請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78601
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 董成淵 | zh_TW |
dc.contributor.author | 吳亭萱 | zh_TW |
dc.contributor.author | Ting-Hsuan Wu | en |
dc.date.accessioned | 2021-07-11T15:06:35Z | - |
dc.date.available | 2024-08-15 | - |
dc.date.copyright | 2019-08-23 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | [1] Farahani, N., et al., “Three-dimensional Imaging and Scanning: Current and Future Applications for Pathology.”, J Pathol Inform. 8(1), 36 (2017).
[2] Pegoraro, G., Misteli, T., “High-throughput imaging for the discovery of cellular mechanisms of disease”, Trends Genet. 33(9), 604–615 (2017). [3] Pegoraro, G., Misteli, T., “High-throughput Imaging as a versatile and unbiased discovery tool”, Methods. 96, 1–2 (2016). [4] 張景明, 張金堅, “腫瘤微環境簡介”, TAIWAN MEDICAL JOURNAL 58(1), p.14–18 (2015). [5] Ibiayi Dagogo-Jack, Alice T. Shaw, “Tumour heterogeneity and resistance to cancer therapies”, Nature Reviews Clinical Oncology 15, 81-94 (2018). [6] Lin, J. R., Fallahi-Sichani, M., Sorger, P. K., “Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method.”, Nature 6(8390) (2015). [7] Lin, J. R., Fallahi-Sichani, M., Chen, J. Y., Sorger, P. K., “Cyclic Immunofluorescence (CycIF), A Highly Multiplexed Method for Single-cell Imaging”, Curr Protoc Chem Biol. 8(4), 251–264 (2017). [8] Tsujikawa, T., et al., “Quantitative Multiplex Immunohistochemistry Reveals Myeloid-Inflamed Tumor-Immune Complexity Associated with Poor Prognosis.”, Cell Reports 19(1), 203–217(2017). [9] Glass, G., Papin, J. A., Mandell, J. W., “SIMPLE: A Sequential Immunoperoxidase Labeling and Erasing Method”, J Histochem Cytochem. 57(10), 899-905 (2009). [10] Purves, D., et al., Neuroscience, third edition, Sinauer associates Inc. Publishers, Sunderland Massachusetts, USA. (2004). [11] Racine, E., Bar-Ilan, O., Illes, J., “Brain Imaging: A Decade of Coverage in the Print Media.”, Sci Commun. 28(1), 122-142 (2006). [12] Elizabeth M. C. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man”, J Biomed Opt. 12(5), 051402 (2007). [13] Zhu, X., et al. “Optical Brain Imaging: A Powerful Tool for Neuroscience”, Neurosci. Bull. 33(1), 95–102 (2017). [14] Chung, K., et al., “Structural and molecular interrogation of intact biological systems”, Nature 497(7449), 332–337 (2013). [15] Kim, S. Y., et al., “Stochastic electrotransport selectively enhances the transport of highly electromobile molecules”, Proc. Natl. Acad. Sci. USA 112(46), E6274–83 (2015). [16] 龐寧寧, “漫談布朗運動”, 物理雙月刊 28(1), 2–11 (2006). [17] 龐寧寧, “布朗運動界面成長與擴散現象”, 物理雙月刊 27(3), 465–466 (2005). [18] Einstein, A., Investigations on the Theory of the Brownian Movement, First American Edition, Dover Publications (1956). [19] Erickson, H. P., “Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy”, Biol Proced Online. 11, 32–51 (2009). [20] Socolofsky, S. A., Jirka, G. H., Special Topics in Mixing and Transport Processes in the Environment, 5th Edition Coastal and Ocean Engineering Division (2005). [21] Akio Ogata, and Banks, R. B., A Solution of Differential Equation of Longitudinal Dispersion in Porous Media, U.S. Government Printing Office, Washington (1961). [22] Ruthardt, N., Lamb, D. C., Bräuchle, C., “Single-particle Tracking as a Quantitative Microscopy-based Approach to Unravel Cell Entry Mechanisms of Viruses and Pharmaceutical Nanoparticles”, Mol Ther. 19(7), 1199-211 (2011). [23] Matthew H. Flamm, Scott L. Diamond, and Talid Sinno, “Lattice kinetic Monte Carlo simulations of convective-diffusive systems”, J Chem Phys. 130(9), 094904 (2009). [24] Online Integral Calculator, “https://www.wolframalpha.com/calculators/integral-calculator/”, (2019). [25] Module 2 Mechanics of Machining, “https://nptel.ac.in/courses/112105127/pdf/LM-05.pdf”, (2019). [26] Atkins, T., The Science and Engineering of Cutting: The Mechanics and Processes of Separating, Scratching and Puncturing Biomaterials, Metals and Non-metals, Oxford, UK: Butterworth-Heinemann/Elsevier (2009). [27] 王平嶂, 机械制造工艺与刀具, 清华大学出版社 (2005). [28] Schaala, N, Kustera, F., Wegenera, K., “Springback in metal cutting with high cutting speeds”, Procedia CIRP 31, 24–28 (2015). [29] Smith, I., Landis, E., Gong, M., Fracture and Fatigue in Wood, John Wiley & Sons Inc (2003). [30] Atkins, A. G., “Slice–push, formation of grooves and the scale effect in cutting”, Interface focus 6(3), 20160019 (2016). [31] Atkins, A. G., Xu, X., Jeronimids, G., “Cutting, by ‘pressing and slicing,’ of thin floppy slices of materials illustrated by experiments on cheddar cheese and salami”, JOURNAL OF MA TERIALS SCIENCE 39, 2761–2766 (2004). [32] Boyd, R. W., Nonlinear Optics, second edition, San Diego: Academic Press (2003). [33] Provenzano, P. P., et al., “Nonlinear Optical Imaging of Cellular Processes in Breast Cancer”, Microsc Microanal. 14(6), 532–548 (2008). [34] Munson, C. A., et al, Counterterrorist Detection Techniques of Explosives, Elsevier Science Ltd, 279–321 (2007). [35] Fluorescence and Phosphorescence, “https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy/Electronic_Spectroscopy/Fluorescence_and_Phosphorescence”, (2019). [36] Peter, T. C. So., “Two-photon Fluorescence Light Microscopy”, ENCYCLOPEDIA OF LIFE SCIENCES. (2002). [37] Two-photon excitation microscopy: Why two is better than one, “https://www.scientifica.uk.com/learning-zone/two-photon-excitation-microscopy-why-two-is-better-than-one”, (2019). [38] 李宜真, 蘇子正, “雙光子顯微術於生物組織的應用”, 物理雙月刊 24(3), 413–420 (2001). [39] Potter, S. M., “Vital imaging : Two photons are better than one”, Current Biology 6(12), 1595–1598 (1996). [40] 4% PFA and 10% formalin fixative protocol, “https://www.csr-mgh.org/wp-content/uploads/2017/04/4_PFA_and_10_formalin_fixation_protocol-1.pdf”, (2019). [41] Hoechst 33342, Trihydrochloride, Trihydrate - 10 mg/mL Solution in Water, “https://www.thermofisher.com/order/catalog/product/H3570”, (2018). [42] Nucleic Acid Stains—Section 8.1, “https://www.thermofisher.com/tw/en/home/references/molecular-probes-the-handbook/nucleic-acid-detection-and-genomics-technology/nucleic-acid-stains.html”, (2019). [43] Agarose Low EEO, “https://www.sigmaaldrich.com/catalog/product/sial/a0576?lang=en®ion=TW”, (2019). [44] LAB media, “https://openwetware.org/wiki/LAB_Media”, (2018). [45] 陳潔, 雙光子顯微術觀測分子電荷在離子導入術對皮膚穿透之影響, 國立臺灣大學理學院物理學研究所碩士論文 (2005). [46] 許訓嘉, 應用雙光子顯微術觀察油酸對皮膚滲透動態傳輸之影響, 國立臺灣大學理學院物理學研究所碩士論文 (2010). [47] ImageJ User Guide IJ 1.46r, “https://imagej.nih.gov/ij/docs/guide/146.html”, (2018). [48] Elgart, V., Lin, J. R., Loscalzo, J., “Determinants of drug-target interactions at the single cell level”, PLoS Comput Biol. 14(12): e1006601 (2018). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78601 | - |
dc.description.abstract | 本論文研究電場加速在大組織中染色的過程。此方法使用電場來增強帶電分子(例如:核染劑、蛋白質和抗體)的擴散性,並且不會損壞帶電樣品本身。本實驗中,我們設計了兩個獨特的裝置,即雙平行電極和雙環電極,用來施加電場在腫瘤組織上。將100微米厚度的肺腺癌腫瘤組織和1毫升的Hoechst 33342染劑放入PET膜中,並將PET膜和1.6毫升的LAB培養基一起放置到24孔細胞培養板內。位於PET膜兩側的電極產生電場在腫瘤組織上。在雙光子顯微鏡掃描腫瘤組織影像後,我們分析影像藉以獲得與深度相關的平均亮度曲線。
將組織放置於兩側電極中間後,我們的結果表明,在 Hoechst 33342溶液(用ddH2O稀釋)中的帶電離子運動可以滲透到組織深處而不破壞表面,並且允許有效的染劑滲透。在施加電壓10 伏特時,有明顯的擴散發生。此外,雙環電極的設計優於雙平行電極。對於雙平行電極,由於在施加電場時電極會產生氣泡,位於腫瘤組織正下方的電極會造成PET膜移動。 | zh_TW |
dc.description.abstract | In this thesis, we study new electric field method to accelerate the staining process in large tumor tissues. It enhances the apparent diffusivity of electromobile molecules, such as nuclear dyes, proteins, and antibodies, without damaging tumor tissues. In this work, we design two unique devices, for one with two-parallel electrode and the other with double-ring electrode to apply the voltage on tumor tissues with charged dyes. For experimental design, a 100 µm thick lung adenocarcinoma tumor tissue and 1 mL Hoechst 33342 containing positive ions will be loaded into a PET membrane sitting on one of 24-plate wells with LAB media. Electrodes are positioned next to the membrane so as to produce the electric field on the tumor tissue. After scanning tumor tissue images from two-photon microscopy, we could obtain a depth-dependent averaged intensity curve featuring the image.
After placing the tissue at the middle of two electrodes, our results show that the movement of charged ions in the Hoechst 33342 solution (diluted with ddH2O) are able to penetrate into the depth of the tumor tissue without destroying the surface and allow efficient dye penetration at the same time. The optimal voltage for obvious diffusivity lie in 10 volts. Furthermore, we found that double-ring electrode design outperforms its parallel electrode counterpart. For two-parallel electrode, due to bubbles generated from the application of the electric field, the electrode right below the tumor tissue would result in the displacement of the PET membrane. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:06:35Z (GMT). No. of bitstreams: 1 ntu-108-R06245002-1.pdf: 10838557 bytes, checksum: 2543d9ebb524e6b70816dacaf38a89de (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv Table of Content v List of Figures viii List of Tables xii Chapter 1 Introduction 1 1.1 High Throughput Imaging 1 1.2 Cancer Screening 2 1.2.1 Cyclic Immunofluorescence 3 1.2.2 Immunohistochemistry 4 1.3 Brain Imaging 6 1.4 Enhancement of Tissue Labeling 9 Chapter 2 Principle 10 2.1 Diffusion 10 2.2 Electric Field 15 2.2.1 Electrotransport 15 2.2.2 Double-Ring Electrode Design 16 Chapter 3 Material Processing by Sectioning 20 3.1 Chip Deformation 20 3.1.1 Deformation Notation 20 3.1.2 Deformation Regions 21 3.2 Orthogonal and Oblique Cutting 23 3.2.1 Orthogonal Cutting 23 3.2.2 Oblique Cutting 29 Chapter 4 Nonlinear Optical Imaging 34 4.1 Fluorescence 34 4.2 Two-Photon Microscopy 36 4.2.1 Two-Photon Florescence 36 4.1.2 Two-Photon Excitation 38 Chapter 5 Materials and Methods 48 5.1 Electrode Design 48 5.2 Sample Preparation 51 5.3 Solution Preparation 51 5.3.1 Phosphate-Buffered Saline (PBS) 51 5.3.2 4% Formaldehyde Solution 52 5.3.3 Hoechst 33342 Dye 52 5.3.4 2% Agarose Gel 54 5.3.5 LAB Media 55 5.4 Optical Microscopy Setup 56 5.5 Data Analysis 59 Chapter 6 Results 61 6.1 Comparison of Electrode Designs 61 6.2 Electric Field Experiment for Double-Ring Electrode 61 6.2.1 Control Experiment 61 6.2.2 Tumor Tissue Experiment 72 Chapter 7 Discussion 84 References 85 | - |
dc.language.iso | en | - |
dc.title | 電場增強分子傳遞以應用於高通量多光子顯微術 | zh_TW |
dc.title | Electric Field Enhanced Molecular Delivery for High Throughput Multiphoton Imaging | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張顏暉;陳永芳;石明豐;王立民 | zh_TW |
dc.contributor.oralexamcommittee | ;;; | en |
dc.subject.keyword | 電場,擴散,帶電分子,腫瘤組織,三維影像, | zh_TW |
dc.subject.keyword | electric field,diffusion,charged molecules,tumor tissue,three-dimensional imaging, | en |
dc.relation.page | 90 | - |
dc.identifier.doi | 10.6342/NTU201903389 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-14 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 應用物理研究所 | - |
dc.date.embargo-lift | 2024-08-23 | - |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 10.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。