1 RNAi 31
Figure 9. cco-1 knockdown induces cell-autonomous UPRmt in the daf-2 mutant 33
Figure 10. Neuronal expression of DAF-2 restores the UPRmt induction in the daf-2 mutant upon neuronal fzo-1 RNAi 35
Figure 11. Intestinal expression of DAF-2 fails to restore the UPRmt induction in the daf-2 mutant upon neuronal fzo-1 RNAi 37
Figure 12. Examples of mitochondrial morphology in the intestine 39
Figure 13. Neuronal fzo-1 RNAi triggers mitochondrial fragmentation in the wild type and the sid-1 mutant 41
Figure 14. Neuropeptide gene mutations partially block intestinal mitochondrial fragmentation triggered by neuronal fzo-1 RNAi 43
Figure 15. The insulin-like growth factor 1 receptor DAF-2 regulates non-autonomous mitochondrial fragmentation upon neuronal fzo-1 RNAi 45
Figure 16. Intestine-specific expression of DAF-2 fails to restore intestinal mitochondrial fragmentation upon neuronal fzo-1 RNAi 47
Figure 17. ins-27 is expressed in the interneuron AVK and the pharyngeal motor neuron M2 49
Figure 18. ins-27 expression in AVK restores UPRmt to the ins-27 mutant under neuronal fzo-1 RNAi 51
Figure 19. ins-35 is expressed in ASK and ASI 53
Figure 20. ASK-specific expression of ins-35 fails to restore UPRmt to the ins-35 mutant upon neuronal fzo-1 RNAi 55
Figure 21. UPRmt activation triggered by neuronal fzo-1 RNAi confers resistance to the Pseudomonas aeruginosa PA14 strain. 57
Chapter 6 REFERENCE 59
dc.language.isoen
dc.subject粒線體zh_TW
dc.subject粒線體融合蛋白FZO-1/Mitofusinzh_TW
dc.subject粒線體壓力反應zh_TW
dc.subject粒線體形態zh_TW
dc.subject神經胜?訊號zh_TW
dc.subject線蟲zh_TW
dc.subject綠膿桿菌zh_TW
dc.subjectpathogenic Pseudomonas aeruginosa infectionen
dc.subjectC. elegansen
dc.subjectMitochondriaen
dc.subjectFZO-1/Mitofusinen
dc.subjectMitochondrial unfolded protein responseen
dc.subjectMitochondrial morphologyen
dc.subjectNeuropeptide signalsen
dc.title神經胜肽訊號調控線蟲粒線體壓力反應與形態zh_TW
dc.titleRegulation of Mitochondrial Stress Response and Morphology by Neuropeptide Signaling in C. elegansen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張智芬(Zee-Fen Chang),吳益群(Yi-Chun Wu),許翱麟(Ao-Lin Hsu)
dc.subject.keyword線蟲,粒線體,粒線體融合蛋白FZO-1/Mitofusin,粒線體壓力反應,粒線體形態,神經胜?訊號,綠膿桿菌,zh_TW
dc.subject.keywordC. elegans,Mitochondria,FZO-1/Mitofusin,Mitochondrial unfolded protein response,Mitochondrial morphology,Neuropeptide signals,pathogenic Pseudomonas aeruginosa infection,en
dc.relation.page63
dc.identifier.doi10.6342/NTU201903422
dc.rights.note有償授權
dc.date.accepted2019-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
dc.date.embargo-lift2024-08-28-
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-R06448004-1.pdf
  未授權公開取用
85.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved