請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78598
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李佳音 | zh_TW |
dc.contributor.author | 張珊齊 | zh_TW |
dc.contributor.author | San-Chi Chang | en |
dc.date.accessioned | 2021-07-11T15:06:24Z | - |
dc.date.available | 2024-08-19 | - |
dc.date.copyright | 2019-08-20 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Baird, L., Lipinska, B., Raina, S., & Georgopoulos, C. (1991). Identification of the Escherichia-coli sohb gene, a multicopy suppressor of the HtrA (Degp) null phenotype. Journal of Bacteriology, 173(18), 5763-5770.
Ball, A. S., & van Kessel, J. C. (2019). The master quorum-sensing regulators LuxR/HapR directly interact with the alpha subunit of RNA polymerase to drive transcription activation in Vibrio harveyi and Vibrio cholerae. Molecular Microbiology, 0(0),1-18. Bendtsen, K. M., Erdossy, J., Csiszovszki, Z., Lo Svenningsen, S., Sneppen, K., Krishna, S., & Semsey, S. (2011). Direct and indirect effects in the regulation of overlapping promoters. Nucleic Acids Research, 39(16), 6879-6885. Benitez, J. A., & Silva, A. J. (2016). Vibrio cholerae hemagglutinin (HA) /protease: An extracellular metalloprotease with multiple pathogenic activities. Toxicon, 115, 55-62. Bond, J. S., & Butler, P. E. (1987). Intracellular proteases. Annual Review of Biochemistry, 56(1), 333-364. Borukhov, S., & Nudler, E. (2003). RNA polymerase holoenzyme: structure, function and biological implications. Current Opinion in Microbiology, 6(2), 93-100. Browning, D. F., & Busby, S. J. W. (2016). Local and global regulation of transcription initiation in bacteria. Nature Reviews Microbiology, 14(10), 638-650. Brinkley, A. W., Rommel, F. A., & Huber, T. W. (1976). The isolation of Vibrio parahaemolyticus and related vibrios from moribund aquarium lobsters.Canadian Journal of Microbiology, 22(2), 315-317. Burke, A. K., Guthrie, L. T., Modise, T., Cormier, G., Jensen, R. V., McCarter, L. L., & Stevens, A. M. (2015). OpaR Controls a Network of Downstream Transcription Factors in Vibrio parahaemolyticus BB22OP. PloS one, 10(4), e0121863. Cianciotto, N. P. (2005). Type II secretion: a protein secretion system for all seasons. Trends in Microbiology, 13(12), 581-588. Chang, S. C., & Lee, C. Y. (2018). OpaR and RpoS are positive regulators of a virulence factor PrtA in Vibrio parahaemolyticus. Microbiology-Sgm, 164(2), 221-231. Chaparian, R. R., Olney, S. G., Hustmyer, C. M., Rowe-Magnus, D. A., & van Kessel, J. C. (2016). Integration host factor and LuxR synergistically bind DNA to coactivate quorum-sensing genes in Vibrio harveyi. Molecular Microbiology, 101(5), 823-840. Chin, K. J., Esteve-Núnez, A., Leang, C., & Lovley, D. R. (2004). Direct correlation between rates of anaerobic respiration and levels of mRNA for key respiratory genes in Geobacter sulfurreducens. Applied and Environmental Microbiology, 70(9), 5183-5189. Chimalapati, S., Santos, M. D., Servage, K., De Nisco, N. J., Dalia, A. B., & Orth, K. (2018). Natural transformation in Vibrio parahaemolyticus: a rapid method to create genetic deletions. Journal of Bacteriology, 200(15). e00032-18. Christie, P. J., & Cascales, E. (2005). Structural and dynamic properties of bacterial type IV secretion systems. Molecular Membrane Biology,22(1-2), 51-61. Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284(5418), 1318-1322. Daniels, N. A., MacKinnon, L., Bishop, R., Altekruse, S., Ray, B., Hammond, R. M., & Slutsker, L. (2000). Vibrio parahaemolyticus infections in the United States, 1973–1998. Journal of Infectious Diseases, 181(5), 1661-1666. Dautin, N., & Bernstein, H. D. (2007). Protein Secretion in Gram-Negative Bacteria via the Autotransporter Pathway. Annu. Rev. Microbiol., 61, 89-112. Dautin, N. (2010). Serine protease autotransporters of entero- bacteriaceae (SPATEs): Biogenesis and function. Toxins, 2(6), 1179- 1206. Deepanjali, A., Kumar, H. S., & Karunasagar, I. (2005). Seasonal variation in abundance of total and pathogenic Vibrio parahaemolyticus bacteria in oysters along the southwest coast of India. Applied and Environmental Microbiology,71(7), 3575-3580. Dong, T., Kirchhof, M. G., & Schellhorn, H. E. (2008). RpoS regulation of gene expression during exponential growth of Escherichia coli K12. Molecular Genetics and Genomics, 279(3), 267-277 Dong, T., Yu, R., & Schellhorn, H. (2011). Antagonistic regulation of motility and transcriptome expression by RpoN and RpoS in Escherichia coli. Molecular Microbiology, 79(2), 375-386 Duarte, A. S., Correia, A., & Esteves, A. C. (2016). Bacterial collagenases - A review. Critical Reviews in Microbiology, 42(1), 106-126. Einhauer, A., & Jungbauer, A. (2001). The FLAG™ peptide, a versatile fusion tag for the purification of recombinant proteins. Journal of Biochemical and Biophysical Methods, 49(1), 455-465. Engelberg-Kulka, H., Amitai, S., Kolodkin-Gal, I., & Hazan, R. (2006). Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genetics, 2 (10), e135. Esteve-Núñez, A., Núñez, C., & Lovley, D. R. (2004). Preferential reduction of Fe (III) over fumarate by Geobacter sulfurreducens. Journal of Bacteriology,186(9), 2897-2899. Filloux, A., Hachani, A., & Bleves, S. (2008). The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology, 154(6), 1570-1583. Finkelstein, R. A., & Hanne, L. F. (1982). Purification and characterization of the soluble hemagglutinin (Cholera lectin) produced by Vibrio Cholerae. Infection and Immunity, 36(3), 1199-1208. Fujino, T., Okuno, Y., Nakada, D., Aoyama, A., Fukai, K., Mukai, T., & Ueho, T. (1953). On the bacteriological examination of shirasu-food poisoning. Medical Journal of Osaka University, 4(2/3), 299-304. Gadwal, S., Korotkov, K. V., Delarosa, J. R., Hol, W. G., & Sandkvist, M. (2014). Functional and structural characterization of Vibrio cholerae extracellular serine protease B, VesB. Journal of Biological Chemistry, 289(12), 8288-8298. Gao, X. A., Wang, J., Yu, D. Q., Bian, F., Xie, B. B., Chen, X. L., Zhang, Y. Z. (2010). Structural basis for the autoprocessing of zinc metalloproteases in the thermolysin family. Proceedings of the National Academy of Sciences of the United States of America, 107(41), 17569-17574. Glenn, A. R. (1976). Production of extracellular proteins by bacteria. Annual Reviews in Microbiology, 30(1), 41-62. Ghosh, A., Saha, D. R., Hoque, K. M., Asakuna, M., Yamasaki, S., Koley, H., & Pal, A. (2006). Enterotoxigenicity of mature 45-kilodalton and processed 35-kilodalton forms of hemagglutinin protease purified from a cholera toxin gene-negative Vibrio cholerae non-O1, non-O139 strain. Infection and Immunity,74(5), 2937-2946. Gode-Potratz, C. J., Chodur, D. M., & McCarter, L. L. (2010). Calcium and iron regulate swarming and type III secretion in Vibrio parahaemolyticus. Journal of Bacteriology, 192(22), 6025-6038. Gode-Potratz, C. J., Kustusch, R. J., Breheny, P. J., Weiss, D. S., & McCarter, L. L. (2011). Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence. Molecular Microbiology, 79(1), 240-263. Gode-Potratz, C. J., & McCarter, L. L. (2011). Quorum sensing and silencing in Vibrio parahaemolyticus. Journal of Bacteriology, 193(16), 4224-4237. Gottesman, S. (2017). Stress reduction, bacterial style. Journal of Bacteriology, 199(20). e00433-17. Gottesman, S. (1984). Bacterial regulation: global regulatory networks. Annual Review of Genetics, 18(1), 415-441. Grant, S. R., Fisher, E. J., Chang, J. H., Mole, B. M., & Dangl, J. L. (2006). Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu. Rev. Microbiol., 60, 425-449. Gruber, T. M., & Gross, C. A. (2003). Multiple sigma subunits and the partitioning of bacterial transcription space. Annual Reviews in Microbiology,57(1), 441-466. Guzzo, J., Duong, F., Wandersman, C., Murgier, M., & Lazdunski, A. (1991). The secretion genes of Pseudomonas aeruginosa alkaline protease are functionally related to those of Erwinia chrysanthemi proteases and Escherichia coli α‐haemolysin. Molecular Microbiology, 5(2), 447-453. Gunter, G. (1955). Mortality of oysters and abundance of certain associates as related to salinity. Ecology, 36(4), 601-605. Halter, R., Pohlner, J., & Meyer, T. F. (1989). Mosaic-like organization of IgA protease genes in Neisseria gonorrhoeae generated by horizontal genetic exchange in vivo. The EMBO journal, 8(9), 2737. Hase, C. C., & Finkelstein, R. A. (1991). Cloning and nucleotide sequence of the Vibrio Cholerae hemagglutinin protease (HA Protease) gene and construction of an HA protease-negative strain. Journal of Bacteriology, 173(11), 3311-3317. Häse, C. C., & Finkelstein, R. A. (1993). Bacterial extracellular zinc- containing metalloproteases. Microbiological Reviews, 57(4), 823-837. Siezen, R. J., & Leunissen, J. A. (1997). Subtilases: the superfamily of subtilisin‐like serine proteases. Protein Science, 6(3), 501-523. Hengge-Aronis, REGINE, (1996). Regulation of gene expression during entry into stationary phase. Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC, 1497-1512. Hengge-Aronis, R. (2002). Recent insights into the general stress response regulatory network in Escherichia coli. Journal of Molecular Microbiology and Biotechnology, 4(3), 341-346. Hiyoshi, H., Kodama, T., Iida, T., & Honda, T. (2010). Contribution of Vibrioparahaemolyticus virulence factors to cytotoxicity, enterotoxicity, and lethality in mice. Infection and Immunity, 78(4), 1772-1780. Holland, I. B., Schmitt, L., & Young, J. (2005). Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway. Molecular Membrane Biology, 22(1-2), 29-39. Hung, W. C., Jane, W. N., & Wong, H. C. (2013). Association of a D-Alanyl-D-Alanine carboxypeptidase gene with the formation of aberrantly shaped cells during the induction of viable but nonculturable Vibrio parahaemolyticus. Applied and Environmental Microbiology, 79(23), 7305-7312. Ieva, R., Tian, P., Peterson, J. H., & Bernstein, H. D. (2011). Sequential and spatially restricted interactions of assembly factors with an autotransporter β domain. Proceedings of the National Academy of Sciences, 108(31), E383-E391. Jaques, S., & McCarter, L. L. (2006). Three new regulators of swarming in Vibrio parahaemolyticus. Journal of Bacteriology, 188(7), 2625- 2635. Jensen, R. V., DePasquale, S. M., Harbolick, E. A., Hong, T., Kernell, A. L., Kruchko, D. H., & Stevens, A. M. (2013). Complete genome sequence of prepandemic Vibrio parahaemolyticus BB22OP. Genome Announce- ments, 1(1), e00002-12. Jeong, K. C., Jeong, H. S., Rhee, J. H., Lee, S. E., Chung, S. S., Starks, A. M., Choi, S. H. (2000). Construction and phenotypic evaluation of a Vibrio vulnificus vvpE mutant for elastolytic protease. Infection and Immunity, 68(9), 5096-5106. Jobling, M. G., & Holmes, R. K. (1997). Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene. Molecular Microbiology,26(5), 1023-1034. Kanatani, A., Masuda, T., Shimoda, T., Misoka, F., Lin, X. S., Yoshimoto, T., & Tsuru, D. (1991). Protease-II from Escherichia-coli : sequencing and expression of the enzyme gene and characterization of the expressed enzyme. Journal of Biochemistry, 110(3), 315-320. Kanatani, A., Yoshimoto, T., Nagai, H., Ito, K., & Tsuru, D. (1992). Location of the protease-II gene (Ptrb) on the physical map of the Escherichia-coli chromosome. Journal of Bacteriology, 174(23), 7881-7881. Kawase, T., Miyoshi, S. I., Sultan, Z., & Shinoda, S. (2004). Regulation system for protease production in Vibrio vulnificus. FEMS Microbiology Letters, 240(1), 55-59. Kirn, T. J., Jude, B. A., & Taylor, R. K. (2005). A colonization factor links Vibrio cholerae environmental survival and human infection. Nature, 438 (7069), 863-866. Kim, C. M., Park, R. Y., Chun, H. J., Kim, S. Y., Rhee, J. H., & Shin, S. H. (2007). Vibrio vulnificus metalloprotease VvpE is essentially required for swarming. FEMS Microbiology Letters, 269(1), 170-179. Kodama, T., Rokuda, M., Park, K. S., Cantarelli, V. V., Matsuda, S., Iida, T., & Honda, T. (2007). Identification and characterization of VopT, a novel ADP‐ribosyltransferase effector protein secreted via the Vibrio parahaemolyticus type III secretion system 2. Cellular Microbiology, 9(11), 2598-2609. Lee, C. Y., Su, S. C., & Liaw, R. B. (1995). Molecular Analysis of an Extracellular Protease Gene from Vibrio Parahaemolyticus. Microbiology- Sgm, 141, 2569-2576. Lee, C. Y., Cheng, M. F., Yu, M. S., & Pan, M. J. (2002). Purification and characterization of a putative virulence factor, serine protease, from Vibrio parahaemolyticus. FEMS Microbiology Letters, 209(1), 31-37. Lee, S. J., Jung, Y. H., Ryu, J. M., Jang, K. K., Choi, S. H., & Han, H. J. (2016). VvpE mediates the intestinal colonization of Vibrio vulnificus by the disruption of tight junctions. International Journal of Medical Microbiology, 306(1), 10-19 Liu, H., Srinivas, S., He, X., Gong, G., Dai, C., Feng, Y., & Wang, S. (2013). Quorum sensing in Vibrio and its relevance to bacterial virulence. Journal of Bacteriology & Parasitology, 4(3), 172-178. Leo, J. C., Grin, I., & Linke, D. (2012). Type V secretion: mechanism (s) of autotransport through the bacterial outer membrane. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1592), 1088-1101. Leyton, D. L., Adams, L. M., Kelly, M., Sloan, J., Tauschek, M., Robins-Browne, R. M., & Hartland, E. L. (2007). Contribution of a novel gene, rpeA, encoding a putative autotransporter adhesin to intestinal colonization by rabbit-specific enteropathogenic Escherichia coli. Infection and Immunity, 75(9), 4664-4669. Leyton, D. L., Rossiter, A. E., & Henderson, I. R. (2012). From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis. Nature Reviews Microbiology, 10(3), 213- 225. Lin, B., Wang, Z., Malanoski, A. P., O'Grady, E. A., Wimpee, C. F., Vuddhakul, V., & Vora, G. J. (2010). Comparative genomic analyses identify the Vibrio harveyi genome sequenced strains BAA‐1116 and HY01 as Vibrio campbellii. Environmental Microbiology Reports, 2(1), 81-89. Lim, M. S., Kim, J. A., Lim, J. G., Kim, B. S., Jeong, K. C., Lee, K. H., & Choi, S. H. (2011). Identification and characterization of a novel serine protease, VvpS, that contains two functional domains and is essential for autolysis of Vibrio vulnificus. Journal of Bacteriology, 193(15), 3722- 3732. Lin, L. C., Lin, G. H., Wang, Z. L., Tseng, Y. H., & Yu, M. S. (2015). Differential expression of catalases in Vibrio parahaemolyticus under various stress conditions. Research in Microbiology, 166(8), 601-608. Lin, H. Y., & Lee, C. Y. (1997). Production and separation of extracellular proteases from Vibrio parahaemolyticus. Journal of Chinese Agriculture Chemistry, 35,32-60 Makino, K., Oshima, K., Kurokawa, K., Yokoyama, K., Uda, T., Tagomori, K., & Iida, T. (2003). Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. The Lancet, 361(9359), 743-749. Ma, L., Zhang, Y., Yan, X., Guo, L., Wang, L., Qiu, J., Zhou, D. (2012). Expression of the type VI secretion system 1 component Hcp1 is indirectly repressed by OpaR in Vibrio parahaemolyticus. The Scientific World Journal, 2012:1-7 Mathur, J., Davis, B. M., & Waldor, M. K. (2007). Antimicrobial peptides activate the Vibrio cholerae sigma (E) regulon through an OmpU-dependent signalling pathway. Molecular Microbiology, 63(3), 848-858. McCarter, L. L. (1998). OpaR, a homolog of Vibrio harveyi LuxR, controls opacity of Vibrio parahaemolyticus. Journal of Bacteriology, 180(12), 3166-3173. McDougald, D., Rice, S. A., & Kjelleberg, S. (2001). SmcR-Dependent Regulation of Adaptive Phenotypes in Vibrio vulnificus. Journal of Bacteriology,183(2), 758-762. Methé, B. A., Webster, J., Nevin, K., Butler, J., & Lovley, D. R. (2005). DNA microarray analysis of nitrogen fixation and Fe (III) reduction in Geobacter sulfurreducens. Applied and Environmental Microbiology, 71(5), 2530-2538. Mel, S. F., Fullner, K. J., Wimer-Mackin, S., Lencer, W. I., & Mekalanos, J. J. (2000). Association of protease activity in Vibrio cholerae vaccine strains with decreases in transcellular epithelial resistance of polarized T84 intestinal epithelial cells. Infection and Immunity, 68(11), 6487-6492. Miyoshi, S. (2013). Extracellular proteolytic enzymes produced by human pathogenic Vibrio species. Frontiers in Microbiology, 4. doi:ARTN 339 Munro, S., & Pelham, H. R. (1984). Use of peptide tagging to detect proteins expressed from cloned genes: deletion mapping functional domains of Drosophila hsp 70. The EMBO Journal, 3(13), 3087. Müller, M. (2005). Twin-arginine-specific protein export in Escherichia coli. Research in Microbiology, 156(2), 131-136. Ng, W. L., & Bassler, B. L. (2009). Bacterial quorum-sensing network architectures. Annual Review of Genetics, 43, 197-222. Ng, W. L., Perez, L., Cong, J., Semmelhack, M. F., & Bassler, B. L. (2012). Broad spectrum pro-quorum-sensing molecules as inhibitors of virulence in Vibrios. PLoS Pathogens, 8(6), e1002767. Noh, H. J., Nagami, S., Kim, M. J., Kim, J., Lee, N. K., Lee, K. H., & Park, S. J. (2014). Role of VcrD1 protein in expression and secretion of flagellar components in Vibrio parahaemolyticus. Archives of Microbiology, 1-14. Núnez, C., Esteve-Núnez, A., Giometti, C., Tollaksen, S., Khare, T., Lin, W., & Methé, B. A. (2006). DNA microarray and proteomic analyses of the RpoS regulon in Geobacter sulfurreducens. Journal of Bacteriology, 188(8), 2792-2800. Nishibuchi, M., & Kaper, J. B. (1995). Thermostable direct hemolysin gene of Vibrio parahaemolyticus: a virulence gene acquired by a marine bacterium. Infection and Immunity, 63(6), 2093-2099. Oda, K. (2012). New families of carboxyl peptidases: serine-carboxyl peptidases and glutamic peptidases. Journal of Biochemistry, 151(1), 13- 25. Papanikou, E., Karamanou, S., & Economou, A. (2007). Bacterial protein secretion through the translocase nanomachine. Nature Reviews Microbiology, 5(11), 839-851. Park, K. S., Ono, T., Rokuda, M., Jang, M. H., Okada, K., Iida, T., & Honda, T. (2004). Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infection and Immunity, 72(11), 6659-6665. Park, K. S., Ono, T., Rokuda, M., Jang, M. H., Iida, T., & Honda, T. (2004). Cytotoxicity and enterotoxicity of the thermostable direct hemolysin-deletion mutants of Vibrio parahaemolyticus. Microbiology and Immunology, 48(4), 313-318. Philippe, N., Alcaraz, J. P., Coursange, E., Geiselmann, J., & Schneider, D. (2004). Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid, 51(3), 246-255. Pompeani, A. J., Irgon, J. J., Berger, M. F., Bulyk, M. L., Wingreen, N. S., & Bassler, B. L. (2008). The Vibrio harveyi master quorum‐sensing regulator, LuxR, a TetR‐type protein is both an activator and a repressor: DNA recognition and binding specificity at target promoters. Molecular Microbiology, 70(1), 76-88. Pugsley, A. P. (1993). The complete general secretory pathway in gram-negative bacteria. Microbiological Reviews, 57(1), 50-108. Pundhir, S., & Kumar, A. (2011). SSPred: A prediction server based on SVM for the identification and classification of proteins involved in bacterial secretion systems. Bioinformation, 6(10), 380-382. Raimondi, F., Kao, J. P., Fiorentini, C., Fabbri, A., Donelli, G., Gasparini, N., & Fasano, A. (2000). Enterotoxicity and cytotoxicity of Vibrio parahaemolyticus thermostable direct hemolysin in in-vitro systems. Infection and Immunity, 68(6), 3180-3185. Ramos, J. L., Martínez-Bueno, M., Molina-Henares, A. J., Terán, W., Watanabe, K., Zhang, X., Tobes, R. (2005). The TetR family of transcriptional repressors. Microbiology and Molecular Biology Reviews, 69(2), 326-356. Rawlings, N. D., Barrett, A. J., & Bateman, A. (2010). MEROPS: the peptidase database. Nucleic Acids Research, 38(suppl 1), D227-D233. Rawlings, N. D., Barrett, A. J., & Bateman, A. (2011). Asparagine peptide lyases a seventh catalytic type of proteolytic enzymes. Journal of Biological Chemistry, 286(44), 38321-38328. Rawlings, N. D., Barrett, A. J., & Bateman, A. (2012). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 40(D1), D343-D350. Rawlings, N. D., Barrett, A. J., & Finn, R. (2016). Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research, 44(D1), D343-D350. Rawlings, N. D., Alan, J., Thomas, P. D., Huang, X. D., Bateman, A., & Finn, R. D. (2018). The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Research, 46(D1), D624-D632. Rompikuntal, P. K., Vdovikova, S., Duperthuy, M., Johnson, T. L., Ahlund, M., Lundmark, R., Wai, S. N. (2015). Outer membrane vesicle-mediated export of processed PrtV protease from Vibrio cholerae. Plos One, 10(7). Rossiter, A. E., Leyton, D. L., Tveen-Jensen, K., Browning, D. F., Sevastsyanovich, Y., Knowles, T. J., ... & Henderson, I. R. (2011). The essential β-barrel assembly machinery complex components BamD and BamA are required for autotransporter biogenesis. Journal of Bacteriology, 193(16), 4250-4253. Rui, H., Liu, Q., Ma, Y., Wang, Q., & Zhang, Y. (2008). Roles of LuxR in regulating extracellular alkaline serine protease A, extracellular polysaccharide and mobility of Vibrio alginolyticus. FEMS Microbiology Letters, 285(2), 155-162. Ruiz-Perez, F., Henderson, I. R., & Nataro, J. P. (2010). Interaction of FkpA, a peptidyl-prolyl cis/trans isomerase with EspP autotransporter protein. Gut Microbes, 1(5), 339-344. Rutherford, S. T., & Bassler, B. L. (2012). Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor Perspectives in Medicine, 2(11), a012427. Sakazaki, R., Iwanami, S., & Fukumi, H. (1963). Studies on the enteropathogenic, facultatively halophilic bacteria, Vibrio parahae- molyticus.I. morphological, cultural and biochemical properties and its taxonomical position. Japanese Journal of Medical Science & Biology, 16 (4), 161-188. Sakazaki, R., Tamura, K., Kato, T., Obara, Y., & Yamai, S. (1968). Studies on the enteropathogenic, facultatively halophilic bacterium, Vibrio parahaemolyticus. Japanese Journal of Medical Science & Biology, 21(5), 313-324. Sanyal, S. C., & Sen, P. C. (1974). Human volunteer study on the pathogenicity of Vibrio parahaemolyticus. International Symposium of Vibrio parahaemolyticus.(pp. 227-230). Tokyo, Japan: Saikon Publishing Co., Ltd. Sarkar, B. L., Kumar, R., De, S. P., & Pal, S. C. (1987a). Hemolytic activity of and lethal toxin production by environmental strains of Vibrio parahaemolyticus. Applied and Environmental Microbiology, 53(11), 2696-2698. Sarkar, B. L., Kumar, R., De, S. P., & Pal, S. C. (1987b). Observation on a 65-kilodalton protein isolated from kanagawa positive strains of Vibrio parahaemolyticus. Canadian Journal of Microbiology, 33(12), 1113-1116. Sauri, A., Soprova, Z., Wickström, D., de Gier, J. W., Van der Schors, R. C., Smit, A. B., & Luirink, J. (2009). The Bam (Omp85) complex is involved in secretion of the autotransporter haemoglobin protease. Microbiology, 155(12), 3982-3991. Schafer, A., Kalinowski, J., Simon, R., Seepfeldhaus, A. H., & Puhler, A. (1990). High-frequency conjugal plasmid transfer from gram-negative Escherichia-coli to various gram-positive coryneform bacteria. Journal of Bacteriology, 172(3), 1663-1666. Sheng, L., Lv, Y., Liu, Q., Wang, Q., & Zhang, Y. (2013). Connecting type VI secretion, quorum sensing, and c-di-GMP production in fish pathogen Vibrio alginolyticus through phosphatase PppA. Veterinary Microbiology, 162(2-4), 652-662. Silva, A. J., & Benitez, J. A. (2004). Transcriptional regulation of Vibrio cholerae hemagglutinin/protease by the cyclic AMP receptor protein and RpoS. Journal of Bacteriology, 186(19), 6374-6382. Su, S. C., & Lee, C. Y. (1997). Characterization of haemolysis of the Vibrio parahaemolyticus no. 93. Chinese Journal of Microbiology and Immunology, 30(1), 32. Syngkon, A., Elluri, S., Koley, H., Rompikuntal, P. K., Saha, D. R., Chakrabarti, M. K., & Pal, A. (2010). Studies on a novel serine protease of a ΔhapAΔprtV Vibrio cholerae O1 strain and its role in hemorrhagic response in the rabbit ileal loop model. PloS one, 5(9), e13122. Szabady, R. L., Peterson, J. H., Skillman, K. M., & Bernstein, H. D. (2005). An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. Proceedings of the National Academy of Sciences of the United States of America, 102(1), 221-226. Takahashi, A., Iida, T., Naim, R., Naykaya, Y., & Honda, T. (2001). Chloride secretion induced by thermostable direct haemolysin of Vibrio parahaemolyticus depends on colonic cell maturation. Journal of Medical Microbiology, 50(10), 870. Tseng, T. T., Tyler, B. M., & Setubal, J. C. (2009). Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiology, 9(1), 1. Trimble, M. J., & McCarter, L. L. (2011). Bis-(3′-5′)-cyclic dimeric GMP-linked quorum sensing controls swarming in Vibrio parahae- molyticus. Proceedings of the National Academy of Sciences, 108(44), 18079-18084. Vaitkevicius, K., Rompikuntal, P. K., Lindmark, B., Vaitkevicius, R., Song, T. Y., & Wai, S. N. (2008). The metalloprotease PrtV from Vibrio cholerae. FEBS Journal, 275(12), 3167-3177. Van Kessel, J. C., Rutherford, S. T., Shao, Y., Utria, A. F., & Bassler, B. L. (2013). Individual and combined roles of the master regulators AphA and LuxR in control of the Vibrio harveyi quorum-sensing regulon. Journal of Bacteriology, 195(3), 436-443. Vollmer, W., Joris, B., Charlier, P., & Foster, S. (2008). Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiology Reviews, 32(2), 259-286. Wandersman, C. (1989). Secretion, processing and activation of bacterial extracellular proteases. Molecular Microbiology, 3(12), 1825- 1831. Waters, C. M., & Bassler, B. L. (2006). The Vibrio harveyi quorum- sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes & Development, 20(19), 2754- 2767. Wang, H. X., Wu, J. H., Ayala, J. C., Benitez, J. A., & Silva, A. J. (2011). Interplay among cyclic diguanylate, HapR, and the general stress response regulator (RpoS) in the regulation of Vibrio cholerae hemagglutinin/ protease. Journal of Bacteriology, 193(23), 6529-6538. Wei, Y., Ng, W. L., Cong, J., & Bassler, B. L. (2012). Ligand and antagonist driven regulation of the Vibrio cholerae quorum‐sensing receptor CqsS. Molecular Microbiology, 83(6), 1095-1108. Whitaker, W. B., Parent, M. A., Naughton, L. M., Richards, G. P., Blumerman, S. L., & Boyd, E. F. (2010). Modulation of responses of Vibrio parahaemolyticus O3: K6 to pH and temperature stresses by growth at different salt concentrations. Applied and Environmental Microbiology, 76(14), 4720-4729. Wu, Z., Nybom, P., & Magnusson, K. E. (2000). Distinct effects of Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction‐ associated proteins occludin and ZO‐1. Cellular Microbiology, 2(1), 11-17. Xavier, K. B., & Bassler, B. L. (2003). LuxS quorum sensing: more than just a numbers game. Current Opinion in Microbiology, 6(2), 191-197. Yanagihara, I., Nakahira, K., Yamane, T., Kaieda, S., Mayanagi, K., Hamada, D., & Hashimoto, H. (2010). Structure and functional characterization of Vibrio parahaemolyticus thermostable direct hemolysin. Journal of Biological Chemistry, 285(21), 16267-16274. Yan, B., Núñez, C., Ueki, T., Esteve-Núñez, A., Puljic, M., Adkins, R. M., & Krushkal, J. (2006). Computational prediction of RpoS and RpoD regulatory sites in Geobacter sulfurreducens using sequence and gene expression information. Gene, 384, 73. Yen, Y. T., Kostakioti, M., Henderson, I. R., & Stathopoulos, C. (2008). Common themes and variations in serine protease autotransporters. Trends in Microbiology, 16(8), 370-379. Yu, M. S., & Lee, C. Y. (1999). Expression and characterization of the prtV gene encoding a collagenase from Vibrio parahaemolyticus in Escherichia coli. Microbiology-Sgm, 145, 143-150. Yu, M. S., Yap, M. N., & Lee, C. Y. (2000). Metal content and biochemical analyses of a recombinant collagenase PrtV from Vibrio parahaemolyticus. Microbiology and Immunology, 44(10), 805-813. Zhang, Y., Qiu, Y., Tan, Y., Guo, Z., Yang, R., & Zhou, D. (2012). Transcriptional regulation of opaR, qrr2–4 and aphA by the master quorum-sensing regulator OpaR in Vibrio parahaemolyticus. PLoS One, 7(4), e34622. Zhang, L. L., & Orth, K. (2013). Virulence determinants for Vibrio parahaemolyticus infection. Current Opinion in Microbiology, 16(1), 70-77. Zhu, J., Miller, M. B., Vance, R. E., Dziejman, M., Bassler, B. L., & Mekalanos, J. J. (2002). Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 3129-3134. Zhu, J., & Mekalanos, J. J. (2003). Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Developmental Cell, 5(4), 647-656 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78598 | - |
dc.description.abstract | 腸炎弧菌 (Vibrio parahaemolyticus) 為海洋細菌,當人類食用受腸炎弧菌污染的海鮮會造成腹瀉等腸胃疾病,是台灣重要的食物病原菌。本研究首先結合Mi-seq、PacBio和Sanger三種定序方法解序腸炎弧菌VP93基因體序列。VP93基因體由一大一小的兩個染色體所組成,全長5,095,022 bp,GC含量 45.26%,有4,709個ORF,第一個染色體長3,396,947 bp,GC 含量45.07%,存在3,181個ORF、31個rRNA、101個tRNA; 第二個染色體較小長1,698,075 bp,GC含量45.63%,存在1,528個ORF、3個rRNA、14個tRNA。當VP93生長至後對數期 (late-log phase) 時胞外蛋白酶的活性達到最高峰。蛋白酶參與弧菌屬菌株營養攝取及感染的機制,菌體透過定額感應系統感知群體密度及環境條件,可以調控菌體中基因的表現。染色質免疫沉澱之定序 (ChIP-seq) 資料顯示VP93基因體有838個OpaR結合序列,歸納OpaR保守性結合序列為ATCAATA。即時定量聚合酶連鎖反應 (qRT-PCR) 和報導基因實驗 (luxAB assay) 確認OpaR經由八個蛋白酶基因附近之OpaR結合位抑制LytM (VPA1649)、Mcp02 (VPA0755)、M6 protease (VP0907)、serine protease (VPA0449)、DegS (VP0432)、protease II (VPA1467)、periplasmic protease (VP2032) 基因表現,以及促進PrtA (VPA0227) 基因表現。電泳遷移 (EMSA) 和足跡 (footprinting) 實驗證實蛋白酶基因附近八個OpaR結合位之結合情形及序列。OpaR於蛋白酶基因之專一性結合序列可歸納為ATCGTTG。胞外鹼性絲胺酸蛋白酶 (PrtA) 具有溶血性和細胞毒性,PrtA主導腸炎弧菌VP93胞外蛋白酶的活性。prtA和上游的反向基因ldh共用啟動子之-10序列。轉錄起始點實驗 (ARF-TSS) 證實ldh和prtA的轉錄起始點分別位於轉譯起始點上游-78的A和-198的G。OpaR於prtA上游有兩個結合位,一個在-269至-246處,另一個位於-88至-68處。其中-269至-246的OpaR結合位重疊於prtA的啟動子之-35序列。本論文提出定額感應調控子OpaR在腸炎弧菌蛋白酶基因的調控中扮演著重要的角色。由臺灣分離之腸炎弧菌VP93基因體解序、OpaR直接調控組 (direct regulon) 及蛋白酶基因調控機制各項研究結果,為海洋弧菌之相關研究領域提供嶄新資訊,對於蛋白酶調控機制提出不同的視野及研究手法。 | zh_TW |
dc.description.abstract | Vibrio paraheamolyticus is marine bacteria. It causes gastroenteritis and diarrhea when humans are infected with V. parahaemolyticus via consumption of raw contaminated seafood. V. parahaemolyticus is an important foodborn pathogen in Taiwan. In this study, we combine three sequencing methods, Mi-seq, PacBio and Sanger to assemble the VP93 genome. VP93 genome has two chromosomes, containing 5,095,022 bp, 4,709 ORFs and GC content is 45.26%. Chr1 was composed with 3,396,947 bp, 3,181 ORF, 31 rRNA, 101 tRNA and GC content is 45.07%. Chr2 has 1,698,075 bp, 1,528 ORF, 3 rRNA, 14 tRNA and GC content is 45.63%. Extracellular protease activity was highest during the late-log growth phase of VP93. Many protease genes have been shown to be required for nutrient intake and the infection mechanism of Vibrios. Quorum sensing (QS) is a bacterial communication system which uses extracellular chemicals as signals. Bacteria changed their behaviour and synchronised gene expression in a microbial community by QS. ChIP-seq data reveals 838 OpaR binding sites in VP93 genome. The conserved OpaR binding motif is ATCAATA. qRT-PCR and luxAB assay confirmed that OpaR repressed the gene expression of LytM, Mcp02, M6 protease, serine protease, DegS, protease II, periplasmic protease and promoteed prtA expression. EMSA and footprinting results defined the OpaR specific binding sequence of the eight protease genes. The protease specific binding motif of OpaR is ATCGTTG. PrtA is an extracellular serine protease of Vibrio parahaemolyticus and has haemolytic and cytotoxic activities. PrtA is the dominant of VP93 extracellular protease activity. prtA and opposite direction gene, ldh shared the -10 box of the promoter region. ARF-TSS proved that the transcription start site of ldh and prtA is on -78A and -198G position from their translation start site. OpaR bound to prtA upstream sequence at positions -269 to -246 and -88 to -68 from the prtA translational start site. -269 to -246 overlapped the -35 box of prtA promoter. In this study, we report that OpaR, a quorum sensing regulator play important roles in the protease regulation mechanism. The results of clarifying the genome sequence VP93 strain isolated from Taiwan, OpaR direct regulon, protease gene regulation provided novel information and research method on protease regulation of Vibrio research field. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:06:24Z (GMT). No. of bitstreams: 1 ntu-108-D02623002-1.pdf: 8238896 bytes, checksum: 5b3f61d694fb4d1ac05316fee47a8aa9 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iv 英文摘要 v 目錄 vi 表次 x 圖次 xi 附錄表次 xiii 附錄圖次 xiv 縮寫表 xv 第一章、前言及文獻回顧 1 一、腸炎弧菌(Vibrio parahaemolyticus) 1 1. 起源及特性 1 2. 基因體分析 1 3. 致病因子 2 二、弧菌屬胞外蛋白酶 3 1. 胞外絲胺酸蛋白酶 3 1-1霍亂弧菌胞外絲胺酸蛋白酶-VC1649 4 1-2創傷弧菌胞外絲胺酸蛋白酶-VvpS 4 1-3腸炎弧菌胞外絲胺酸蛋白酶 PrtA 5 2. 胞外金屬蛋白酶 5 2-1霍亂弧菌胞外金屬蛋白酶- HA/protease 6 2-2創傷弧菌胞外金屬蛋白酶-VvpE 6 2-3腸炎弧菌胞外金屬蛋白酶 PrtV 7 三、定額感應系統(Quorum Sensing System) 7 1. 弧菌屬定額感應系統 7 2. 定額感應系統之調控子 8 3. 腸炎弧菌定額感應系統主要調控子OpaR 9 第二章、腸炎弧菌VP93全基因體解序及分析 11 一、本章摘要 11 二、本章前言 12 三、材料與方法 12 1. 菌株 12 2. 培養條件 12 3. 引子序列 12 4. 儀器及藥品試劑 13 5. 染色體純化 13 6. 設計引子 13 7. 聚合酶連鎖反應(PCR) 14 8. DNA瓊脂膠體電泳 14 四、結果 15 1. 定序品質分析-MiSeq (二代) &PacBio (三代) 15 2. MiSeq修剪(trim)和PacBio校正(correct) 16 3. De novo 序列組裝 16 4. Sanger定序Chr1-gap和Chr2-gap 16 5. 合併PacBio序列組裝VP93基因體 17 6. rRNA、tRNA 及ORF預測 17 7. 全基因體Gene Ontology (GO)分析 18 8. 全基因體COGs和KEGG分析 18 9. VP93和其他腸炎弧菌菌株之基因體比較 18 五、討論 19 六、結論 20 第三章、染色質免疫沉澱之定序分析定額感應調控子OpaR結合位 21 一、本章摘要 21 二、本章前言 22 三、材料與方法 23 1. 菌株及質體 23 2. 引子 23 3. 培養條件 23 4. 儀器及藥品試劑 23 5. 生物資訊分析 24 6. 染色體純化 24 7. DNA瓊脂膠體電泳 24 8. 質體小量製備 24 9. 膠體純化DNA片段 25 10. 聚合酶連鎖反應 (PCR) 25 11. DNA 之限制酶截切反應 25 12. 接合作用(ligation) 26 13. 大腸桿菌勝任細胞製備 26 14. 大腸桿菌熱休克轉型作用 26 15. 接合生殖(Conjugation)與篩選方式 27 16. FLAG-OpaR/VP93菌株建構 27 17. 西方墨點法 28 18. 染色質免疫沉澱(ChIP) 28 19. 染色質免疫沉澱之即時定量聚合酶連鎖反應(ChIP-qPCR) 29 四、結果 29 1. 建構並確認FLAG-OpaR的表現情形 29 2. 染色質免疫沉澱(ChIP)之DNA剪切(shearing)條件 30 3. 染色質免疫沉澱(ChIP)之FLAG抗體結合條件 30 4. ChIP-seq DNA片段品質確認及次世代定序 (ChIP-Seq) 31 5. ChIP-Seq 結果分析受OpaR直接調控的基因分類 32 6. OpaR的保守性結合序列 32 五、討論 33 六、結論 34 第四章、腸炎弧菌定額感應調控子OpaR直接調控八個蛋白酶 35 一、本章摘要 35 二、本章前言 35 三、材料與方法 36 1. 菌株 36 2. 質體及引子 36 3. 培養條件 37 4. 儀器及藥品試劑 37 5. 生物資訊學 37 6. 製備腸炎弧菌勝任細胞 37 7. 腸炎弧菌的轉型作用 37 8. 報導基因實驗 (luxAB reporter assay) 38 9. 細菌之RNA萃取 38 10. 去除RNA樣品中的DNA 39 11. RNA反轉錄作用 39 12. 即時定量聚合酶連鎖反應(q-PCR) 40 13. His-tag 蛋白純化方法 40 14. 蛋白質的定量 40 15. 蛋白質的膠體電泳 41 16. 電泳遷移實驗(EMSA) 41 17. 足跡實驗(footprinting) 43 18. 統計分析方法 44 四、結果 44 1. OpaR結合於八個蛋白酶基因附近 44 2. 蛋白酶基因於不同生長時期之表現情形 44 3. OpaR對於蛋白酶基因的調控情形 45 4. OpaR於八個蛋白酶基因之結合情形 (EMSA) 45 5. OpaR於蛋白酶基因之結合位序列 (footprinting) 46 6. OpaR於蛋白酶基因之專一性結合序列 46 7. 八個蛋白酶基因之特性 47 五、討論 47 六、結論 48 第五章、定額感應調控因子OpaR於prtA-ldh 基因間結合位分析 49 一、本章摘要 49 二、本章前言 49 三、材料與方法 50 1. 菌株 50 2. 質體及引子 50 3. 培養條件 50 4. 儀器及藥品試劑 50 5. 生物資訊學網站 51 6. 生長曲線測定 51 7. 胞外蛋白酶純化與濃縮 51 8. 胞外蛋白酶活性測試 52 9. 轉錄起始點的分析(ARF-TSS) 52 10. 報導基因實驗(luxAB assay) 52 11. 足跡實驗(footprinting) 53 四、結果 53 1. PrtA主導VP93之胞外蛋白酶活性 53 2. OpaR調控 prtA啟動子 53 3. prtA和ldh啟動子分析 54 4. OpaR於prtA上游之結合序列 54 5. OpaR於ldh和prtA基因間的角色 55 五、討論 55 六、結論 56 第六章、總結 57 第七章、未來展望 59 一、OpaR於VP93基因體中鞭毛基因結合位分析 59 二、RpoS 結合於prtA 上游啟動子區域 59 三、OpaR和RNAP結合並調控prtA 表現 60 四、PrtA 胺基酸序列及分泌途徑探討 60 五、PrtA結構分析 61 參考文獻 62 | - |
dc.language.iso | zh_TW | - |
dc.title | 腸炎弧菌基因體分析及OpaR調控蛋白酶基因之研究 | zh_TW |
dc.title | Vibrio parahaemolyticus genome analysis and protease regulation of quorum sensing regulator OpaR | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 林奐妤;徐駿森;羅凱尹;徐丞志 | zh_TW |
dc.contributor.oralexamcommittee | ;;; | en |
dc.subject.keyword | 腸炎弧菌,定額感應系統,金屬蛋白?,絲胺酸蛋白?,胞外蛋白?, | zh_TW |
dc.subject.keyword | Vibrio paraheamolyticus,quorum sensing,OpaR,metalloprotease,serine protease,extracellular protease,ChIP-seq, | en |
dc.relation.page | 154 | - |
dc.identifier.doi | 10.6342/NTU201902885 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-14 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 農業化學系 | - |
dc.date.embargo-lift | 2029-08-08 | - |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 8.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。